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Given a graph G, a proper k-coloring of G is a partition c = (S i ) i∈[0,k-1] of V (G) into k stable sets S 0 , . . . , S k-1 . Given a weight function w : V (G) → R + , the weight of a color S i is dened as w(i) = max v∈S i w(v) and the weight of a coloring c as w(c) = k-1 i=0 w(i). Guan and Zhu [Inf. Process. Lett., 1997] dened the weighted chromatic number of a pair (G, w), denoted by σ(G, w), as the minimum weight of a proper coloring of G. For a positive integer r, they also dened σ(G, w; r) as the minimum of w(c) among all proper r-colorings c of G. The complexity of determining σ(G, w) when G is a tree was open for almost 20 years, until Araújo et al. [SIAM J. Discrete Math., 2014] recently proved that the problem cannot be solved in time n o(log n) on n-vertex trees unless the Exponential Time Hypothesis (ETH) fails.

The objective of this article is to provide hardness results for computing σ(G, w) and σ(G, w; r) when G is a tree or a forest, relying on complexity assumptions weaker than the ETH. Namely, we study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis FPT = W[1]. Building on the techniques of Araújo et al., we prove that when G is a forest, the decision problem of computing σ(G, w) is W[1]-hard parameterized by the size of a largest connected component of G, and that computing σ(G, w; r) is W[2]-hard parameterized by r. Our results rule out the existence of FPT algorithms for computing these invariants on trees or forests for many natural choices of the parameter.

Introduction

A (vertex) k-coloring of a graph G = (V, E) is a function c : V (G) → {0, . . . , k -1}. Such coloring c is proper if c(u) = c(v) for every edge {u, v} ∈ E(G). All the colorings we consider in this paper are proper, hence we may omit the word proper. The chromatic number χ(G) of G is the minimum integer k such that G admits a k-coloring. Given a graph G, determining χ(G) is the goal of the classical Vertex Coloring problem. If c is a k-coloring of G, then S i = {u ∈ V (G) | c(u) = i} is a stable (a.k.a. independent) set. Consequently, a k-coloring c can be seen as a partition of V (G) into stable sets S 0 , . . . , S k-1 . We often see a coloring as a partition in the sequel.

We study a generalization of Vertex Coloring for vertex-weighted graphs that has been dened by Guan and Zhu [START_REF] Guan | A coloring problem for weighted graphs[END_REF]. Given a graph G and a weight function w : V (G) → R + , the weight of a color S i is dened as w(i) = max v∈S i w(v). Then, the weight of a coloring c is w(c) = k-1 i=0 w(i). In the Weighted Coloring problem, the goal is to determine the weighted chromatic number of a pair (G, w), denoted by σ(G, w), which is the minimum weight of a coloring of (G, w). A coloring c of G such that w(c) = σ(G, w) is an optimal weighted coloring. Guan and Zhu [11] also dened, for a positive integer r, σ(G, w; r) as the minimum of w(c) among all r-colorings c of G, or as +∞ if no r-coloring exists. Note that σ(G, w) = min r≥1 σ(G, w; r). It is worth mentioning that the Weighted Coloring problem is also sometimes called Max-Coloring in the literature; see for instance [START_REF] Kavitha | Max-coloring paths: tight bounds and extensions[END_REF][START_REF] Pemmaraju | Approximating interval coloring and max-coloring in chordal graphs[END_REF].

Guan and Zhu dened this problem in order to study practical applications related to resource allocation, which they describe in detail in [START_REF] Guan | A coloring problem for weighted graphs[END_REF]. One should observe that if all the vertex weights are equal to one, then σ(G, w) = χ(G), for every graph G.

Consequently, determining σ(G, w) and σ(G, w; r) are NP-hard problems on general graphs [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. In fact, these problems have been shown to be NP-hard even on split graphs, interval graphs, triangle-free planar graphs with bounded degree, and bipartite graphs [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF][START_REF] Demange | Weighted node coloring: When stable sets are expensive[END_REF][START_REF] Escoer | Weighted coloring: further complexity and approximability results[END_REF]. On the other hand, the weighted chromatic number of cographs and of some subclasses of bipartite graphs can be found in polynomial time [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF][START_REF] Demange | Weighted node coloring: When stable sets are expensive[END_REF].

In this work we focus on the case where G is a forest, which has attracted considerable attention in the literature. Concerning graphs of bounded treewidth 2 , Guan

and Zhu [START_REF] Guan | A coloring problem for weighted graphs[END_REF] showed, by using standard dynamic programming techniques, that on an n-vertex graph of treewidth t the parameter σ(G, w; r) can be computed in time n O(r) • r O(t) .

(

) 1 
Guan and Zhu [START_REF] Guan | A coloring problem for weighted graphs[END_REF] left as an open problem whether Weighted Coloring is polynomial on trees and, more generally, on graphs of bounded treewidth. Escoer et al. [START_REF] Escoer | Weighted coloring: further complexity and approximability results[END_REF] found a polynomial-time approximation scheme to solve Weighted Coloring on bounded treewidth graphs, and Kavitha and Mestre [START_REF] Kavitha | Max-coloring paths: tight bounds and extensions[END_REF] showed that the problem is in P on the class of trees where vertices with degree at least three induce a stable set.

But the question of Guan and Zhu has been answered only recently, when Araújo et al. [START_REF] Araújo | Weighted coloring in trees[END_REF] showed that, unless the Exponential Time Hypothesis (ETH) 3 fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time n o(log n) .

