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Abstract. Many approaches for background subtraction and people detection have been developed so far. However,

the best state-of-the-art methods do not give yet satisfactory results in real transportation environments. Indeed, these

latter configurations imply several difficulties such as fast brightness changes, noise, shadows, scrolling background,

etc., and a single approach cannot deal with all these. In this paper, we propose a new approach for people segmen-

tation and tracking in videos that is suited for real-world conditions. Our strategy combines several state-of-the-art

methods for people detection, silhouette appearance modeling and tracking. Each process also uses its own frame

pre-processing pipeline. The optimal combination of the people classifiers used, as well as the optimal parameters of

each of the combined methods, being too difficult to be determined altogether, a genetic algorithm is used to determine

the optimal classifier parameters and their combination weights. The output of the latter is used as an initialization

for a multi-frame graph-cut operating on superpixel graphs. Our proposed approach is evaluated on the BOSS Euro-

pean project database that was acquired in moving trains and that contains typical scientific locks encountered in real

transportation systems.

Keywords: Classifier combination, people detection, people tracking, superpixel, graph-cut, segmentation, transporta-

tion environment.
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1 Introduction

Image processing applications in video surveillance are becoming more and more complex. Today,

counting people is not enough and extracting people’s silhouettes is now necessary to enable more

complex applications such as people or action recognition. These applications are not only useful

to improve security but also to prevent accidents on infrastructure or people. Indeed, automatic

segmentation of people’s silhouettes enables to generate large amounts of data that can be used

to make complex statistics. However, extracting people from camera recordings is complex be-

cause each camera has its own characteristics (angle, resolution, position), especially in the case of

transportation environments. In the literature, people extraction is usually directly preceded with

a motion-based background subtraction strategy (see1 for a review). This consists in examining

the evolution of pixel colors between successive frames in order to detect fixed background ver-

sus moving objects in the foreground. Several features (such as color or texture) and techniques

(such as Gaussian Mixture Model,2 Fuzzy logic,3, 4 or Neural networks5) have been developed to

represent the temporal evolution pixels. These methods give good results in the case of relatively

controlled environments, but in complex situations such as transportation environments, the results

of these methods tend to degrade considerably. Indeed, state-of-the-art methods cannot cope simul-

taneously with the appearance of several scientific locks (fast brightness changes, noise, shadows,

scrolling background, etc.). Deep convolutional neural networks methods have also recently been

used to tackle this problem6, 7 but they can not be considered for our application due to the lack of

labeled data that we dispose. Moreover, transfer learning or data augmentation based methods are

also not relevant due to the high variations of acquisition that are difficult to reproduce or simulate.
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As it has already been done in the context of classifier fusion,8–10 we propose in this paper to build

upon state-of-the-art methods for people detection, silhouette appearance modeling and tracking,

and to make the most of several of them by an efficient combination optimally determined by a

genetic algorithm.11

This paper is organized as follows: In Sec. 2, the objective of our work that consists in ex-

tracting people as accurately as possible and its new contributions in comparison with previous

works are introduced. The synopsis of the proposed approach including both the principle of clas-

sifiers’ combination and genetic optimization are also described. Sections 3, 4, 5 respectively detail

the detection, appearance and tracking based people classifiers and the parameters of the genetic

algorithm. In Sec. 6, the combination of classifiers and the temporal graph cut clustering are devel-

oped. Before concluding this work, we present the experimental database, the optimal parameters

and methods of the proposed strategy automatically determined by the genetic algorithm, and the

people extraction results.

2 Proposed method

2.1 Motivations

As mentioned in the introduction, performing people silhouette segmentation in real-world con-

ditions of transportation environments is very challenging. Existing state-of-the-art methods rely

on different assumptions to extract people in video sequences that can be roughly grouped into

motion-based methods (e.g., background subtraction), detection-based methods (e.g., HOG: His-

togram of Oriented Gradients,12 DPM: Deformable Part Model13), appearance-based methods

