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FOKKER-PLANCK EQUATIONS OF JUMPING PARTICLES

AND MEAN FIELD GAMES OF IMPULSE CONTROL

CHARLES BERTUCCI

Abstract. This paper is interested in the description of the density of particles

evolving according to some optimal policy of an impulse control problem. We

first fix sets on which the particles jump and explain how we can characterize

such a density. We then investigate the coupled case in which the underlying im-

pulse control problem depends on the density we are looking for : the mean field

games of impulse control. In both cases, we give a variational characterization

of the densities of jumping particles.
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Part 3. Results on the impulse control problem 30

1. Introdutcion

This paper is the second of a series devoted to the systematic study of mean
field games (MFG for short) with optimal stopping or impulse control. In [5] we
developed an obstacle problem approach to solve a forward-backward system which
models MFG with optimal stopping (without common noise). We here develop the
same point of view for MFG with impulse control. As the definition of a Fokker-
Planck equation associated with a density of players playing an impulse control
problem is a difficult question in itself, it is the subject of the first part of this
article. This part is independent from the MFG theory. The case of the master
equation (i.e. when there is a common noise) will be treated in a subsequent work.

MFG model situations in which a continuum of indistinguishable players are
facing an optimal control problem. The evolution of the density of players is
induced by the optimal choices the players make. In general the costs involved in
the optimal control problem depend on the density of players and we have a non
trivial coupling. Denoting by u the value function of the optimal control problem
of a general player and by m the density of players, a classical forward-backward
MFG system during the time interval (0, T ) is











−∂tu−∆u+H(x,∇u) = f(m);

∂tm−∆m+ div(DpH(x,∇u)m) = 0;

m(0) = m0; u(T ) = g(m(T )).

where H(x, p) is the hamiltonian of a continuous optimal control problem, m0 is
the initial condition for the density of players and g and f are respectively the
terminal and running costs. A solution (u,m) of this system corresponds to a
Nash equilibrium for the game with an infinite number of players. This system,
as well as MFG, have been introduced in [21, 22, 23] by J.-M. Lasry and P.-L.
Lions. In these papers they also proved general conditions under which existence
and uniqueness hold for this problem. We also refer to [24, 7] for more results on
this system. MFG models have a wide range of applications, see [2, 16, 17] for
examples. Many interesting questions have also been raised around this system,
we can cite for example long time average [9], learning [8], the difficult problem of
the convergence of the system of N players as N goes to infinity and the presence
of a common noise [10]. Numerical methods are also being developed, let us cite
[1, 6] for instance. Let us also mention that a powerful probabilistic point of view
on MFG has been developed, we refer to [11, 19] for more details on this point of
view. In this paper, we generalize the results of existence and uniqueness of the
previous system to the case in which the players face an impulse control problem.
Concerning closely related works, several optimal control problems, related to the
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impulse control problem, have been studied in a MFG setting. Optimal stopping or
obstacle problems have been studied in [5, 14, 25, 12], singular controls in [13, 18]
and optimal switching in [15].

Impulse control problems have been studied since the 70s. We refer to the work
of A. Bensoussan and J.-L. Lions[4] for a complete presentation of the problem.
The terminology impulse control refers to an optimization problem in which the
state is driven by a stochastic ordinary differential equation with jumps :

(1)

{

∀t ∈ (τi, τi+1), dXt =
√
2dWt;

Xτ+i
= Xτ−i

+ ξi;

where (Wt)t≥0 is a brownian motion under a standard probability space (Ω,A,P).
The jump ξi occurs at time τi and is controlled by the player. Hence the jumps are
characterized by the random sequence of stopping times (τi)i≥0 and the random
sequence of jumps (ξi)i≥0. Those two sequences are adapted to the brownian
motion (Wt)t≥0 in the sense that the sequence (τi)i≥0 is indeed a sequence of
stopping times for this brownian motion and that (ξi, τi) is measurable with respect
to the σ-algebra generated by (Wt)0≤t≤τi . We assume that (ξi)i≥0 is valued in a
set K ⊂ T

d. Denoting by f the running cost and by k(x, ξ) the cost paid to use
the jump ξ while on the position x, we define the value function u by

u(t, x) := inf
(τi)i,(ξi)i

E[

∫ T

t

f(s,Xs)ds+

#(τj)j
∑

i=1

k(Xτ−i
, ξi)];

where the infimum is taken over all sequences ((τi)i, (ξi)i) which are adapted to
the brownian motion in the sense prescribed above and which satisfy the fact that
(τi)i is an increasing sequence and that (ξi)i is valued in K. The trajectory (Xs)s≥t

is given by (1) with the initial condition Xt = x. Under some assumptions on the
costs( which are detailed in the appendix), the value function u satisfies, in the
sense of quasi variational inequality (QVI) (which is also detailed in the appendix),
the Hamilton-Jacobi-Bellman equation :

{

max(−∂tu−∆u− f, u(t, x)− infξ∈K{k(x, ξ) + u(t, x+ ξ)}) = 0.;

u(T ) = 0.

In a MFG context, the main question we are asking is how will evolve an initial
density of players, if those players are facing the same impulse control problem.
Intuitively, the density of players m has to satisfy (formally) at least some require-
ments :

• ∂tm−∆m = 0 where it is optimal for the players to wait and not to jump
and where no player is arriving.

• m = 0 where it is strictly suboptimal not to jump.
3



• The flux of arriving players at x is equal to the sum over ξ of the flows of
players which choose to use the jump ξ at x− ξ.

Let us note that, at least formally, we talk about parts of the space on which it is
optimal to jump (i.e. to use a control to make the process (Xt)t jumps) because
all the players being indistinguishable, if it is optimal for one player to jump, then
it is optimal for all the players to jump.
The problem of finding a density m which satisfies the above requirements is not
classical, mostly because there is no particular assumption on how the players use
their controls. We focus on the problem of modeling the evolution of a density of
jumping players in the first part of this article. We build a dual characterization
of the solution of the Fokker-Planck ”equation”. We fix a function V (t, x, ξ) which
describes wether or not the players use the jump ξ at the position x and time t.
Then we construct a density of playersm which satisfies the required properties and
thus solves a Fokker-Planck equation of jumping particles. The characterization of
this density relies on the fact that we can interpret such Fokker-Planck equations
as dual equations of QVI. The construction of such a solution uses a penalized
version of the problem in which we can write properly the PDE satisfied by the
density m. We then find a priori estimates which allow us to pass to the limit
in this penalized version of the problem, while obtaining a characterization of the
limit density. In the second part, we present results on uniqueness and existence
for the impulse control problem in MFG. We also recall that in view of the results
of [5] we expect the solutions of the MFG system to be mixed solutions, meaning
that optimal strategies are random in general as the Nash equilibria of the MFG
can be mixed equilibria.

Part 1. Fokker-Planck equation of jumping particles

In this part we present the dual definition of the Fokker-Planck equation satisfied
by the density of jumping particles. We work in the d dimensional torus (denoted
by T

d) in a time dependent setting. The positive real number T is the final time
and m0 ∈ L2(Td) is the initial density at time t = 0. The aim of this part is
to construct a suitable notion to characterize densities of jumping particles. By
opposition to Fokker-Planck equations of jumping processes, we do not want to
model populations of particles which are driven by Poisson processes or other jump
processes of the sort. Namely if a unique jump ξ is possible, we are interested in
building solutions for ǫ > 0 of

(2)

{

∂tmǫ −∆mǫ +
1
ǫ
1Amǫ − 1

ǫ
(1Amǫ)(t, x− ξ) = 0;

m(0) = m0;

and passing to the limit ǫ → 0. The interpretation of (2) is that the particles jump
ξ further if they are in the set A with a probability given by an exponential law
of parameter ǫ−1. The interpretation of the limit m of solutions of (2) is that it
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describes particles evolving only along brownian trajectories inAc and which jumps
ξ further once they reach A. If A is a smooth closed set such that the reaching time
of ∂A is well defined, then the trajectory (Xs)s≥0 of a generic particle is defined
by

{

dXs =
√
2dWs, ∀i∀s ∈]ti, ti+1[;

Xt+i
= Xt−i

+ n(Xt−i
)ξ;

where n(x) is the smallest integer p such that x + pξ /∈ A and where ti+1 is the
stopping time defined by the reaching time of A by the process (Xs)s≥ti . We recall
that this interpretation is given in the case in which a unique jump is possible, a
similar interpretation also exists in the case of a finite number of possible jumps.

Finding solutions of the penalized equation (2) does not require new techniques
and is not a difficult question in itself. The majority of this part is concerned with
building, uniform in ǫ, a priori estimates (lemma 1.2) to pass to the limit ǫ → 0.
Even though we use these uniform a priori estimates to prove proposition 1.1 and
theorem 1.1, this estimate is crucial only to prove the existence of a limit as ǫ goes
to 0 (theorem 1.2).

As explained in the introduction, we shall characterize in this part the solution of a
Fokker-Planck equation (the limit density) of jumping particles with dual proper-
ties and not with a PDE. The main duality idea of this part is that a Fokker-Planck
equation of jumping particle is somehow the dual or adjoint equation of a QVI,
which by the way describes how it is optimal to jump and thus how dynamics of
jumping particles evolve. Thus QVI are crucial for the study of the density of
jumping particles. For the sake of clarity, the results needed on QVI are given in
the appendix. We define here the notion of a smooth cost of jumps k. A function
k is said to be a smooth cost of jumps if it satisfies :

(3)

{

∀ξ ∈ K, k(·, ξ) ∈ H2(Td);

∃k0 > 0 such that k ≥ k0;

where K is a finite subset of T
d. The interpretation of k(x, ξ) is that it is the cost

paid by the player (or the energy used by a particle) to instantaneously go from
x to x + ξ. We also define the operator M which plays an important role in the
study of QV I by :

(4) M(k, u) = inf
ξ∈K

{k(x, ξ) + u(t, x+ ξ)}.