As discussed in [START_REF] Araújo | Weighted coloring in trees[END_REF], it is worth mentioning that the above lower bound is tight.

Indeed, Guan and Zhu [START_REF] Guan | A coloring problem for weighted graphs[END_REF] showed that the maximum number of colors used by an optimal weighted coloring of any weighted graph (G, w) is at most its so-called rst-t chromatic number (see [START_REF] Guan | A coloring problem for weighted graphs[END_REF] for the denition), denoted by χ FF (G). On the other hand, Linhares and Reed [START_REF] Sales | Weighted coloring on graphs with bounded tree width[END_REF] proved that for any n-vertex graph G of treewidth at most t, it holds that χ FF (G) = O(t log n). These observations together with Equation (1) imply that the Weighted Coloring problem can be solved on forests in time n O(log n) .

Therefore, Weighted Coloring on forests is unlikely to be in P, as this would contradict the ETH, and also unlikely to be NP-hard, as in that case all problems in NP could be solved in subexponential time, contradicting again the ETH.

Our results. The objective of this article is to provide hardness results for computing σ(G, w) and σ(G, w; r) when G is a forest, relying on complexity assumptions weaker than the ETH. Namely, we study the problem from the viewpoint of parameterized complexity (the basic denitions can be found in Section 2), and we assume the weaker hypothesis FPT = W [START_REF] Araújo | Weighted coloring in trees[END_REF]. Indeed, it is well-known [START_REF] Cygan | Parameterized Algorithms[END_REF] that the ETH implies that FPT = W [START_REF] Araújo | Weighted coloring in trees[END_REF], which in turn implies that P = NP.

Our rst result is that when (G, w) is a weighted forest, the decision problem of computing σ(G, w) is W [START_REF] Araújo | Weighted coloring in trees[END_REF]-hard parameterized by the size of a largest connected component of G. This is proved by a parameterized reduction from Independent Set that builds on the techniques introduced by Araújo et al. [START_REF] Araújo | Weighted coloring in trees[END_REF]. This result essentially rules out the existence of FPT algorithms for Weighted Coloring on forests for many natural choices of the parameter: cliquewidth, maximum degree, maximum diameter of a connected component, number of colors in an optimal weighted coloring, etc. Indeed, all these parameters are bounded by the size of a largest connected component of G (for the number of colors, this can be proved by using that they are bounded by χ FF (G) [START_REF] Guan | A coloring problem for weighted graphs[END_REF],

which is easily seen to be bounded by the size of a largest connected component).

We then move our attention to the parameter σ(G, w; r) and we prove, by a parameterized reduction from Dominating Set similar to the rst one, that computing σ(G, w; r) on forests is W [START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF]-hard parameterized by r. Interestingly, if we assume the ETH, our reduction together with the results of Chen et al. [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] stating that Dominating Set parameterized by the size of the solution cannot be solved in time f (k) • n o(k) unless the ETH fails, imply that, on graphs of bounded treewidth, the running time given by Equation ( 1) is asymptotically optimal, that is, there is no algorithm computing σ(G, w; r) on n-vertex graphs of bounded treewidth in time n o(r) .

We would like to mention that, although our reductions use several key ideas introduced by Araújo et al. [START_REF] Araújo | Weighted coloring in trees[END_REF], our results are incomparable to those of [START_REF] Araújo | Weighted coloring in trees[END_REF].

As further research, it would be interesting to identify reasonable parameters yielding FPT algorithms for Weighted Coloring on forests. Probably, it might make sense to consider combined parameters that take into account, on top of the aforementioned invariants, the number of distinct weights in the input weighted forest.

Organization of the article. In Section 2 we provide some basic preliminaries about forests, weighted colorings, and parameterized complexity. In Section 3 we introduce some common gadgets that will be used in both reductions. In Section 4 and Section 5

we present the W[1]-hardness and W[2]-hardness reductions, respectively.

Preliminaries

Forests and weighted colorings. We use standard graph-theoretic notation, and we consider simple undirected graphs without loops or multiple edges; see [START_REF] Diestel | Graph Theory[END_REF] for any undened terminology. Given two integers i and j with i ≤ j, we denote by [i, j] the set of all integers between i and j, including both i and j.

If T is a rooted tree, we denote by r(T ) the root of T . A weighted graph is a pair (G, w) where G is a graph and w : V (G) → R + is a weight function. We say that a weighted graph (G, w) is a weighted forest if G is a forest and a weighted rooted tree if G is a rooted tree. If (G, w) is a weighted rooted tree, we dene the root of (G, w), denoted by r((G, w)), to be the root of G.

When considering a k-coloring c of a graph G, dened in Section 1, for convenience we will usually index its associated stable sets as c = (S i ) i∈[0,k-1] . We say that a vertex

v ∈ V (G) is colored S i , for some i ∈ [0, k -1], if v ∈ S i .
Parameterized complexity. We refer the reader to [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] for basic background on parameterized complexity, and we recall here only some basic denitions. A parameterized problem is a language L ⊆ Σ * × N. For an instance I = (x, k) ∈ Σ * × N, k is called the parameter. A parameterized problem is xed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f (k) • |I| c . Within parameterized problems, the class W [START_REF] Araújo | Weighted coloring in trees[END_REF] may be seen as the parameterized equivalent to the class NP of classical optimization problems. Without entering into details (see [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] for the formal denitions), a parameterized problem being W [START_REF] Araújo | Weighted coloring in trees[END_REF]-hard can be seen as a strong evidence that this problem is not FPT. The canonical example of W [START_REF] Araújo | Weighted coloring in trees[END_REF]-hard problem is Independent Set parameterized by the size of the solution4 .