(e.g., Gaussian Mixtures) and tracking-based methods (e.g., Lucas-Kanade). Unfortunately, with

real-world conditions, since each method is designed from specific assumptions, they cannot be

efficient for all the many different configurations that can be encountered (shadows, moving lights,

fast brightness changes, noise, scrolling background, etc.). Fortunately, we can make the most of

the information provided by several different people classifiers to build, by combination, a more

efficient global classifier. This is the course we have been steering in this paper. Our previous

work focused on people extraction based on background subtraction method associated to a graph

cut clustering initialized by a color distribution model.14 In this paper, five major contributions are

added:

• The proposed approach is based on a temporal graph cut clustering operating on a superpixel

segmentation;

• A combination of classifiers (detection, appearance and tracking based classifiers) is used to

give the most appropriate information to initialize similarity and capacity of our temporal

graph cut;

• Several state-of-the-art methods are used altogether to tackle specific locks appearing in

transport environments such as shadows, moving lights, fast brightness changes, scrolling

background behind windows;

• Experimental results are enhanced by testing two other sequences of the BOSS European

database;

2



• A ground truth (3252 images) of three video sequences dataset has been handmade and is

available for the community on our website15 to ease reproducible research.

2.2 Synopsis of the approach

To segment the silhouette of people in video sequences, we rely on known state-of-the-art methods

that are based on three different cues. The first cue is a detection-based cue that benefits from

motion-based background subtraction and bounding box detection from Histogram of Gradients

features. The second cue is an appearance-based cue that exploits color appearance modeling with

color histograms and Gaussian Mixture Models. The third cue is a tracking-based cue that exploits

tracking methods at different levels (pixel, superpixel and silhouette). Each of these cues is used

to produce one or several probability maps by classification and estimates the position of people’s

silhouettes in video frames. However, pre-processing video frames can help in the classification

of each cue. Indeed, this enables us to reduce the effects of fast brightness changes and noise.

So, each cue classification is preceded by several preprocessing treatments. All these cues are

then associated altogether with a weighted combination giving rise to a final unique probability

map. This provides the class memberships of each pixel for the two classes people/background to

discriminate. The latter probability map is then considered as an input for a multi-frame graph-cut

superpixel clustering that enables us to delineate precisely the silhouette. The complete synopsis

of the proposed approach is illustrated in Figure 1 and the optimal parameters of each block are

given in Table 1 of Sec. 7. As can be seen, several different preprocessings can be used, each

having different parameters. In addition, each cue-based people classifier has its own parameters.

Given the large choice of parameters that we have to face with, we prefer to optimally determine

them by exploring the space of possible solutions obtained with different parameters tuning. This

search space being much too large to be fully explored, a genetic algorithm is then used to find the

best configuration of parameters on training video sequences.

2.3 People Classifiers Inputs

Before entering into details of cue-based classification, we present common items used to pre-

process video frames.

2.3.1 Superpixel segmented frames

The first step of our proposed method is to segment video frames into superpixels. This segmen-

tation will be used during all the following steps both for cue-based classification and graph-cut

clustering. This means that we will work at the superpixel level and not at the standard pixel level.

This allows us, on the one hand, to reduce the processing time since the number of superpixels

is much lower than the number of pixels, and on the other hand, to facilitate the extraction of the

people by considering superpixel boundaries close to the border of people’s silhouettes. To do

this, we have chosen the SLIC16 superpixel method because it allows us to obtain homogeneous

regions without loosing the edge information (see Figure 2(b)). Given a frame I t and its superpixel

segmentation, a region adjacency graph Gt = (Rt, Et) is constructed where Rt is the set of nodes

(regions of the segmented image, represented by the mean color of the region) and Et is the set

of undirected edges (connections between adjacent regions). Pixels of I t will be denoted pti. The

number of pixels of a region will be denoted by |Ri|. When there is no ambiguity, super index t

will be dropped, and for the sake of clarity we will use Ri instead of Rt
i to denote a given region
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Fig 1 Synopsis of the proposed method of people extraction (where ⊗ corresponds to a weighted combina-

tion and where the people classifier outputs are marked in three colours : blue=background, red=foreground and

green=undetermined).

of a frame. The barycentre of a region Rt
i will be denoted by bti. The k-hop neighborhood of a

region Ri is the set of regions that are reachable from Ri in k hops or fewer (that is following a

path with k edges or fewer). The notation Ri ∼k Rj will be used to denote two regions that are

k-hop connected.