When there is no ambiguity on k, we shall write only Mu = M(k, u)

We begin the study of Fokker-Planck equations of jumping particles with the sim-
pler case of a unique possible jump before addressing the case of a finite number of
possible jumps. In each of these situations, we begin by constructing a penalized
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version of the problem and we then pass to the limit in the resulting penalized
equation.

2. The case of a unique possible jump

We work here in the case in which a single jump ξ is possible. We also assume
that there is a measurable set A on which the particles jump. The first part of this
section is devoted to the study of a penalized equation. We then prove existence
and uniqueness of the limit density under a certain assumption. The study of the
penalized equation is quite simple however we warn the reader that the estimates
of lemma 1.2 that we use at a penalized level are crucial to study the limit case.
An important feature of our model is that some assumption has to be made on the
set on which the particles jump. This assumption shows in some sense the limit
of this model. It can be formulated in the following way.

Hypothesis 1. The set A is such that there exists k ∈ L∞ satisfying (3), and
u ∈ L2((0, T ), H2(Td)) ∩H1((0, T ), L2(Td)) ∩ L∞((0, T )× T

d) such that
{

u(t, x) = k(x, ξ) + u(t, x+ ξ) on A;

u(T ) = 0.

Formally, this assumption restricts the situations which we are able to model to
a case in which the particles do not jump an infinite number of time in a finite
period. Let us also note that if we interpret u as the value function of some impulse
control problem, then we are assuming that it is optimal to use its control on the
set A. We advice the interested reader to look at the case A = T

d everywhere to
convince himself/herself that the model we present is indeed not applicable to all
measurable sets.

2.1. A penalized version of the problem. In order to understand how the
density of jumping particles behave we first introduce a smoother version of the
problem. We here assume that the particles do not simply jump when they are
in A but that they have a given uniform probability of jumping in this set. This
method allows us to work with a PDE. We naturally work with the equation :

(2)

{

∂tmǫ(t, x)−∆mǫ(t, x) +
1
ǫ
1Amǫ(t, x)− 1

ǫ
(1Amǫ)(t, x− ξ) = 0 in (0, T )× T

d;

m(0, x) = m0(x) in T
d;

where ǫ > 0 is a real number which describes the probability of jumping in A.
The term 1

ǫ
1Am(t, x) stands for the leaving rate of particles which jump in A. The

term −1
ǫ
(1Am)(t, x − ξ) stands for the arriving rate of particles which jump at

(t, x−ξ) and thus which arrive at (t, x). As ǫ goes to 0, the probability of jumping
becomes more and more important. Thus finding the limit as ǫ goes to 0 gives the
desired density of particles.
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For the rest of this paper we may not always write the ”(t, x)” in order to lighten
the notations. So by default, if the variable considered is not written, it is (t, x).

We begin by showing how we can find estimates on such a penalized equation.
Let us introduce the set H defined by

(5) H := {v ∈ L2((0, T ), H1(Td)), ∂tv ∈ L2((0, T ), H−1(Td))}.
The following lemma will be useful to establish a priori estimates on m.

Lemma 1.1. Let m ∈ L2((0, T ), H2(Td)) be a solution of (2) and k satisfying (3).
If m ≥ 0, u ∈ H and u ≤ Mu almost everywhere on A, then

∫ T

0

∫

Td

(∂tm−∆m)u +
1

ǫ

∫

A

km ≥ 0.

Proof. We multiply (2) by u and we integrate, we then obtain after a change of
variable :

∫ T

0

∫

Td

(∂tm−∆m)u+
1

ǫ

∫

A

mu =
1

ǫ

∫

A

m(t, x)u(t, x+ ξ)dtdx.

Using the fact that u ≤ Mu on A we deduce the desired result. �

The previous result suggests to work with the set H(k) for some k where H(k)
is defined by :

H(k) := {m ∈ L2((0, T ), H1(Td)), D(k,m) > −∞};
where D(k,m) is defined by

D(k,m) := inf{
∫ T

0

(−∂tu−∆u,m)H−1×H1−
∫

Td

u(0)m0|u ∈ H, u ≤ M(k, u) on A, u(T ) = 0}.

We recall that M is defined in (4). When no confusion is possible, as we do for
M , we shall only write D(m) and H.

The set H has to be interpreted as the set of admissible solutions of the Fokker-
Planck equation. Indeed if m is a density of jumping particles, then when particles
leave (or jump) we should have exactly the same arriving particles ξ further. We
recall that ∂tm−∆m ≤ 0 is interpreted as particles leaving and ∂tm−∆m ≥ 0 as
particles arriving. Thus it is natural to measure the variation of ∂tm −∆m with
functions u such that u(x)−u(x+ξ) ≤ k. This ”test” quantifies the fact that some
negativity for ∂tm−∆m has to be compensate by some positivity of this quantity
ξ further. Moreover, as jumps can only occur on A we restrict ourselves to the
case in which those conditions are satisfied only on A. We now prove the following
lemma, which states that in some sense, the quantity D(m) is of interest to bound
m in some functional space (this lemma is crucial to study the limit ǫ → 0):
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Lemma 1.2. Let k be such that it satisfies (3) and hypothesis 1 with a given
u ∈ H. For any m ∈ H ∩ H(k), m ≥ 0, there exists C(k) > 0 depending only on
k and u such that

||m||2L2((0,T ),H1) ≤ −D(k,m) + C(k)(1 + ||m||L2((0,T ),H1))||m0||L2.

Remark 1. The assumption m ∈ H is crucial as it allows us to deal with the
problem of the time regularity.

Proof. Because hypothesis 1 is satisfied, we are able to apply proposition 3.2 (ap-
pendix) and we deduce that there exists ũ ∈ L2((0, T ), H1(Td)) such that :










ũ ≤ M(k, ũ) on A;

∀v ∈ H, v ≤ M(k, ũ) on A;

−
∫ T

0

∫

Td ∂tv(v − ũ) +
∫ T

0

∫

Td ∇ũ · ∇(v − ũ) + 1
2

∫

Td |v(T )|2 ≥
∫ T

0

∫

Td(∆m)(v − ũ).

Because we made the assumption m ∈ H , we can remark that

D(k,m) = inf{
∫ T

0

(∂tm−∆m, v)H−1×H1 |v ∈ L2((0, T ), H1(Td)), v ≤ M(k, v) on A}.

Thus we deduce

(6) D(k,m) ≤
∫ T

0

(∂tm−∆m, ũ)H−1×H1 .

One would like to write :
∫ T

0

(∂tm−∆m, ũ)H−1×H1 =

∫ T

0

(−∂tũ−∆ũ, m)H−1×H1 −
∫

Td

ũ(0)m0;

≤
∫ T

0

(∆m,m)H−1×H1 −
∫

Td

ũ(0)m0;

but since ũ /∈ H , this does not make sense. However, because of the weak varia-
tional inequality satisfied by ũ, we can deduce that

∫ T

0

(∂tm−∆m, ũ)H−1×H1 ≤
∫ T

0

(∆m,m)H−1×H1 + ||m0||L2||ũ||L∞(L2).

Hence we obtain that

D(k,m) ≤ −
∫ T

0

∫

Td

|∇m|2 + ||m0||L2||ũ||L∞(L2).

Recalling the estimate of proposition 3.2, the result is proved. �

This lemma suggests to find a priori estimates for solutions of (2) by looking at
the quantity D(m). However, this estimate requires the positivity ofm. In order to
use this estimate to exhibit solutions of (2), we prove a maximum principle for this
equation. This proof is very general and can be applied to more general equations.
See [24] for an example of the use of this proof for systems of conservation laws
for instance.
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Proposition 1.1. Let λ ∈ L∞((0, T ) × T
d), λ ≥ 0, m0 ∈ L2(Td), m0 ≥ 0, and

m ∈ L2((0, T ), H2(Td)) be a solution of
(7)
{

∂tm(t, x)−∆m(t, x) + λ(t, x)m(t, x)− λ(t, x− ξ)m(t, x− ξ) = 0 in (0, T )× T
d;

m(0) = m0 in T
d.

Then, m ≥ 0.

Proof. We assume in a first time that λ and m0 are smooth functions and that
m0 > 0. Then by classical parabolic estimates, m is also smooth (C1 in time and
C2 in space). If there exists (t0, x0) ∈ (0, T ) × T

d such that m(t0, x0) < 0, then
there exists δ > 0 such that m(t0, x0) + δt0 < 0. We define µ by :

µ(t, x) = m(t, x) + δt, ∀(t, x) ∈ (0, T )× T
d.

µ(0) > 0 and µ(t0, x0) < 0, thus there exists (t1, x1) ∈ (0, T )× T
d such that



















µ(t) ≥ 0, ∀t ≤ t1;

µ(t1, x1) = 0;

∂tµ(t1, x1) ≤ 0;

∆µ(t1, x1) ≥ 0.

Let us remark that

∂tµ = ∂tm+ δ;

= δ +∆m− λm+ (λm)(· − ξ).

Evaluating this last expression at (t1, x1) we obtain that ∂tµ(t1, x1) > 0 which is
impossible. So we have proven that if λ and m0 are smooth, then m ≥ 0. Because
of the uniqueness of solutions of (7) (which will be independently proved in the
theorem 1.1) this result extends to non smooth λ and m0 with only m0 ≥ 0. �

Next, we establish the main result of this section : existence and uniqueness of
a solution of (2).