The class W [START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF] of parameterized problems is a class that contains W [START_REF] Araújo | Weighted coloring in trees[END_REF], and such that the problems that are W [START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF]-hard are even more unlikely to be FPT than those that are W [START_REF] Araújo | Weighted coloring in trees[END_REF]-hard (again, see [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] for the formal denitions). The canonical example of W [START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF]-hard problem is Dominating Set parameterized by the size of the solution5 .

For i ∈ [1, 2], to transfer W[i]-hardness from one problem to another, one uses a parameterized reduction, which given an input I = (x, k) of the source problem, computes in time f (k)•|I| c , for some computable function f and a constant c, an equivalent instance I = (x , k ) of the target problem, such that k is bounded by a function depending only on k.

Hence, an equivalent denition of W[1]-hard (resp. W[2]-hard) problem is any problem that admits a parameterized reduction from Independent Set (resp. Dominating Set) parameterized by the size of the solution.
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Some useful gadgets

In this section we introduce some gadgets that will be used in the reductions presented in the following sections. As mentioned in the introduction, the rst reduction is from Independent Set, and the second one is from Dominating Set. Most of these gadgets are inspired by [START_REF] Araújo | Weighted coloring in trees[END_REF].

Let us rst x (G, k), an instance of either Independent Set or Dominating Set. We denote by (G , w) the instance of Weighted Coloring we are going to construct. We dene n = |V (G)| and we x a bijection β :

V (G) → [0, n -1]
. This bijection will allow us to dene our gadgets depending on integers j ∈

[0, n -1] that correspond, via β, to the vertices of G. We dene M = k(n -1)ε + i∈[0,4k+3] 1 2 i , where
ε is any xed real number satisfying 0 < ε < 1 nk2 4k+3 , which implies that M < 2. We dene, for each i ∈ [0, 4k + 3] and for each j ∈ [0, n], w j i = 1 2 i + jε. We also dene, for each

∈ [0, 3], W = w 0 4k+ = 1 2 4k+
. Note that, in our construction, we will only use the

weights {w j i | j ∈ [0, n] , i ∈ [0, 4k -1]} ∪ {W | ∈ [0, 3]}.
Following [START_REF] Araújo | Weighted coloring in trees[END_REF], we rst dene in Denition 3.1 a particular family of binomial trees

B i , i ∈ [0, 4n + 3], depicted in Figure 1.
They will be crucially used in the construction of (G , w). Their role is to force the color of most of the nodes in any coloring c of G with w(c) ≤ M . Note that the notion of binomial trees has also been used, for instance, in [START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF][START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF].

Denition 3.1 For each i ∈ [0, 4k + 3], we dene recursively the weighted rooted tree B i , called binomial tree, as follows:

• if i = 0, then B 0 has a unique node of weight w 0 0 ,

• otherwise, B i has a root r of weight w 0 i and, for each p ∈ [0, i -1], we introduce a copy of B p and we connect its root to r. Lemma 3.2 (Araújo et al. [START_REF] Araújo | Weighted coloring in trees[END_REF]) Let i ∈ [0, 4k + 3] and let (T, w) be a weighted forest having B i as a subtree. If there exists a coloring c of (T, w) with w(c) ≤ M , then, for any ∈ [0, i]:

• all vertices of B i with weight in w 0 receive the same color S of c and • there exists a unique color class S in c of weight in {w j | j ∈ [0, n]}.

In our reductions, similarly to Araújo et al. [START_REF] Araújo | Weighted coloring in trees[END_REF], we will extensively use binomial trees in order to forbid a subset of the colors at a particular vertex. Namely, assume that c is a coloring of a weighted forest (T, w), with w(c) ≤ M , such that B i is a subtree of T attached to a vertex v. Then, by Lemma 3.2, there exists a unique color class S i in c of weight in {w j i | j ∈ [0, n]} and, since the root of B i and v are adjacent, it follows that vertex v cannot be colored S i in c.

w 0 0 B 0 w 0 i B i w 0 0 B 0 w 0 1 B 1 w 0 2 B 2 • • • w 0 i-1 B i-1
As we shall see later, the choice of the weight of a color class S corresponds to choosing (or not) a vertex to be part of the solution of the corresponding problem. Each time that a vertex is chosen, we will have to pay an additional weight of (n -1)ε in the total weight of the coloring. The selected value of M forces that we will be able to choose k vertices.

In every graph we are going to build in the following, we assume that B 4k+3 is a subtree of our graph. If this is not the case, we introduce a new connected component that contains only B 4k+3 . This permits to identify a color by its weight. Indeed, in any coloring c = (S i ) i∈[0, ] , where ≥ 4k + 3, of weight at most M , we have that for each i ∈ [0, 4k + 3], S i is the only color such that w(S i ) ∈ {w j i | j ∈ [0, n]}. We dene R = S 4k+ , for each ∈ [0, 3]. As, in our construction, we use only the weights

{w j i | j ∈ [0, n] , i ∈ [0, 4k -1]} ∪ {W | ∈ [0, 3]}, we have that w(R ) = W , for each ∈ [0, 3].
We also dene the auxiliary tree A j i for each i ∈ [0, 4k -1] and each j ∈ [0, n], as dened in [START_REF] Araújo | Weighted coloring in trees[END_REF]. This auxiliary tree is depicted in Figure 2.