2.3.2 Pre-processed frames

Cue-based classification can be eased by pre-processing original video frames. Indeed, frames

can present some defects (due to recording in transportation environments) such as fast brightness

changes or noise. The first can be reduced with the use of color invariant pre-processing and the

second one with the use of filters. In our approach, we have considered different filters (blur, gaus-

sian blur, median blur, and bilateral) and color invariants17 (greyworld, reduced coordinates, l1l2l3,

m1m2m3, affine normalization, and RGB rank). Pre-processing needs to be different from one

cue-based people classifier to another (since the considered cue is different), and each cue-based

classifier will have its own pre-processing step of the original frame under consideration. Deter-

mining which pre-processing, as well as which associated parameters, provides the best results for

a given cue-classification is difficult and will be automatically determined by genetic optimization.
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2.4 People Classifier Outputs

All considered cue-based people classifiers will take as input both pre-processed frames and as-

sociated superpixel segmentation. From these two inputs, they will perform a classification and

estimate, for each region of the superpixel region adjacency graph, its probability of belonging

either to the background or to the moving foreground object. Given a people classifier ci, P
obj
ci

(Rt
i)

will denote the estimated probability of a region Rt
i to be a moving foreground object, and P bg

ci
(Rt

i)
the probability of a region to belong to background. Given a set of k people classifiers, a weighted

combination will be performed to obtain the global final probability estimation for each region:

P ∗(Rt
i) =

∑

k α
∗
ci
P ∗
ci
(Rt

i). This latter probability map brings node capacity information on each

region and is used to initialize a graph-cut clustering method. Figure 1 presents people classifier

outputs on a sample image: blue is for background, red is for foreground and green means unde-

termined. Details on computation of each people classifier probability map, their combination and

use as capacities for graph-cut clustering will be provided in following sections.

2.5 Genetic Optimization

For each of the methods we consider, many different choices are possible. For instance, for the

foreground detection used by the detection-based people classifier, up to twenty state-of-the-art

algorithms can be considered. In addition, for pre-processing, different filters can be chosen and

each filter has several parameters. Having such a large number of different configurations strongly

motivates the use of an optimization strategy to determine the best setting. Keeping this in mind, it

is now easy to understand that our proposed method has too many parameters to have them tuned

by hand. This is especially true since we consider real and complex images, and a given set of

parameters that performs well in a given situation, will not necessarily be efficient in other situa-

tions. Indeed, we will see later in this paper (see Table 2) that the best methods and parameters are

not always the same as we consider different sequences of the BOSS project database. The search

of the values of those parameters is called model selection in machine learning. This problem is

very difficult to solve since the set θ of parameters to be tuned is very large and it is very hard

to determine the set θ∗ that optimizes a given quality criterion. This problem being not tractable,

we have chosen to consider a meta-heuristic with the use of a genetic algorithm. In this paper, the

genetic algorithm will be used at three levels:

• To determine the best parameters of the method involved in the proposed approach (for

example, temporal graph-cut, silhouette tracking, pixel tracking, etc.);

• To optimize the choice of the state-of-the-art approach when several of them are considered

and the choice of two preprocessing methods (filter and colorimetric invariant). For instance,

in the case of detection-based people classifier, a filter (median), a colorimetric invariant

(RGBrank) and a foreground detection method (MultiLayerBGS) are automatically chosen

among many different choices;

• To optimize the combination weights of several optimized methods according to two cases.

The first case concerns the combination of different methods of detection such as foreground

detection, histogram of oriented gradients and face detection which is realized in a same

classifier (Eq. 1). The second case deals with the combination of results of several people

classifiers (Eq. 11): a detection-based classifier, two appearance-based classifiers and three

tracking-based classifiers. More details on the genetic optimization will be given in Sec. 7.
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In the sequel, we detail cue-based people classifiers as well as the possible choices of state-of-the-

art methods.