Theorem 1.1. For any m0 ∈ L2(Td), m0 ≥ 0, there exists a unique m ∈ H such
that

(2)

{

∂tm−∆m+ 1
ǫ
1A(t, x)m(t, x)− 1

ǫ
1A(t, x− ξ)m(t, x− ξ) = 0 in (0, T )× T

d;

m(0) = m0 in T
d.

where the first line has to be taken in the sense of distributions. Moreover, m ≥ 0.

Proof. We define λ ∈ L∞ by

λ =
1

ǫ
1A

9



We then define the application F from L2((0, T )× T
d) to itself by : F(m) is the

only solution in H of
{

∂tF(m)−∆F(m) + λ(t, x)m(t, x)− λ(t, x− ξ)m(t, x− ξ) = 0 in (0, T )× T
d;

m(0) = m0 in T
d.

By standard parabolic estimates, F is continuous and compact. Let us take µ ∈
[0, 1] and m ∈ L2((0, T )× T

d) such that m = µF(m), m satisfies
{

∂tm−∆m+ µλ(t, x)m(t, x)− µλ(t, x− ξ)m(t, x− ξ) = 0 in (0, T )× T
d;

m(0) = m0 in T
d.

By proposition 1.1, m ≥ 0. For any v ∈ H such that v ≤ Mv on A, we obtain
using lemma 1.1:

∫ T

0

∫

Td

(∂tm−∆m)v ≥ −µ

∫ T

0

∫

Td

λm.

Hence by the lemma 1.2 we deduce that there exists C > 0 independent of µ such
that :

||m||2L2((0,T ),H1(Td)) ≤ C||m||L2((0,T ),H1(Td))||m0||L2 + µ

∫ T

0

∫

Td

λm;

≤ C||m||L2((0,T ),H1(Td))||m0||L2 + µ||λ||L2||m||L2.

From which we deduce that the set

{m ∈ L2, ∃µ ∈ [0, 1], m = µF(m)}
is bounded in L2. Applying Schaefer’s fixed point theorem, we obtain that there
exists a solution of (2).

For any m1 and m2 solution of (2), we denote by δm = m1 −m2 the difference of
these solutions. The function δm satisfies
{

∂tδm(t, x)−∆δm(t, x) + λ(t, x)δm(t, x)− λ(t, x− ξ)δm(t, x− ξ) = 0 in (0, T )× T
d;

δm(0) = 0 in T
d.

Multiplying this equation by δm and integrating in space, we obtain

1

2

d

dt

∫

Td

(δm)2 +

∫

Td

|∇δm|2 +
∫

Td

λ(δm)2 =

∫

Td

(λδm)(t, x)(δm)(t, x+ ξ)dx;

1

2

d

dt

∫

Td

(δm)2 ≤ ||λ||L∞||δm(t)||2L2(Td).

Finally, we deduce, using Gronwall’s lemma, that δm = 0 and thus that there
exists a unique solution of (2).

�
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2.2. Existence of a limit density. We show here how we can pass to the limit
in the equation (2) and hence obtain a characterization of the density of jumping
particles. For the rest of this section, we fix k given in hypothesis 1. We now
describe the behavior of the solutions of (2) as ǫ goes to 0.

Theorem 1.2. Assume hypothesis 1 holds, then there existsm ∈ L2((0, T ), H1(Td))
such that, extracting a subsequence if necessary, (mǫ)ǫ converges weakly in L2((0, T ), H1(Td))
toward m which satisfies

{

D(m) > −∞;

m = 0 a.e. in A.

Moreover, for all v ∈ H such that v ≤ Mv on A and v(T ) = 0,

∫ T

0

(−∂tv −∆v,m)H−1×H1 −
∫

Td

v(0)m0

≥
∫ T

0

(−∂tu−∆u,m)H−1×H1 −
∫

Td

u(0)m0 = D(m);

for any u ∈ H which satisfies u = Mu on A, u(T ) = 0.

Remark 2. Let us note that the trace condition m(0) = m0 is not satisfied, we
send the reader to the paragraph following the proof for the interpretation of this
fact.

Proof. We define mǫ for all ǫ > 0 as the unique solution of
{

∂tmǫ −∆mǫ +
1
ǫ
1A(t, x)mǫ(t, x)− 1

ǫ
1A(t, x− ξ)mǫ(t, x− ξ) = 0 in (0, T )× T

d;

mǫ(0) = m0 in T
d.

For all ǫ > 0, in view of lemma 1.1, we can observe that

−∞ < D(mǫ) =

∫ T

0

(−∂tu−∆u,mǫ)H−1×H1 −
∫

Td

u(0)m0;

where u ∈ L∞ ∩ L2((0, T ), H1(Td)) is given by hypothesis 1. Hence we deduce
from Lemma 1.2 that (mǫ)ǫ>0 is a bounded sequence of L2((0, T ), H1(Td)) and
as a consequence, that (D(mǫ))ǫ>0 is also a bounded sequence. Thus, extract-
ing a subsequence if necessary, (mǫ)ǫ>0 converges weakly toward a limit m ∈
L2((0, T ), H1(Td)). Now take any v ∈ H such that v ≤ Mv on A and any u ∈ H
such that u = Mu on A and u(T ) = v(T ) = 0. For all ǫ > 0 :

∫ T

0

(∂tmǫ, u)H−1×H1 +

∫ T

0

∫

Td

∇mǫ∇u ≤
∫ T

0

(∂tmǫ, v)H−1×H1 +

∫ T

0

∫

Td

∇mǫ∇v.

11



Thus we deduce that
∫ T

0

(−∂tu−∆u,mǫ)H−1×H1 −
∫

Td

u(0)m0

≤
∫ T

0

(−∂tv −∆v,mǫ)H−1×H1 −
∫

Td

v(0)m0.

Passing to the limit ǫ goes to 0 we deduce :
∫ T

0

(−∂tv −∆v,m)H−1×H1 −
∫

Td

v(0)m0

≥
∫ T

0

(−∂tu−∆u,m)H−1×H1 −
∫

Td

u(0)m0.

In particular,

D(m) > −∞.

Let us note that for all ǫ > 0

D(mǫ) = −1

ǫ

∫

A

kmǫ ≤ −1

ǫ

∫

A

k0mǫ.

Thus, m = 0 almost everywhere on A because (D(mǫ))ǫ is bounded. �

2.3. Interpretation of the limit density. From a variational point of view, the
properties of the limit density m given in this theorem are characterizing what we
expect for such a density. Indeed, as we mentioned earlier, D(m) > −∞ stands
for the fact that m is an admissible density for describing jumping particles. The
condition m = 0 on A stands for the fact that m is a density of particles which
are actually jumping on A because otherwise there will be particles on A. The
condition :

(8)

{

∀u ∈ H, u = Mu on A :

D(m) =
∫ T

0
(−∂tu−∆u,m)H−1×H1 −

∫

Td u(0)m0;

stands for the fact those particles are not jumping elsewhere than on A. Indeed
at a penalized level we know that

D(mǫ) = −1

ǫ

∫

A

kmǫ.

Thus the quantity D(m) is closely related to the set A on which the particles
actually jump. It appears that the quantity D(m) measures the total aggregate
costs ”paid” by all the particles which jump. Because m = 0 on A, we know that
the particles jump at least on A, formally (8) states that the particles do not jump
elsewhere than on A ; because the total ”cost” is minimum for particles which
jump on at least A. To understand why we state that (8) stands for the fact that
the particles do not jump elsewhere than on A, let us look at an example : we take

12



B a measurable subset of T
d which satisfies hypothesis 1 and such that A ⊂ B.

We define µǫ by :
{

∂tµǫ −∆µǫ +
1
ǫ
1Bµǫ − 1

ǫ
(1Bµǫ)(t, x− ξ) = 0;

µ(0) = m0.

Letting ǫ go to 0, recalling the previous theorem, µ satisfies D(µ) > −∞ and
µ = 0 on A because µ = 0 on B. What is differentiating µ from m is that, for
v ∈ H, v ≤ Mv, v = Mv on A, we do not necessary have an equality in :

D(µ) ≤
∫ T

0

(∂tµ, v)H−1×H1 +

∫ T

0

∫

Td

∇µ∇v;

if v 6= Mv on B.

Finally, let us note that the initial condition m(0) = m0 may not be satisfied.
This is a consequence of the fact that if A is not negligible near {t = 0}, then
particles are jumping instantaneously. We cannot expect in such a case for the
initial condition to be satisfied. However the variational relation satisfied by m is
sufficient to ”remember” that the density starts from m0. This discussion leads to
the following definition :

Definition 1. For any positive m0 ∈ L2(Td), A measurable subset of T
d, m ∈

L2((0, T ), H1(Td)) is called a solution of the Fokker-Planck equation of particles
jumping on A if

• m = 0 on A;
•

{

∀v, u ∈ H, v ≤ Mv on A, u = Mu on A, v(T ) = 0, u(T ) = 0 :
∫ T

0
(−∂tu−∆u,m)H−1×H1 −

∫

Td u(0)m0 ≤
∫ T

0
(−∂tv −∆v,m)H−1×H1 −

∫

Td v(0)m0.

Even though we just explain in which extent this definition is legitimate, the
following section on uniqueness, despite being a bit more restrictive on the set A,
justifies this choice of definition.

2.4. Uniqueness of the limit density. We now turn to the uniqueness of such
solutions. Once again, the proof we give is based on a duality argument. The main
idea of the following is that uniqueness of solutions of the Fokker-Planck equation
comes from an existence result for an ”adjoint” equation. Because we have not
made any particular assumption on the regularity of A for the moment, the time
regularity of the functions involved in this part may be an issue. To avoid entering
into to much details, we make an additional assumption on A and we send the
reader to the end of this section for a discussion on this assumption. We assume
the following :

13



Hypothesis 2. The set A is of the form

[0, T ]× Ã;

where Ã is a closed set of T
d for which there exists, k satisfying (3) and u ∈ H2(Td)

such that

u(x) = k(x) + u(x+ ξ) a.e. on Ã.