Denition 3.3 For each i ∈ [0, 4k -1] and each j ∈ [0, n], we dene the weighted rooted tree A j i , called auxiliary tree, as follows.

• We rst introduce two vertices u and v such that u is the root of A j i , v is connected to u, w(u) = W 0 , and w(v) = w j i .

• for each ∈ [0, i -2], we introduce a copy of B and we connect the root of this copy to v.

• for each ∈ [0, 4k -1] \ {i -1}, we introduce a copy of B and we connect the root of this copy to u.

The vertex v is called the subroot of A j i . Note that A j i consists of 2 4k nodes.

u {S i-1 , R 0 } W 0 v {S i-1 , S i } w j i Figure 2.
The auxiliary tree 

A j i , i ∈ [0, 4k -1] and j ∈ [0, n].
) Let i ∈ [0, 4k -1], let j ∈ [0, n],
and let (T, w) be any weighted forest having B 4k+3 and A j i as subtrees. Let u and v be the root and the subroot of A j i , respectively. For any coloring c of (T, w) with weight w(c) ≤ M , it holds that:

• either v is colored S i-1 and u must be colored with the color R 0 ,

• or v is colored S i (therefore, w(S i ) ≥ w j i ) and u is colored either with S i-1 or with the color R 0 .

We also need the R i -AND gadget, i ∈ [0, 1], depicted in Figure 3, and which is strongly inspired by a similar gadget presented in [START_REF] Araújo | Weighted coloring in trees[END_REF] (called clause tree) corresponding to the logical `OR'. Denition 3.5 Let i ∈ [0, 1]. Given two vertices I 1 , I 2 , we dene the R i -AND gadget between the input vertices I 1 and I 2 as follows:

• We add four new vertices v 1 , v 2 , v 3 , and O and the edges {v 1 , I 1 }, {v 2 , I 2 }, {v 1 , v 2 }, {v 2 , v 3 }, and {v 3 , O}.

• For each j ∈ [START_REF] Araújo | Weighted coloring in trees[END_REF][START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] and each ∈ [0, 4k -1], we introduce a copy of B and we connect its root to v j .

• For each ∈ [0, 4k -1], we introduce a copy of B and we connect its root to O.

• For each j ∈ [START_REF] Araújo | Weighted coloring in trees[END_REF][START_REF] Bonnet | Complexity of grundy coloring and its variants[END_REF] we introduce a copy of B 4k+1-i and we connect its root to v j .

• We introduce a copy of B 4k+i and a copy of B 4k+2 and we connect their roots to v 3 .

• We set w(v 1 ) = W 2 , w(v 2 ) = W 3 , w(v 3 ) = W 3 , and w(O) = W 1 .
The vertex O is called the output vertex of the R i -AND gadget. Note that in this gadget, the binomial trees and the weight assignments are used to forbid an appropriately chosen set of colors at a particular vertex. This results in the set of allowed colors depicted in Figure 3.

We naturally extend the denition of the R i -AND gadget to input vertices with ≥ 2 by introducing -1 R i -AND gadgets in a sequential way as follows: given input vertices I 1 , . . . , I , let O 1 = I 1 and, for i ∈ [2, ], we let O i be the output vertex of an R i -AND gadget having O i-1 and I i as input vertices. We dene the output vertex of the whole gadget to be O . For each vertex, the associated set is the set of colors that the vertex can receive. Again, the binomial trees are not depicted. Lemma 3.6 Let i ∈ [0, 1], let I 1 and I 2 be the two input vertices of an R i -AND gadget, and let O be its output vertex. If I 1 and

I 1 {R i } ∪ S I 2 {R i } ∪ S {R i , R 2 , R 3 } v 2 {R i , R 2 } v 1 {R 1-i , R 3 } v 3 O {R 0 , R 1 }
I 2 are colored R i , then O must be colored R i . Moreover, if either I 1 or I 2 is not colored R i , then O can be colored either R 0 or R 1 .
Proof: First, assume that I 1 and I 2 are colored R i . This sequentially implies that v 1 must be colored R 2 , v 2 must be colored R 3 , v 3 must be colored R 1-i , and O must be colored R i . Secondly, assume that I 1 is not colored R i . This sequentially implies that v 1 can be colored R i , v 2 can be colored R 2 , v 3 can be colored R 3 , and therefore O can be colored either R 0 or R 1 . Finally, assume that I 2 is not colored R i . This sequentially implies that v 2 can be colored R i , v 3 can be colored R 3 , and so O can be colored either R 0 or R 1 .

Finally, we dene, for each i ∈ [0, k -1] and j ∈ [0, n -1], the vertex tree T j i , depicted in Figure 4, which is also inspired by a similar construction given in [START_REF] Araújo | Weighted coloring in trees[END_REF], called variable tree. The main dierence with respect to [START_REF] Araújo | Weighted coloring in trees[END_REF] is that, in our case, the color given to the root of a vertex tree codies a binary value corresponding to picking or not a vertex in the solution, whereas the gadget of [START_REF] Araújo | Weighted coloring in trees[END_REF] codies an integer corresponding to the assignment of a group of variables in the integral version of 3-SAT that they consider. Denition 3.7 For each i ∈ [0, k -1] and for each j ∈ [0, n -1], we dene the vertex tree T j i to be the weighted rooted tree, representing the vertex β -1 (j), dened as follows.