We introduce the following lemma which states an existence result for a partic-
ular type of QVI.

Lemma 1.3. Assume hypothesis 2 holds and take (k, u) given by hypothesis 2. For
any f ∈ L∞((0, T )×T

d), there exists v ∈ H such that, for all µ ∈ L2((0, T ), H1(Td)),
µ = 0 on A :











∫ T

0
(−∂tv −∆v, µ)H−1×H1 =

∫ T

0

∫

Td fµ;

v = M(k, v) on A;

v(T ) = u.

Proof. We take (u, k) as given by hypothesis 2. We denote by w1 ∈ H the solution
of the QVI











∀φ ∈ L2((0, T ), H1(Td)), φ ≤ M(k, w1) :
∫ T

0
(−∂tw1, φ− w1)H−1×H1 +

∫ T

0

∫

Td ∇w1∇(φ− w1) ≥
∫ T

0

∫

Td f(φ− w1);

w1(T ) = u;w1 ≤ M(k, w1).

The existence of w1 is given by classical results on QVI. We denote by w̃2 ∈ H the
solution of the QVI










∀φ ∈ L2((0, T ), H1(Td)), φ ≤ M(k, w̃2) :
∫ T

0
(−∂tw̃2, φ− w̃2)H−1×H1 +

∫ T

0

∫

Td ∇w̃2∇(φ− w̃2) ≥
∫ T

0
(2(∆u)− f, φ− w̃2)H−1×H1 ;

w̃2(T ) = u; w̃2 ≤ M(k, w̃2).

The existence of w̃2 is also classical. We define w2 ∈ H by w2 = 2u − w̃2. Let us
remark that

w2 ≥ M(k, w2) on A;

−∂tw2 −∆w2 ≥ f in D′((0, T )× T
d).

w2(T ) = u

Thus, by the maximum principle, the set K = {v ∈ H,w1 ≤ v ≤ w2} is non empty.
We define on K the application L by L(v) is the only solution of











−∂tL(v)−∆L(v) = f on (0, t)× Ãc;

L(v) = M(k, v) on A;

L(v)(T ) = u on T
d.
14



The application L is well defined, order preserving and is valued in K by the
maximum principle. Thus it has a fixed point in K. This fixed point satisfied the
required properties. �

We are now able to prove the following result :

Theorem 1.3. Assume hypothesis 2 holds, for any positive initial distribution
m0 ∈ L2(Td) there exists at most one m ∈ L2((0, T ), H1(Td)) solution of the
Fokker-Planck equation of particles jumping on A.

Proof. We denote by m1 and m2 two solutions, and we define a real number P > 0.
The idea of the proof consists in constructing for i = 1, 2, vi ∈ H as in lemma 2.3
with fi = mi ∧ P and then evaluating

∫ T

0

(−∂t(v1 − v2)−∆(v1 − v2), m1 −m2)H−1×H1 .

This proof is the adaptation of the uniqueness proof we give for the MFG problem
at the end of this paper, which is itself an adaptation of the proof of uniqueness of
J.-M. Lasry and P.-L. Lions [23]. Because m1 and m2 are solutions, the following
holds:

D(mj) =

∫ T

0

(−∂t(vi)−∆(vi), mj)H−1×H1 −
∫

Td

vi(0)m0.

Hence,

(9)

∫ T

0

(−∂t(v1 − v2)−∆(v1 − v2), m1 −m2)H−1×H1 = 0.

On the other hand, using lemma 1.3, we derive that
∫ T

0

(−∂t(v1−v2)−∆(v1−v2), m1−m2)H−1×H1 =

∫

Ac

(m1−m2)(m1∧P −m2∧P ).

Recalling (9), we conclude that m1 = m2 since the previous holds for any P > 0
and thus that there is a unique solution for this Fokker-Planck equation. �

2.5. A remark on hypothesis 2. As mentioned above, we prove the uniqueness
of solutions given by definition 1 under hypothesis 2 because we do not want
to address the question of the time regularity of such solutions. However, let
us explain why, intuitively, this problem of time regularity should be possible to
overcome. The main idea of the proof we gave above is to construct, for certain
f ∈ L∞, v ∈ H , such that

{

v = Mv on A;

−∂tv −∆v = f in Ac;

where the PDE has to be satisfied in a weak sense which we do not precise here.
Because we do not have time regularity for m, we have to construct v such that
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∂tv ∈ L2((0, T ), H−1(Td)). Indeed we want to be able to write, using duality, the
term

(∂tm−∆m, v)

with the time derivative being applied to either v or m. For a general set A, this
time regularity for v is impossible to reach, and cannot be compensate by proving
some time regularity for m. Let us take an example to fix the idea. If the set A is
given by

A = [t1, t2]× Ã

where Ã is a closed subset of T
d and 0 < t1 < t2 < T . Then we can expect

(and it is the case if Ã is not trivial) that ∂tm is not well defined around t1. On
the other hand, for a generic f , we also expect that ∂tv is not well defined around t2.

However, intuitively, ∂tv is well defined around t1 whereas ∂tm is well defined
around t2. Hence, despite having a global time regularity result for either v or
m, one can still hope to establish uniqueness of solutions of those Fokker-Planck
equations as v and m seems not to lack time regularity in the same places (in the
time-space domain).

3. The case of a finite number of possible jumps

We now address a more general model as we look at situations in which different
jumps can occur. As we shall see, all the results of the case of a single jump are
adaptable to the case of several jumps. However there are in this section more
notations and we advise not to read this section before the previous one. We
denote by K ⊂ T

d the finite set of possible jumps. In this setting a single set A is
no longer sufficient to describe all the jumps. We introduce V which describes the
jumps by : V (ξ, t, x) is the proportion of particles which use the jump ξ at (t, x).
We assume the following :

(10)











V ∈ L∞(K, (0, T ),Td);

V ≥ 0;
∑

ξ∈K V (ξ, t, x) ≤ 1.

We also define the following sets :

∀ξ ∈ K,Aξ := {V (ξ, ·, ·) > 0};

∀ξ ∈ K,Aξ + ξ := {(t, x) ∈ (0, T )× T
d|(t, x− ξ) ∈ Aξ};

A = ∪ξ∈KAξ.

As in the case of a single jump, an assumption on the sets on which the particles
jump is still needed. We make here the following assumption :
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Hypothesis 3. There exists k satisfying (3) and u ∈ H such that
(11)











u ≤ M(k, u) in (0, T )× T
d;

u(T ) = 0;

∀ξ ∈ K, V (ξ, t, x)(k(x, ξ) + u(t, x+ ξ)− u(t, x)) = 0 a.e. in (0, T )× T
d.

This hypothesis is slightly more sophisticated than hypothesis 1. This is due to
the fact that multiple jumps being possible, we have to be more precise. We still
assume that the sets on which the particles are jumping are given as a result of an
impulse control problem but we precise for which ξ the minimum is reached.

3.1. The penalized equation. We introduce first a penalized version of the prob-
lem. We recall that this penalization models situations in which the particles have
a certain probability to jump in the prescribed sets, and that the limit as ǫ goes
to 0 corresponds to the probability of jumping going to 1. At this penalized level,
we expect the density of particles m to satisfy :

(12)
{

∂tm−∆m+ 1
ǫ
m(t, x)

(
∑

ξ∈K V (ξ, t, x)
)

− 1
ǫ

∑

ξ∈K m(t, x− ξ)V (ξ, t, x− ξ) = 0 in (0, T )× T
d;

m(0) = m0 in T
d.

Let us assume that m is a smooth solution of the previous PDE. Let us remark,
as in the case of a single jump, that for any u ∈ AD(k), after a simple change of
variable we obtain that :
∫ T

0

(∂tm−∆m, u)H−1×H1 = −1

ǫ

∫ T

0

∫

Td

m(t, x)(
∑

ξ∈K

V (ξ, t, x)(u(t, x)− u(t, x+ ξ)))dtdx;

≥ −1

ǫ

∫ T

0

∫

Td

m(t, x)(
∑

ξ∈K

V (ξ, t, x)k(t, x, ξ))dtdx;

where AD(k) is defined by :

AD(k) := {u ∈ H, u(T ) = 0, ∀ξ ∈ K, V (t, x, ξ)(u(t, x)−k(x, ξ)−u(t, x+ξ)) ≤ 0 on A}.
This set represents the set of admissible solutions of an impulse control problem
in which one can only use the jump ξ ∈ K at (t, x) if V (t, x, ξ) > 0. We also define
the meaningful quantity :

(13) D(k,m) := inf{
∫ T

0

(−∂tu−∆u,m)H−1×H1 −
∫

Td

m0u(0)|u ∈ AD(k)};

We introduce the set H(k) := {m ∈ L2((0, T ), H1(Td)), D(k,m) > −∞}. Let us
remark that for any u satisfying (11) :

D(k,mǫ) =

∫ T

0

(∂tmǫ −∆mǫ, u)H−1×H1.
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The proofs of the following lemmata are the exact analogous of the proof we did
earlier in the case of a single jump so we do not present them here.

Lemma 1.4. Assume hypothesis 3 holds for (k, u). Then there exists C > 0
(independent on m and depending on k and ||u||L∞) such that for any m ∈ H(k)∩
H, with m ≥ 0 :

||m||2L2((0,T ),H1) ≤ −D(k,m) + C||m||L2((0,T ),H1)||m0||L2.