• We introduce one copy of A j+1 4i+1 and A n-j 4i+3 and an R 0 -AND gadget whose inputs are the two roots of A j+1 4i+1 and A n-j 4i+3 . We call u the output of the R 0 -AND gadget and we set u to be the root of T j i .

• We introduce one copy of A j 4i+1 , A j+1 4i+1 , A n-j 4i+3 , and A n-j-1 4i+3 ,

• we connect r(A j 4i+1 ) to r(A n-j 4i+3 ) and r(A j+1 4i+1 ) to r(A n-j-1 4i+3 ), and • we connect u to r(A j 4i+1 ) and to r(A n-j-1 4i+3 ).

The usefulness of a vertex tree T j i associated with a vertex v of the instance of Independent Set or Dominating Set corresponding to the integer j is the following. The color of the root u codies whether vertex v has been chosen in the solution or not.

u {R 0 , R 1 } {S 4i , R 0 } A j 4i+1 {S 4i+2 , R 0 } A n-j 4i+3 {S 4i , R 0 } A j+1 4i+1 {S 4i+2 , R 0 } A n-1-j 4i+3 R 0 -AND {S 4i , R 0 } A j+1 4i+1 {S 4i+2 , R 0 } A n-j 4i+3 Figure 4. The vertex tree T j i , i ∈ [0, k -1] and j ∈ [0, n -1].
The vertices labeled A q p are the roots of a copy of A q p . For each vertex, the associated set is the set of colors that the vertex can receive. The R 0 -AND circle corresponds to the vertices of the R 0 -AND gadget without the inputs and the output. The two input vertices are connected to it with an arrow and the output is u.

Namely, if u gets color R 0 (resp. R 1 ), this means that vertex v is (resp. is not) part of the solution. The following lemma formalizes this idea and guarantees that the choices are consistent, in the sense that the choices made in all vertex trees corresponding to the same vertex are the same. It is also important to note that, as we will see in the proof of Lemma 3.8, because of the denition of the weights w j i , each time we choose to color a root of a vertex tree with R 0 , we have to pay (n -1)ε in the total weight. Making k such choices is forced by the properties of the gadgets and the value of M . Lemma 3.8 Let (T, w) be any weighted forest having B 4k+3 as a subtree and containing, for each (i, j) ∈ [0, k -1] × [0, n -1], T j i as a subtree. Let c be a coloring of (T, w) with w(c) ≤ M . Then, there exist

(j i ) i∈[0,k-1] ∈ [0, n -1] k such that each root u of each subtree T j i , (i, j) ∈ [0, k -1] × [0, n -1], satises: • if j = j i for some i ∈ [0, k -1],
then the color of u in c must be R 0 , and • otherwise, the color of u in c must be R 1 .

Proof: By Lemma 3.2 and since we assume that w(c) ≤ M and that B 4k+3 occurs in (T, w) as a subtree, it follows that we can write c = (S i ) i∈[0, ] with ≥ 4k + 3, so that

for each i ∈ [0, 4k + 3], w(S i ) ∈ {w j i | j ∈ [0, n]}. Let i ∈ [0, k -1]. Given j ∈ [0, n], as T j i or T j-1 i is a subgraph of T (in fact, if j /
∈ {0, n}, both are), we know that there exist a copy of A j 4i+1 with root r j 4i+1 and a copy of A n-j 4i+3 with root r n-j 4i+3 such that r j 4i+1 and r n-j 4i+3 are adjacent. This implies that,

for each j ∈ [0, n], c(r j 4i+1 ) = R 0 or (1 j ) c(r n-j 4i+3 ) = R 0 . (2 j )
Note that, by Lemma 3.4, for each j ∈ [0, n], (1 j ) implies that w(S 4i+1 ) ≥ w j 4i+1 and (2 j ) implies that w(S 4i+3 ) ≥ w n-j 4i+3 . Therefore, one of the following cases necessarily occurs:

• (1 n ) is satised and so w(S 4i+1 ) ≥ w n 4i+1 ,

• (2 0 ) is satised and so w(S 4i+3 ) ≥ w n-0 4i+3 , or

• (1 0 ) and (2 n ) are satised and, since for each j ∈ [0, n] at least one of (1 j ) and (2 j ) holds, the integer j * = min{j | 0 ≤ j ≤ n -1 and property (2 j+1 ) is satised} is well-dened. It follows that both (1 j * ) and (2 j * +1 ) are satised, which implies that w(S 4i+1 ) ≥ w j * 4i+1 and w(S 4i+3 ) ≥ w n-(j * +1) 4i+3 .

In the rst two cases, using that w(S 4i+1 ) ≥ w 0 4i+1 and w(S 4i+3 ) ≥ w 0 4i+3 , we obtain w(S 4i+1 ) + w(S 4i+3 ) ≥ w 0 4i+1 + w 0 4i+3 + nε. In the third case, we obtain w(S 4i+1 ) + w(S 4i+3 ) ≥ (w 0 4i+1 + j * ε) + (w 0 4i+3 + (n -(j * + 1))ε) = w 0 4i+1 + w 0 4i+3 + (n -1)ε. Thus, it always holds that w(S 4i+1 ) + w(S 4i+3 ) ≥ w 0 4i+1 + w 0 4i+3 + (n -1)ε.

Therefore,

w(c) ≥ i∈[0,k-1] (w(S 4i ) + w(S 4i+1 ) + w(S 4i+2 ) + w(S 4i+3 )) + i∈[0,3] w(R i ) ≥ i∈[0,k-1] (w 0 4i + w 0 4i+1 + w 0 4i+2 + w 0 4i+3 + (n -1)ε) + i∈[0,3] W i = M.
By denition of c, we have w

(c) = M , for each i ∈ [0, 3], w(R i ) = W i , and for each i ∈ [0, k -1], w(S 4i ) = w 0 4i , w(S 4i+2 ) = w 0 4i+2 , and w(S 4i+1 ) + w(S 4i+3 ) = w 0 4i+1 + w 0 4i+3 + (n -1)ε. Moreover, for each 4k + 3 < i ≤ , w(S i ) = 0. Let us x i * ∈ [0, k -1]. The equation w(S 4i * +1 ) + w(S 4i * +3 ) = w 0 4i * +1 + w 0 4i * +3 + (n - 1)ε implies the existence of j * ∈ [0, n -1] such that w(S 4i * +1 ) = w j *
4i * +1 and w(S 4i * +3 ) = w n-1-j * 4i * +3 . Thus, for each j > j * , the root of any copy of A j 4i * +1 must be colored R 0 and for each j < j * , the root of any copy of A n-1-j 4i * +3 must be colored R 0 . This implies that for each j ∈ [0, n -1] \ {j * }, the root of T j i * must be colored R 1 . Moreover, as in T j * i * the roots of the copy of A j * +1 4i * +1 and the copy of A n-j * 4i * +3 must be colored R 0 (otherwise, w(S 4i * +1 ) ≥ w j * +1 4i * +1 > w j * 4i * +1 or w(S 4i * +3 ) ≥ w n-j * 4i * +3 > w n-1-j * 4i * +3 ), the R 0 -AND gadget ensures that the root of T j * i * is colored R 0 .

W[1]-hardness reduction

In this section we present a parameterized reduction from Independent Set to Weighted Coloring on forests.

Theorem 4.1 Given a weighted forest (G, w), the decision problem of computing σ(G, w)

is W[1]-hard when parameterized by the size of a largest connected component of G.

Proof: We reduce from Independent Set parameterized by the size of the solution, which is well-known to be W[1]-hard [START_REF] Downey | Fixed-Parameter Tractability and Completeness II: On Completeness for W[1[END_REF]. Let (G, k) be an instance of Independent Set, and

let n = |V (G)|. Recall that M = k(n -1)ε + i∈[0,4k+3] 1 2 i where ε is any real number satisfying 0 < ε < 1 nk2 4k+3 , which implies that M < 2. Let β : V (G) → [0, n -1] be a bijection. For each edge {v 1 , v 2 } ∈ E(G) and each i 1 , i 2 ∈ [0, k -1],
we dene the weighted rooted tree H {v 1 ,v 2 },i 1 ,i 2 as follows.

• We introduce a copy of T

β(v 1 ) i 1 and a copy of T β(v 2 ) i 2
, and call the roots r 1 and r 2 , respectively.

• We introduce an R 0 -AND gadget where the input vertices are r 1 and r 2 and the output is a new vertex r. • We introduce a copy of B 4k and we connect its root to r.

• We set r to be the root of

H {v 1 ,v 2 },i 1 ,i 2 .
An illustration of H {v 1 ,v 2 },i 1 ,i 2 is shown in Figure 5.

{R 0 , R 1 } {R 0 , R 1 } {R 1 } {R 0 } r 1 r 2 T β(v 1 ) i 1 T β(v 2 ) i 2 R 0 -AND r B 4k
Figure 5. The weighted rooted tree H {v 1 ,v 2 },i 1 ,i 2 dened in the proof of Theorem 4.1. For each vertex, the associated set is the set of colors that the vertex can receive. The R 0 -AND circle corresponds to the vertices of the R 0 -AND gadget without the inputs and the output. The two input vertices are r 1 and r 2 and the output is r.

Note that, since a copy of B 4k is attached to the root r and the output vertex of an R 0 -AND gadget can only be colored R 0 or R 1 , it follows that r has to be colored R 1 . We also dene, for each vertex v in V (G) and each i 1 , i 2 in [0, k -1] with i 1 = i 2 , the weighted rooted tree H v,i 1 ,i 2 to be the tree

H {v 1 ,v 2 },i 1 ,i 2 dened above with v 1 = v 2 = v.
We dene (G , w) as the disjoint union of the weighted tree B 4k+3 , of each weighted tree of {H e,i

1 ,i 2 | e ∈ E(G), i 1 , i 2 ∈ [0, k -1]}, of each weighted tree of {H v,i 1 ,i 2 | v ∈ V (G), i 1 , i 2 ∈ [0, k -1] , i 1 = i 2 }, and of each weighted tree of {T j i | i ∈ [0, k -1] , j ∈ [0, n -1]}.
Note that the size of each connected component of G is bounded by a function depending only on k. Indeed, the size of any connected component is bounded by the size of those of type H e,i 1 ,i 2 , which can be easily checked to be at most 2 • (6 • 2 4k + 4) + 4 + 2 4k = 13 • 2 4k + 12. Note that the construction of (G , w) can be performed in time f (k) • n O(1) , as required.

The idea of the construction is that the trees H {v 1 ,v 2 },i 1 ,i 2 dened above guarantee that, for each edge {v 1 , v 2 } of G, at most one of v 1 and v 2 belongs to the independent set. More formally, as the root r of such tree has to be colored R 1 , by the R 0 -AND gadget at least one of r 1 and r 2 has to be colored R 1 , which translates to the fact that at least one of v 1 and v 2 does not belong to the independent set (recall the paragraph after Denition 3.7). Similarly, by construction, the trees H v,i 1 ,i 2 guarantee that the same vertex is not picked more than once in the solution.