Lemma 1.5. Let m0 ∈ L2(Td), m0 ≥ 0, and m ∈ L2((0, T ), H1(Td)) be a solution
of (12). Then, m ≥ 0.

Furthermore, as in the case of a single jump, we can prove the following result.

Theorem 1.4. Assume hypothesis 3 holds, then for all m0 ∈ L2(Td) there exists
a unique solution m ∈ H of the penalized equation (12).

3.2. The limit density. We now present how we can pass to the limit in (12)
using the previous result. As in the case of a single jump, existence follows from
lemma 1.4 and we prove uniqueness under a more restrictive assumption to avoid
technical difficulties.

Theorem 1.5. If there exists k satisfying (3) such that hypothesis 3 holds, then
there exists m ∈ L2((0, T ), H1(Td)) such that

{

D(k,m) > −∞;

m = 0 in A;

and, for all v ∈ AD(k) :
∫ T

0

(−∂tv−∆v,m)H−1×H1−
∫

Td

v(0)m0 ≥
∫ T

0

(−∂tu−∆u,m)H−1×H1−
∫

Td

u(0)m0 = D(k,m);

where u ∈ H satisfies (11) and u(T ) = 0.

We recall that A is defined by

A = ∪ξ∈K{V (ξ, ·, ·) > 0}.
We do not present the proof of this result as it is the same as the one we presented
in the case of a unique jump. Like we did in the case of a single jump, we give the
following definition :

Definition 2. For any m0 ∈ L2(Td), V measurable function satisfying (10), m ∈
L2((0, T ), H1(Td)) is called a solution of the Fokker-Planck equation of particles
jumping with jumps described by V if

• m = 0 on A;
•

{

∀v ∈ H, v ≤ Mv, ∀u ∈ H satisfying (11) :
∫ T

0
(−∂tv −∆v,m)H−1×H1 −

∫

Td v(0)m0 ≥
∫ T

0
(−∂tu−∆u,m)H−1×H1 −

∫

Td v(0)m0 = D(m).
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We now turn to the question of uniqueness of such solutions. As in the case of
a single jump, uniqueness is a consequence of an existence result for an adjoint
equation ; and as the manner in which we proceed in this particular case, we are
going to make the assumption that A does not depend on time to avoid technical
difficulties. The assumption we make is the following :

Hypothesis 4. For all ξ ∈ K, there exists a closed set Ãξ ⊂ T
d such that :

Aξ = [0, T ]× Ãξ.

Moreover, there exists k satisfying (3) and u ∈ H2(Td) such that u ≤ M(k, u)

(14)

{

∀ξ ∈ K, x ∈ Ãξ ⇒ (k(x, ξ) + u(x+ ξ)− u(x)) = 0;

∀ξ ∈ K, x ∈ Ãξ ⇒ ∀ξ′ 6= ξ, u(x) < k(x, ξ′) + u(x+ ξ′).

Let us note that the second line of (14) allows us to prove the analogous of
lemma 1.3 in the exact same way. Namely we have the following :

Lemma 1.6. Let k and u be given by the hypothesis 4. Then for any f ∈
L∞((0, T )× T

d), there exists v ∈ H such that

• k, v satisfy (11),
• v(T) = u
• for any m ∈ L2((0, T ), H1(Td)) such that m = 0 a. e. on A,

∫ T

0

(−∂tv −∆v,m)H−1×H1 =

∫ T

0

∫

Td

fm.

We are now able to state uniqueness of solutions of Fokker-Planck equation
of jumping particles in the case of a finite number of possible jumps for a time
independent set A.

Theorem 1.6. Under hypothesis 4, for any positive m0 ∈ L2(Td), there exists
at most one m ∈ L2((0, T ), H1(Td)) solution of the Fokker-Planck equation of
particles jumping with jumps described by V .

This result is proved with the same arguments as the one for a unique possible
jump.

4. A remark on the generality of this method

Before using this notion of solution of Fokker-Planck equation to a MFG of im-
pulse control, we precise some straightforward generalizations of the results of the
previous part. First working on the torus T

d does not play any role but simplify-
ing the notations and fixing a framework. Thus those results generalize to more
complex domain and boundary conditions. Secondly, the cost of jumps k can be
allowed to depend on the time variable. If this dependence is smooth, this does
not change our results. Also more general jumps can be model with this kind of
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method. For example one can think of impulse control in which any jump is pos-
sible ; or a problem of optimal stopping time type, except that instead of leaving,
”stopping” the trajectories restarts it at the origin (or at any given point). In this
second problem, it is not the jumps but the destination which belongs to a finite
set. Both of these optimization problems have value functions which solves QVI
under some assumptions. In these two examples continuity of the value function
is crucial, hence appropriate assumptions have to be made on the regularity of
solutions and a solution of the Fokker-Planck equation may not be more regular
than a measure. The important point is that with the QVI comes a notion of
”admissible” solutions for the QVI (in this article being admissible is satisfying
u ≤ Mu). With this notion comes the notion of admissible density of particles
which is, in this article, the fact that D(m) > −∞. Then a priori estimates on
the solutions of the Fokker-Planck equation are available and we can continue de-
veloping such solutions.

Moreover, the results of uniqueness of solutions relies on the time regularity of
the adjoint problems we solved in the lemmata 1.3 and 1.6. Hence, the results of
uniqueness seem to remain true if we allow the sets on which the particles jump
to move smoothly in time.

Finally, let us note that optimal switching problems can be formulated in terms
of QVI. Thus we can model a density of particles, whose trajectories are given by
optimal trajectories of an optimal switching problem, using the same technique as
the one we have just presented in this section.

Part 2. Mean field games of impulse control through quasi-variational

inequalities

We present in this part an application of the notion of solutions of a Fokker-
Planck equation of jumping particles. We study a MFG of impulse control where
the density of players is naturally a solution of this kind of equation. We work
here in the case of a finite number of possible jumps. We note K the set of jumps.
We denote by k satisfying (3) the cost of the different jumps depending on the
position. For any v ∈ L2((0, T ), H1(Td)), we define Mv by

Mv(t, x) = inf
ξ∈K

{k(x, ξ) + v(t, x+ ξ)},

and we denote by f the running cost of the problem. The function f depends on
space, time and on the repartition of the player (i.e. f = f(t, x,m)). We make the
important assumption that f ∈ C(L2((0, T ), H1(Td))) for the weak topology (we
see here f as an application which takes m as an argument and gives the image
f(·, ·, m) and assume that this application is continuous for the weak topology of
L2((0, T ), H1(Td))) and that f is uniformly (in m) bounded. As in the previous
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part, we work on the d dimensional torus to simplify the notations but all the
following results are adaptable to more complex situations. The problem we are
interested in, is finding (u,m) such that :

(15)






































max(−∂tu−∆u− f(m), u−Mu) = 0 in (0, T )× T
d;

u(T ) = 0 in T
d;

D(m) > −∞;

∀v ∈ H, v ≤ Mv :
∫ T

0
(−∂tv −∆v,m)H−1×H1 −

∫

Td v(0)m0 ≥
∫ T

0
(−∂tu−∆u,m)H−1×H1 −

∫

Td u(0)m0 = D(m);
∫ T

0

∫

Td(−∂tu−∆u− f(m))m = 0;

where D(m) is defined by

D(m) := inf
v≤Mv,v∈H

∫ T

0

(−∂tv −∆v,m)H−1×H1 −
∫

Td

m0v(0).

The function u denotes the value function of the impulse control problem for a
generic player of the MFG and m is the density of players.The first two lines have
to be taken in the sense that u is the solution of the associated QVI. Thus that
it formally solves the impulse control problem for the generic player in which the
running cost is f(m) and k is the cost for the jumps. We refer to the appendix
for some details on QV I and to [4] for a complete study of the problem. In view
of the previous part, m is a solution of a Fokker -Planck equation which models
the density of (jumping) players of the game. Let us note that because there is
no constraint such that m = 0 on {u = Mu}, m is not necessary the solution of a
limit problem of the previous part with some V (describing the jumps) well chosen
depending on u. Indeed, in view of [5], we do not expect existence of solutions
if we impose such strong conditions which are assimilated with Nash equilibria in
pure strategies for the MFG. That is why we do not impose the condition m = 0
on {u = Mu} but the integral relation of the last line. It is the formulation of the
fact that (u,m) is a mixed solution of the MFG, i.e. that this system characterizes
Nash equilibria in mixed strategies. We recall the interpretation of such a relation.

Formally, a natural requirement for the solution of such a MFG shall be to im-
pose that m = 0 on {u = Mu} which is the set where it is optimal to use an
impulse control. The integral formulation in this system requires that m = 0
on {−∂tu − ∆u < f(m)} which is the set where it is strictly optimal to use an
impulse control. The difference here is that on {u = Mu} one can still have
−∂tu−∆u = f(m) and thus that it is both optimal to stay and to use a control.
We do not impose that m vanishes in such a situation. Such a relaxation makes
the problem more convex and allows us to prove an existence result while still
conserving a uniqueness property.
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The methodology to work on (15) is the following : we first introduce a penalized
version of this problem and then we show how we can pass to the limit to obtain
existence of solutions of (15). Later on we prove a result of uniqueness for such
solutions.

5. The penalized problem

We introduce here the penalized problem :

(16)


































































max(−∂tu−∆u− f(m), u−Mu) = 0 in (0, T )× T
d;

u(T ) = 0 in T
d;

∂tm−∆m+ α
ǫ
1{u=Mu}m−

∑

ξ∈K V (t, x− ξ, ξ)α(t,x−ξ)
ǫ

1{u=Mu}(t, x− ξ)m(t, x− ξ) = 0

in (0, T )× T
d;

m(0) = m0 in T
d;

(u−Mu) + (−∂tu−∆u− f(m)) 6= 0 ⇒ α = 1;

∀ξ ∈ K, u(t, x) 6= k(t, x, ξ) + u(t, x+ ξ) ⇒ V (t, x, ξ) = 0;

∀ξ ∈ K, ∀(t, x) ∈ (0, T )× T
d, 0 ≤ V (t, x, ξ) ≤ 1;

∀(t, x) ∈ (0, T )× T
d, 0 ≤ α(t, x) ≤ 1.

Recalling the previous part, it is natural to introduce first such a penalized system,
and then pass to the limit ǫ goes to 0. Indeed the equation satisfied by m cannot
be easily written in terms of a partial differential equation whereas it can at a
penalized level. The potential V gives at each point (t, x) the jump used by the
players at this point. If V (t, x, ξ) 6= 0 then some players use the jump ξ at (t, x).
The term α adds convexity to the problem and make possible the existence of a
solution ; it is the translation at a penalized level that we are looking for Nash
equilibria of the MFG in mixed strategies. The technique here is inspired from [5]
where it is shown that such a system, for variational inequality instead of quasi
variational inequality, leads to a solution of the MFG system.

Theorem 2.1. There exists a solution (u,m, α, V ) ∈ (L2((0, T ), H2(Td))∩H1((0, T ), L2(Td)))×
L2((0, T ), H1(Td)) × L∞((0, T ) × T

d) × L∞(K × (0, T ) × T
d) of (16) such that u

solves the associated QVI and the equation in m is satisfied in a weak sense.

Proof. We define an application F1 from L2((0, T ) × T
d) to itself by : for any

m ∈ L2, F1(m) is the only solution of the QVI with costs f(m) and k. F1 is well
defined and continuous recalling results on QVI (see appendix). Then, we define
the set-valued function F2 from L2((0, T )× T

d) to itself by : for any u ∈ L2,

F2(u) := {m ∈ L2((0, T )× T
d), ∃α, V ∈ L∞, (m,α, V ) solves (16)(u)};
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where (16)(u) is

(16)(u)



























∂tm−∆m+ α
ǫ
1{u=Mu}m−∑

ξ∈K V (t, x− ξ, ξ)α(t,x−ξ)
ǫ

1{u=Mu}(t, x− ξ)m(t, x− ξ) = 0;

m(0) = m0;

(u−Mu) + (−∂tu−∆u− f(m)) 6= 0 ⇒ α = 1;

∀ξ ∈ K, u(t, x) 6= k(t, x, ξ) + u(t, x+ ξ) ⇒ V (t, x, ξ) = 0;

0 ≤ V (t, x, ξ) ≤ 1.

As we want to apply Kakutani’s fixed point theorem on F := F2 ◦ F1, we need
to prove that F is upper semicontinuous and that it is valued in the set of convex
and closed subsets of L2. As the last point is trivial, we focus in this proof on the
upper semicontinuity. We recall that a set valued function F from A to B is upper
semicontinuous if for any open set O ⊂ B, {x ∈ A, F (x) ⊂ O} is open in A. Let
us take an open set O ⊂ L2 and m ∈ L2((0, T ), H1(Td)) such that F(m) ⊂ O.
In view of the previous part (namely lemma 1.4), we can affirm that F(m) is a
compact subset of L2((0, T )× T

d), hence

d := dist(F(m),Oc) > 0.

Let us take δ > 0 and m′ ∈ L2 such that ||m − m′||L2 ≤ δ. We now prove that
if δ is small enough, then F(m′) ⊂ O, and thus that F is upper semi continuous.
First, we define u1 and u2 by

u1 = F1(m); u2 = F1(m
′).

For any µ2 ∈ F(m′), there exists (α2, V2) such that (µ2, α2, V2) solves
{

∂tµ2 −∆µ2 +
α2

ǫ
1{u2=Mu2}µ2 −

∑

ξ∈K V2(t, x− ξ, ξ)α2(t,x−ξ)
ǫ

1{u2=Mu2}(t, x− ξ)µ2(t, x− ξ) = 0;

µ2(0) = m0.

Now we define α1 on {u1 = Mu1} ∩ {−∂tu1 −∆u1 = f(m)} by

• α1 = α2 on {u2 = Mu2} ∩ {−∂tu2 −∆u2 = f(m′)};
• α1 = 1 on {−∂tu2 −∆u2 < f(m′)};
• α1 = 0 on {u2 < Mu2};

and we set α1 = 1 elsewhere. Now we define V1 by

• ∀(t, x, ξ) such that ui(t, x, ξ) = k(t, x, ξ)+ui(t, x, x+ξ), for i ∈ {1; 2}, then
V1(t, x, ξ) = V2(t, x, ξ);

• elsewhere the value of V1 does not matter so we just define it in such a way
that it satisfies
{

∀ξ ∈ K, u(t, x) 6= k(t, x, ξ) + u(t, x, x+ ξ) ⇒ V (t, x, ξ) = 0;

0 ≤ V (t, x, ξ) ≤ 1;

which is aways possible.
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Let us define µ1 as the unique solution of
{

∂tµ1 −∆µ1 +
α1

ǫ
1{u1=Mu1}µ1 −

∑

ξ∈K V1(t, x− ξ, ξ)α1(t,x−ξ)
ǫ

1{u1=Mu1}(t, x− ξ)µ1(t, x− ξ) = 0;

µ1(0) = m0.

By construction, µ1 ∈ F(m). We then define µ := µ1 − µ2. Once again by
construction, µ(0) = 0 and µ satisfies

∂tµ−∆µ+
α2

ǫ
1A(

∑

ξ∈K

V2)µ−
∑

ξ∈K

V2(t, x− ξ, ξ)
α2(t, x− ξ)

ǫ
1A(t, x− ξ)µ(t, x− ξ)

=
α2

ǫ
1{u2=Mu2}∩{u1<Mu1}(

∑

ξ∈K

V2)µ2

−
∑

ξ∈K

V2(t, x− ξ, ξ)
α2(t, x− ξ)

ǫ
1{u2=Mu2}∩{u1<Mu1}(t, x− ξ)µ2(t, x− ξ)

+
α2

ǫ
1{u2=Mu2}∩{u1=Mu1}∩Ac(

∑

ξ∈K

V2)µ2

−
∑

ξ∈K

V2(t, x− ξ, ξ)
α2(t, x− ξ)

ǫ
1{u2=Mu2}∩{u1=Mu1}∩Ac(t, x− ξ)µ2(t, x− ξ)

− α1

ǫ
1{u2=Mu2}∩{u1=Mu1}∩Ac(

∑

ξ∈K

V1)µ1

+
∑

ξ∈K

V1(t, x− ξ, ξ)
α1(t, x− ξ)

ǫ
1{u2=Mu2}∩{u1=Mu1}∩Ac(t, x− ξ)µ1(t, x− ξ)

− 1

ǫ
1{P (u2)=f(m′)}∩{P (u1)<f(m)}∩Ac(

∑

ξ∈K

V1)µ1

+
∑

ξ∈K

V1(t, x− ξ, ξ)
1

ǫ
1{P (u2)=f(m′)}∩{P (u1)<f(m)}∩Ac(t, x− ξ)µ1(t, x− ξ).

Where we have used for A the set of coincidence :

A := {(t, x)/∀ξ, V2(t, x, ξ)α2(t, x, ξ)1{u2=Mu2}(t, x) = V1(t, x, ξ)α1(t, x, ξ)1{u1=Mu1}(t, x)}.
The operator P is here defined by being the parabolic operator :

P (u) := −∂tu−∆u.

Let us remark that all the terms in the right hand side of this expression are the
ones which involve different coefficients (i.e. different α and V ) in front of µ1 and
µ2. We can also note that all the terms of the right hand side are multiplied by
a characteristic function of a subsets of which the Lebesgue measure goes to 0 as
||m′ −m||L2 goes to 0. Indeed, because F1 is continuous,
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||u2 − u1||L2((0,T ),H1(Td)) →δ→0 0.

Hence, taking δ sufficiently small, we obtain that the Lebesgue measure of the
following sets are as small as we want :

• for all ξ1 6= ξ2 ∈ K :

∩i 6=j{ui(t, x) = k(t, x, ξi) + ui(t, x+ ξi)} ∩ {uj(t, x) < k(t, x, ξi) + uj(t, x+ ξi)}
• {P (u1) < f(m)} ∩ {P (u2) = f(m′)}
• {u1 < Mu1} ∩ {u2 = Mu2}.

Thus because µ1 and µ2 are bounded in L2((0, T )×T
d) independently of δ (lemma

1.4), we deduce that taking δ sufficiently small, the right hand side of the previous
equation is as small as necessary in L2((0, T ) × T

d). Thus, we fix η > 0 and we
choose δ such that the right hand side is smaller than η in the L2((0, T )×T

d) norm.
Multiplying by µ and integrating over T

d the equation µ satisfies, we deduce that

1

2

d

dt
||µ(t)||2L2(Td) ≤

1

ǫ
#(K)||V ||L∞||µ||2L2(Td) + η||µ||L2(Td);

where #(K) stands for the cardinal of the set K. From this inequality, it follows
that

d

dt
||µ(t)||L2(Td) ≤

1

ǫ
#(K)||V ||L∞||µ||L2(Td) + η.