More formally, we now prove that there exists a solution of Independent Set on (G, k) if and only if σ(G , w) ≤ M . Assume rst that Z is a solution of Independent Set on (G, k). We may assume that Z is of size exactly k. Let δ : Z → [0, k -1] be a bijection. For each i ∈ [0, k -1], we dene v i = δ -1 (i). We are going to dene a coloring c = (S i ) i∈[0,4k+3] of weight at most M such that for each i ∈ [0, 4k + 3], w(S i ) ∈ {w j i | j ∈ [0, n]}. By Lemma 3.2, we can (and we must) color every tree B i in that way, for each i ∈ [0, 4k + 3]. Then for each j ≤ β(v i ) and each j ≥ β(v i ), we set the color of the subroot of each A j 4i+1 and each A m-j -1 4i+3 to be to be color S 4i+1 and S 4i+3 , respectively, and their root to be colored S 4i and S 4i+2 , respectively. For each j > β(v i ) and each j < β(v i ), we set the color of the roots of each A j 4i+1 and each A m-j -1 4i+3 to be R 0 and the color of their subroots to be S 4i+1 and S 4i+3 , respectively. This coloring is possible by Lemma 3.4. Note also that for each i ∈ [0, k -1], if j i = β(v i ), then we have w(S 4i ) = w 0 i , w(S 4i+1 ) = w j i i , w(S 4i+2 ) = w 0 i , and w(S 4i+3 ) = w m-j i -1 i . We set the color of the root of each T j i such that j = β(δ -1 (i)) to R 0 , and we set the color of the root of each T j i such that j = β(δ -1 (i)) to R 1 . The colors of the other vertices are forced by the R 0 -AND gadgets.

As Z is an independent set, for each edge {v 1 , v 2 } of G, at least one of the extremities, say v 1 , is not in Z. Thus, for each i

1 , i 2 in [0, k -1], the root of T β(v i ) i 1
is colored R 1 and therefore the root of H {v 1 ,v 2 },i 1 ,i 2 can be colored R 1 , which is the only color available for this vertex. As in this coloring, for each

∈ [0, 3], w(R ) = W , we obtain that σ(G , w) ≤ M .
Conversely, assume that there is an integer and a coloring c = (S i ) i∈[0, ] of G such that w(c) ≤ M . As there is no weight below W 3 , from Lemma 3.2 it follows that = 4k + 3 and for each i ∈ [0, 4k + 3], w(S i ) ∈ {w j i | j ∈ [0, n]}. By Lemma 3.8, for each i ∈ [0, k -1], there exists an index j i such that the root of each T j i i is colored R 0 . Let us dene Z = {β -1 (j i ) | i ∈ [0, k -1]}. Given i 1 and i 2 in [0, k -1], we claim that there is no edge in G between β -1 (j i 1 ) and β -1 (j i 2 ). Indeed, if the root of T

j i 1 i 1
and the root of T

j i 2 i 2
are colored R 0 , then the root of H {β -1 (j i 1 ),β -1 (j i 2 )},i 1 ,i 2 should also be colored R 0 because of the R 0 -AND gadget, but this is not possible because of the tree B 4k that is connected to it. A similar argument shows that, because of the trees H v,i 1 ,i 2 , for any i 1 , i 2 in [0, k -1] with i 1 = i 2 , it holds that β -1 (j i 1 ) = β -1 (j i 2 ), that is, the same vertex does not occur more than once in Z. This implies that Z is an independent set in G of size exactly k, concluding the proof.

W[2]-hardness reduction

In this section we present a reduction from Dominating Set to Weighted Coloring on forests when the number of colors is prescribed. The reduction is similar to the one presented in Theorem 4.1, but it is somehow simpler and uses the R 1 -AND gadget instead of the R 0 -AND gadget. Theorem 5.1 Given a weighted forest (G, w) and a positive integer r, the problem of computing σ(G, w; r) is W[2]-hard when parameterized by r.

Proof: We reduce from Dominating Set parameterized by the size of the solution, which is well-known to be W[2]-hard (see [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]). Let (G, k) be an instance of Dominating Set, and let n

= |V (G)|. Recall again that M = k(n -1)ε + i∈[0,4k+3] 1 2 i
where ε is any real number satisfying 0 < ε < 1 nk2 4k+3 , which implies that M < 2. Let β : V (G) → [0, n -1] be a bijection. For each vertex v ∈ V (G), we dene the weighted rooted tree H v as follows.

• For each i ∈ [0, k -1] and each j ∈ β(N [v]), we introduce a copy of T j i and call its root r j i .

• We introduce an R 1 -AND gadget where the input vertices are the vertices of {r j

i | i ∈ [0, k -1] , j ∈ β(N [v]
)}, and let r be the output.

• We introduce a copy of B 4k+1 and we connect its root to r.

• We set r to be the root of H v .

We then dene (G , w) as the disjoint union of the weighted tree B 4k+3 , of each weighted tree of {H v | v ∈ V (G)}, and of each weighted tree of {T j

i | i ∈ [0, k -1] , j ∈ [0, n -1]}.
Finally, we set r = 4k + 4. Note that r depends only on k and that the construction of (G , w) can be performed in time f (k) • n O(1) , as required.