Hence, we conclude with Gronwall’s lemma that taking η small enough, µ is as
small as necessary in L∞((0, T ), L2(Td)) (we recall that µ(0) = 0). Because of the
partial differential equations satisfied by µ, it follows that taking δ small enough :

||µ||L2((0,T ),H1(Td)) <
d

2
;

which proves that µ2 ∈ O and thus that F(m′) ⊂ O. Hence F is upper semi
continuous and we deduce from Kakutani’s fixed point theorem the existence of a
solution. �

6. Existence of solutions of (15)

In this section we present existence of solutions of the system (15). The proof of
this result consists in passing to the limit in the penalized system. Let us remark
that in the previous part, we use either hypothesis 1 or 3 to be able to pass to
the limit ǫ → 0. Here such an assumption is no more required, as the jumps the
players are using, are by definition optimal for a certain optimisation problem.
Obviously this problem is the optimization problem the players have to solve.

Theorem 2.2. There exists a solution (u,m) ∈ L2((0, T ), H2(Td))∩H1((0, T ), L2(Td))×
L2((0, T ), H1(Td)) of (15).
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Proof. For ǫ > 0 we denote by (uǫ, mǫ, αǫ, Vǫ) a solution of the penalized system
(16). We first show some compactness for the sequence (mǫ)ǫ>0. Let us remark
that

D(mǫ) =

∫ T

0

∫

Td

(−∂tuǫ −∆uǫ)mǫ −
∫

Td

uǫ(0)m0.

Furthermore, because of lemma 1.4,

−D(mǫ) + C||m0||L2||mǫ||L2((0,T ),H1) ≥ ||mǫ||2L2((0,T ),H1);

where C only depends on ||uǫ||L∞ (and on k which is fixed here). We then deduce
from the uniform bounds on f , which we assumed to have, that :

||mǫ||2L2((0,T ),H1) ≤ C(||m0||L2 + ||mǫ||L2);

where C only depends of the uniform bounds of f . Thus we deduce that (mǫ)ǫ>0 is
a bounded sequence of L2((0, T ), H1(Td)). So there exists m ∈ L2((0, T ), H1(Td))
such that, extracting a subsequence if necessary, (mǫ)ǫ weakly converges toward m
in L2((0, T ), H1(Td)). Because f is continuous for the weak topology, we deduce
from lemma 3.1 (see appendix), that (uǫ)ǫ converges toward u solution of the quasi
variational inequality associated to

{

max(−∂tu−∆u− f(m), u−Mu) = 0 in (0, T )× T
d;

u(T ) = 0 in T
d.

Moreover, by passing to the limit in
(17)
∀v ∈ H, v ≤ Mv, v(T ) = 0 :
∫ T

0

(−∂tv −∆v,mǫ)H−1×H1 −
∫

Td

v(0)m0 ≥
∫ T

0

(−∂tuǫ −∆uǫ, mǫ)H−1×H1 −
∫

Td

uǫ(0)m0

= D(mǫ);

we obtain


























D(m) > −∞;
∀v, v ≤ Mv, v(T ) = 0 :
∫ T

0

(−∂tv −∆v,m)H−1×H1 −
∫

Td

v(0)m0 ≥
∫ T

0

(−∂tu−∆u,m)H−1×H1 −
∫

Td

u(0)m0

= D(m).

Let us note that we can pass to the limit in the right hand side of (17) because
the uniform bounds on f yields some uniform estimate in Hölder spaces for the
time derivative of uǫ. Thus, we can easily deduce that extracting a subsequence if
necessary :

∂tuǫ

L2(H−1)−→ ∂tu;

uǫ(0)
L2

−→ u(0).
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Now let us remark that for all ǫ > 0,

−D(mǫ) =
1

ǫ

∫ T

0

∫

Td

(
∑

ξ∈K

V (t, x, ξ)k(x, ξ))αǫ(t, x)mǫ(t, x)dxdt;

≥ 1

ǫ

∫ T

0

∫

Td

(
∑

ξ∈K

V (t, x, ξ))k0mǫ(t, x)1{−∂tuǫ−∆uǫ<f(mǫ)}(t, x)dxdt;

≥ k0
ǫ

∫ T

0

∫

Td

mǫ1{−∂tuǫ−∆uǫ<f(mǫ)}.

Since (D(mǫ))ǫ>0 is a bounded sequence (c.f. (17)), we deduce that

(k0
ǫ

∫ T

0

∫

Td

mǫ1{−∂tuǫ−∆uǫ<f(mǫ)}

)

ǫ>0

is also a bounded sequence and thus that :

∫ T

0

∫

Td

(−∂tu−∆u− f(m))m = 0.

This ends the proof of the fact that (u,m) is a solution of (15).
�

7. Uniqueness of solutions of (15)

We now turn to the question of uniqueness of solutions of (15). As it is the case
in MFG of continuous control [23], uniqueness does not hold in general. However
it does under an assumption on the monotonicity of the costs of the MFG (i.e.
the coupling) with respect to the density of players. In our model the density of
players appears only in the running cost f and thus only an assumption on f is
required for uniqueness to hold. We recall that f is said to be strictly monotone
if :

∫ T

0

∫

Td

(f(m1)− f(m2))(m1 −m2) > 0 if m1 6= m2.

Theorem 2.3. Assume that f is strictly monotone, then there exists at most one
solution of (15).

Proof. The proof of this statement is directly inspired from the original proof of
uniqueness in MFG of continuous control [23]. Let us take (u1, m1) and (u2, m2)
two solutions of (15). We denote by u and m the difference u1 − u2 and m1 −m2.
Let us observe that because of the optimality of u1 in D(m1) and similarly for u2
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in D(m2) we obtain
∫ T

0

∫

Td

(−∂tu−∆u)m =

∫ T

0

∫

Td

(−∂t(u1 − u2)−∆(u1 − u2))m1

+

∫ T

0

∫

Td

(−∂t(u2 − u1)−∆(u2 − u1))m2;

≤ 0.

On the other hand, because m2 ≥ 0, and
∫ T

0

∫

Td

(−∂tu1 −∆u1 − f(m1))m1 = 0;

we deduce that
∫ T

0

∫

Td

(−∂tu1 −∆u1)m =

∫ T

0

∫

Td

f(m1)m1 +m2(∂tu1 +∆u1);

≥
∫ T

0

∫

Td

f(m1)(m1 −m2).

Where we have used the fact that −∂tu1 −∆u1 ≤ f(m1). Obviously we have the
analogous relation for u2. Putting the pieces together we finally obtain

∫ T

0

∫

Td

(f(m1)− f(m2))(m1 −m2) ≤
∫ T

0

∫

Td

(−∂tu−∆u)m ≤ 0.

Using the strict monotonicity of f , we have just proven that m1 = m2 and thus
that there exists at most one solution of (15).

�
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Appendix

Part 3. Results on the impulse control problem

The problem of impulse control is classical, we refer to the book of A. Bensoussan
and J.-L. Lions [4] for a more complete presentation of the problem. We fix a
probability space (Ω,A,P). The problem of impulse control consists in minimizing
the following expectation :

(18) inf
(τi)i,(ξi)i

E[

∫ T

0

f(s,Xs)ds+

#(τj )j
∑

i=1

k(τi, Xτ−i
, ξi)];

where the infimum is taken over the (finite and infinite) sequences (τi)i of times
such that 0 ≤ τi < τi+1 and over the sequences (ξi)i valued in the finite set K. The
(random) sequences (τi)i and (ξi)i are measurable with respect to the σ-algebra
generated by the process (Xs)s≥0, which is defined below in (19). The function
f ∈ L2((0, T ),Td) denotes the running cost and k ∈ L∞((0, T )× T

d ×K) denotes
the cost of the jumps (i.e. k(t, x, ξ) is the cost paid to use the jump ξ at the time
t and the position x). In (18), (Xs)s is the process given by

(19)











∀s ∈ (τi, τi+1), dXs =
√
2dWs;

Xτ+i
= Xτ−i

+ ξi;

X0 = x ∈ T
d;

where (Ws)s is a standard brownian motion under (Ω,A,P). The problem of
impulse control then consists in choosing the optimal jumps (defined by a time
and an element of K) to impose on the state (Xs)s≥0 in order to minimize (18).
We define M(k, u) by

M(k, u)(t, x) = inf
ξ∈K

{u(t, x+ ξ) + k(t, x, ξ)}.

We shall note Mu instead of M(k, u) when there is no ambiguity on k. Several
assumptions can be made on the regularity of k as well as on its dependence on
the variable of the problem. We here assume that the following holds in order to
work with solutions of the problem which are smooth enough:

(20)

{

∀ξ ∈ K, k(·, ξ) ∈ H2(Td);

∃k0 > 0 such that k ≥ k0.

In the same way value functions of optimal stopping problems can be solutions of
obstacle problems [3], we expect the value function of this impulse control problems
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to be a solution of

(21)

{

max(u−Mu,−∂tu−∆u− f) = 0 in (0, T )× T
d;

u(T ) = 0 in T
d.

However, just as variational inequalities are the most natural object to represent
solutions of obstacle problems, quasi-variational inequalities (QVI) are a natural
object associated to (21). The QVI for this impulse control problem, which we
denote by QV I(f, k), is:

QV I(f, k)



















u ≤ Mu a.e. in (0, T )× T
d;

∀v ∈ L2((0, T ), H1(Td)), v ≤ Mu;

−
∫ T

0

∫

Td ∂tu(v − u) +
∫ T

0

∫

Td ∇u · ∇(v − u) ≥
∫ T

0

∫

Td f(v − u);

u(T ) = 0 in T
d.