The idea of this construction is to guarantee that a dominating set in G must contain, for each v ∈ V (G), at least one vertex in N [v]. In the tree H v , this is captured by forbidding its root r to be colored R 1 , which by the R 1 -AND gadget implies that at least one of the roots of the trees T j i must be colored R 0 , meaning that at least one vertex in N [v] belongs to the solution.

Formally, we now prove that there exists a solution of Dominating Set on (G, k) if and only if σ(G , w; r) ≤ M .

First assume that Z is a solution of Dominating Set on (G, k). We may assume that Z is of size exactly k. Let δ : Z → [0, k -1] be a bijection. For each i ∈ [0, k -1], we dene v i = δ -1 (i). We are going to dene a coloring c = (S i ) i∈[0,4k+3] of weight at most M such that for each i ∈ [0, 4k + 3], w(S i ) ∈ {w j i | j ∈ [0, n]}, in the same way we did for Theorem 4.1. By Lemma 3.2, we can (and we must) color every tree B i in that way, for i ∈ [0, 4k + 3]. Then for each j ≤ β(v i ) and each j ≥ β(v i ), we set the color of the subroot of each A j 4i+1 and each A m-j -1 4i+3 to be to be color S 4i+1 and S 4i+3 , respectively, and their root to be colored S 4i and S 4i+2 , respectively. For each j > β(v i ) and each j < β(v i ), we set the color of the roots of each A j 4i+1 and each A m-j -1 4i+3 to be R 0 and the color of their subroot to be S 4i+1 and S 4i+3 , respectively. Again, this coloring is possible by Lemma 3.4. Note also that for each i ∈ [0, k -1], if j i = β(v i ), then we have w(S 4i ) = w 0 i , w(S 4i+1 ) = w j i i , w(S 4i+2 ) = w 0 i , and w(S 4i+3 ) = w m-j i -1 i . We set the color of the root of each T j i such that j = β(δ -1 (i)) to R 0 , and we set the color of the root of each T j i such that j = β(δ -1 (i)) to R 1 . The colors of the other vertices are forced by the R 1 -AND gadgets.

As Z is a dominating set of G, for each v ∈ V (G), at least one of the vertices r j i ,

i ∈ [0, k -1], j ∈ β(N [v]), of H v is colored R 0 . So we can aect the color R 0 to the root of H v , which is, by construction, the only available color for this vertex. As in this coloring, for each ∈ [0, 3], w(R ) = W , we obtain that σ(G , w; r) ≤ M .

Conversely, assume that there is an integer and a coloring c = (S i ) i∈[0, -1] of G certifying that σ(G , w; ) ≤ M . As there is no weight below W 3 , from Lemma 3.2 it follows that = 4k + 4 and for each i ∈ [0, 4k + 3], w(S i ) ∈ {w j i | j ∈ [0, n]}. By Lemma 3.8, for each i ∈ [0, k -1], there exists an index j i such that the root of each T j i i is colored R 0 . Let us dene Z = {β -1 (j i ) | i ∈ [0, k -1]}, where the same vertex may have been chosen for dierent indices in [0, k -1]. Let v be a vertex of G. As, by construction, the root of H v can only receive the color R 0 in any coloring of weight at most M , this implies that at least one vertex r j * i * , i * ∈ [0, k -1], j * ∈ β(N [v]), of H v is colored R 0 . This implies, by Lemma 3.8, that β -1 (j * ) ∈ Z. Moreover, β -1 (j * ) ∈ N [v]. It follows that Z is a dominating set in G of size at most k.

Note that the proof of Theorem 5.1 shows that, if (G, k) in an instance of Dominating Set, then the number of colors of the constructed instance satises r = 4k + 4 = O(k). Note also that it is easy to strengthen the lower bound given by Theorem 5.1 to apply to trees instead of forests. Indeed, we can just add a new vertex v, attach it to every connected component of the forest G built in the reduction, and give to v a weight that does not conict with any of the weights of its neighbors. By possibly using a new color containing only v, it still holds that r = O(k).

The above paragraph together with the fact that, assuming the ETH, Dominating Set parameterized by the size of the solution cannot be solved in time f (k) • n o(k) for any computable function f [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] imply the following corollary. Corollary 5.2 Assuming the ETH, there is no algorithm that, given a weighted tree (G, w) and a positive integer r, computes σ(G, w; r) in time f (r)•n o(r) for any computable function f . In particular, Corollary 5.2 implies that on forests, and more generally on graphs of bounded treewidth, the running time stated in Equation [START_REF] Araújo | Weighted coloring in trees[END_REF], which in this case is equal to n O(r) , is asymptotically optimal under the ETH.
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 1 Figure 1. The binomial trees B 0 and B i , i > 0. The vertices labeled B j are the root of a copy of B j , for each j ∈ [0, i -1]. The weights are also depicted on top of the vertices.

Figure 3 .

 3 Figure 3. The R i -AND gadget, for some i ∈ [0, 1], where I 1 and I 2 are the input vertices and O is the output vertex, and where S and S are subsets of {S | ∈ [0, 4k -1]} ∪ {R 0 , R 1 }.

  The binomial trees are not depicted. Next to each vertex, its weight and the set of colors this vertex can receive (see

	Lemma 3.4) are depicted.
	Lemma 3.4 (Araújo et al. [1]

We will not dene treewidth here, just recall that forests are the graphs with treewidth 1; see[START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Diestel | Graph Theory[END_REF].

The ETH states that 3-SAT cannot be solved in subexponential time; see[START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF] for more details.

Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such that |S| ≥ k and E(G[S]) = ∅.

Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such that |S| ≤ k and N [S] = V (G).
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