The function u is here the solution/unknown of QV I(f, k). Finding a solution of
QV I(f, k) is not possible for any f ∈ L2 in any dimension. This is a consequence
of the fact that if f is not bounded by below, then we cannot expect in general u
to be bounded by below. Indeed in such a case, it is unclear in which sense the
condition u ≤ Mu has to be understood. Usually a solution of (3) is build as the
limit of the sequence (un)n∈N defined by :

(22)

{

max(−∂tun+1 −∆un+1 − f, un+1 −Mun) = 0 in (0, T )× T
d;

un+1(T ) = 0 in T
d;

with by convention u−1 = +∞. The obstacle problem (22) is understand in
the sense of variational inequalities. For all n ∈ N, un ∈ L2((0, T ), H2(Td)) ∩
H1((0, T ), L2(Td)) because (20) holds. Moreover, (un)n∈N is a decreasing sequence
becauseM is monotone. If one can find v ∈ L2((0, T ), H1(Td))∩H1((0, T ), H−1(Td))
such that v ≤ un for all n ∈ N then we deduce that :

−
∫ T

0

∫

Td

∂tun(v − un) +

∫ T

0

∫

Td

∇un · ∇(v − un) ≥
∫ T

0

∫

Td

f(v − un).

Rearranging this inequality we deduce that :
(23)

sup
0≤t≤T

||un(t)||2L2 +

∫ T

0

∫

Td

|∇un|2 ≤
∫

Td

un(0)v(0) +

∫ T

0

∫

Td

(∂tv −∆v + f, un)H−1×H1

−
∫ T

0

∫

Td

fv

Thus we obtain estimates on the sequence (un)n∈N from the existence of a uniform
lower bound v. Let us note that if f ≥ 0, then un ≥ 0 for all n ∈ N so we can
choose v = 0 in (23). More generally if f is bounded by below by a constant −C
then for all n ∈ N we deduce that un(t, x) ≥ −Ct for all (t, x) ∈ (0, T )× T

d and
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we can choose v = −Ct in (23). Moreover, if f is bounded by below by a constant
−C , because k satisfies (20), the following estimate is classical :

(24) ||∂tu||L2 + ||u||L2(H2) ≤ C1(1 + ||f ||L2)

where C1 depends only on C and on k. We present a result of stability concerning
solutions of regular QVI. This result does not seem to be new but we detail the
proof for the sake of completeness.

Proposition 3.1. Let us take any sequence (fn)n and a constant C > 0, such
that for all n ∈ N, fn ∈ L2((0, T ) × T

d) and fn ≥ −C . We also assume that
k ∈ L∞(Td×K) satisfies (20). If (fn)n converges toward f ∈ L2((0, T )×T

d) in L2

with f ≥ −C, then the sequence (un)n of solutions of QV I(fn, k) converges toward
the solution u of QV I(f, k) in L2((0, T ), H1(Td)).

Proof. The sequence (||fn||L2)n is bounded. Hence (un)n is a bounded sequence of
L2((0, T ), H2(Td)) ∩ H1((0, T ), L2(Ω)). Extracting a subsequence if necessary, it
converges to a limit u∗ ∈ L2((0, T ), H2(Td)) for the L2((0, T ), H1(Td)) norm. The
limit u∗ satisfies u∗ ≤ Mu∗ almost everywhere. Let us take v ∈ L2((0, T ), H1(Td))
such that v ≤ Mu∗. Obviously the following holds :

vn := v −Mu∗ +Mun ≤ Mun.

Thus because of QV I(fn, k), we obtain

−
∫ T

0

∫

Td

∂tun(vn − un) +

∫ T

0

∫

Td

∇un · ∇(vn − un) ≥
∫ T

0

∫

Td

f(vn − un).

Re arranging this inequality leads to
∫ T

0

∫

Td

f(v − un) ≤−
∫ T

0

∫

Td

∂tun(v − un) +

∫ T

0

∫

Td

∇un · ∇(v − un);

−
∫ T

0

∫

Td

(∂tun +∆un − f)(Mun −Mu∗).

Let us remark that (||Mun−Mu∗||L2)n converges to 0 as n goes to infinity. Thus,
because (∂tun +∆un − f)n is bounded in L2, passing to the limit in the previous
equation we obtain

−
∫ T

0

∫

Td

∂tu
∗(v − u∗) +

∫ T

0

∫

Td

∇u∗ · ∇(v − u∗) ≥
∫ T

0

∫

Td

f(v − u∗).

We conclude by uniqueness of solutions of QV I [20], that u∗ = u, the only solution
of this QVI. �

We now present a result on weaker QVI. To pass to the limit ǫ → 0 in (2), we
need an estimate for right hand side f which are only in L2((0, T ), H−1(Td)). The
following lemma gives such an estimate for a QVI in which we do not impose the
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constraint u ≤ M(k, u) on the whole space but only on the part which of interest
in (2), for a given cost function k. The new constraint we impose is that

∀ξ ∈ K : 1{V (ξ)>0}(u(t, x)− k(x, ξ)− u(t, x+ ξ)) ≤ 0.

We note K(k, u) the convex closed set :

K(k, u) := {v ∈ L2((0, T ), H1(Td)), ∀ξ ∈ K : 1{V (ξ)>0}(v(t, x)−k(x, ξ)−u(t, x+ξ)) ≤ 0}.
Proposition 3.2. Assume that there exists V satisfying (10) for which hypothesis
3 holds. We note k and w the couple given by hypothesis 3. Then for any f ∈
L2((0, T ), H−1(Td))∩Mb((0, T )×T

d) there exists u ∈ L2((0, T ), H1(Td)) such that
:
(25)










u ∈ K(k, u);

∀v ∈ H, v ∈ K(k, u);

−
∫ T

0

∫

Td ∂tv(v − u) + ν
∫ T

0

∫

Td ∇u · ∇(v − u) + 1
2

∫

Td |v(T )|2 ≥
∫ T

0

∫

Td f(v − u);

Moreover we have the estimate

||u||L∞(L2) + ||u||L2(H1) ≤ C(1 + ||f ||L2(H−1));

where C only depends on K and ||w||∞
inf k

.

The idea of the proof is that the QVI (25) is associated to a formal impulse
control problem in which one can only use the impulse control ξ on {V (ξ) > 0}.
Because hypothesis 3 is satisfied, the QVI is somehow more regular and thus we
can solve it for unbounded cost functions f .

Proof. Denoting k and w the functions given by hypothesis 3, there exists n∗ ∈ N

such that :

∀(t, x) ∈ ∪ξ∈K , ∄(ξ1, ..., ξp) ∈ Kp, p ≥ n∗, ∀k ≤ (p−1), (t, x+
k

∑

i=1

ξi) ∈ {V (ξp) > 0}.

This fact is a direct consequence of w ∈ L∞ and is obtained by evaluating w(t, x+
∑k

i=1 ξi). Moreover, we have :

n∗ ≤ 2||w||L∞

infx,ξ k(x, ξ)

We now define f̃ by

f̃ = min
p≤n∗

min
(ξ1,..,ξp)

f(·, ·+
p

∑

i=1

ξi);

The function f̃ ∈ L2((0, T ), H−1(Td)) is well defined because f ∈ L2((0, T ), H−1(Td))∩
Mb((0, T )× T

d) and it represents the best running cost one can face by jumping
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at the same time a maximum of n∗ times. We define ũ by:
{

−∂tũ−∆ũ = f̃ in (0, T )× T
d;

ũ(T ) = 0 in T
d.

As already mentioned above, existence result for QVI usually comes from the
existence of a lower bound for an approximating sequence. The function ũ plays
the role of a lower bound for the sequence (un)n∈N that we now define. We denote
by u0 ∈ H the only solution of

{

−∂tu0 −∆u0 = f in (0, T )× T
d;

u0(T ) = 0 in T
d.

We then define for all n ∈ N, un ∈ L2((0, T ), H1(Td)) by un+1 ∈ L2((0, T ), H1(Td))
is a solution of the weak variational inequality (we refer to [4] for a presentation
of weak variational inequalities) :
(26)
{

∀v ∈ H, v ∈ K(k, un+1);

−
∫ T

0

∫

Td ∂tv(v − un+1) +
∫ T

0

∫

Td ∇un+1 · ∇(v − un+1) +
1
2

∫

Td |v(T )|2 ≥
∫ T

0

∫

Td f(v − un+1).

Straightforwardly, we deduce iteratively that for every n ∈ N, (un)n∈N is well
defined, un+1 ≤ un, ũ ∈ K(k, un). The last point is a direct consequence of the
definition of K(k, ·) and ũ. Evaluating the second line of (26) with v = ũ, we
deduce :

(27)

∫ T

0

∫

Td

|∇un|2 ≤ −
∫ T

0

(−∂tũ− f, ũ− un)H−1×H1 +

∫ T

0

∫

Td

∇un · ∇ũ.

Thus, (un)n∈Td is a bounded sequence of L2((0, T ), H1(Td)). Because, it is also
a decreasing sequence, it converges weakly in L2((0, T ), H1(Td)) to a limit u ∈
L2((0, T ), H1(Td)). It follows that
{

∀v ∈ H, v ∈ K(k, u);

−
∫ T

0

∫

Td ∂tv(v − u) +
∫ T

0

∫

Td ∇u · ∇(v − u) + 1
2

∫

Td |v(T )|2 ≥
∫ T

0

∫

Td f(v − u).

Moreover, because
ũ ≤ u ≤ u0,

and ũ, u0 ∈ L∞((0, T ), L2(Td)), we obtain that u ∈ L∞((0, T ), L2(Td)). Finally, let
us remark that

||ũ||L∞(L2) + ||ũ||L2(H1) ≤ C(1 + ||f̃ ||L2(H−1)),

where C does not depend on f . Moreover, by construction of f̃ ,

||f̃ ||L2(H−1) ≤ C̃||f ||L2(H−1),

where C̃ depends only on K, and n∗. Hence, u satisfies :

||u||L∞(L2) + ||u||L2(H1) ≤ C(1 + ||f ||L2(H−1)),
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where C depends only on K and ||w||∞
inf k

(and on ν and d). �
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