3 Detection-based People Classifier

The first cue used to construct a people classifier is a detection-based one. We have considered a

combination of foreground detection methods, learned statistical methods for people localization

(HOG) and face detection. Although HOG-based methods12 have highly developed in recent years,

they are not the best suited to our problem. Indeed, the tested image sequences contain different

angles with more or less important perspective effects that give unsatisfactory results. In addition,

the learning phase of these methods on our sequences is difficult to efficiently implement due to

the low number of images available for each sequence. In contrast, methods based on foreground

detection appear to be better adapted to our sequences. We have nevertheless considered the two

types of methods and we perform a weighted combination of three standard methods for people

detection (foreground detection, HOG features classification, and face detection) in a single mask.

The genetic algorithm chooses the best possible combination. Once this person detection is per-

formed, two post-treatments are applied: a shadow detection to remove false positives generated

by the shadows of people and a mathematical morphology step to remove small detection errors.

3.1 Foreground detection

Foreground detection is a well-established method in the literature. The state-of-the-art is very

large1 and it is very difficult to choose one method over others since each method is not always

efficient for all situations. Therefore, we consider several possible methods and the best one will

be chosen by the genetic optimization. The approaches we have retained are: neural networks,5

fuzzy-based methods,3, 4 Gaussian mixture model methods,2 statistical methods using both color

and texture features18 and a non parametric method.19 All these methods come from the BGS

library20, 21 and provide a result in the form of a binary mask.

3.2 HOG-based people detection

We use the state-of-the-art approach described by DALAL ET AL.12 Histograms of Oriented Gradi-

ents (HOG) features are computed within pixel blocks that are classified by a Support Vector Ma-

chine classifier (SVM) using a linear kernel.22 This method is robust to noise and light variations.

To better detect people, the feature used is based on a concatenation of localized HOG extracted

from a bounding box. HOG descriptor is computed on local windows divided into blocks and

each one is divided into cells. This descriptor is then classified by an SVM with cross-validation.

Settings of HOG and SVM are those suggested by DALAL ET AL.12 People detection is performed

on the initial image but uses overlapping sliding bounding boxes. This implies a set of possible

people locations in the form of bounding boxes that we convert into a binary mask.

3.3 Face detection

In embedded environments the face is not so easily detected by the two previous people detection

methods, so we also consider a state-of-the-art method for face detection based on facial landmark

detection.23 This method provides a set of possible face locations in the form of bounding boxes

that we convert into a binary mask.
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3.4 Detection combination

Given the three results of foreground detection, HOG-based people detection and face detection,

we combine the binary masks they provide into a single one using a weighted combination. This

combination is performed at the superpixel level and the probability map is defined as:

P obj
c1

(Ri) =
1

|Ri|

∑

pi∈Ri

∑

k

β1
kP

obj
k (pi) (1)

and similarly for P bg
c1
(Ri). The index k is the considered method among foreground detection,

HOG-based people detection and face detection, and
∑

k β
1
k = 1. Weights β1

k will be determined

by the genetic optimization.

3.5 Shadow removal

Shadows are a classic problem in people detection mainly with methods of foreground extraction.

Shadows are often detected as foreground because they have similar shapes and moves to people.

The state of the art is large.24 As for foreground detection, we have considered several possible

methods and the best one will be chosen by genetic optimization. The approaches we have retained

are: chromaticity based method,25 physical method,26 geometry based method,27 and texture based

method.28 All these methods come from the library of SANIN ET AL.24 To improve this shadow

removal, we use it in conjunction with background learning that uses the same methods than for

foreground detection. The obtained shadow mask is removed from the detection combination.

After shadow removal, some small detection errors still remain and they are filtered by several

mathematical morphology closing operations.

4 Appearance-based People Classifier

The second cue used to construct a people classifier is an appearance-based one. Here we construct

two distinct classifiers that are both based on the color distribution estimation of two classes (people

and background). We use two methods of color distribution estimation: color histograms and

Gaussian mixture models. Each method provides its own probability map. Since video sequences

are considered, the update of the colors models is performed with the result of the people silhouette

segmentation provided by the detection-based classifier. The background is not modeled on the

whole frame but on a bounding box around the silhouette of the previous frame. If a person

appears for the first time in a frame, then the initialization of the models is performed from the

result of foreground detection. We recall that each classifier takes frames pre-processed by one of

the methods enumerated in Sec. 2.3.2.

4.1 Color histograms

The color histogram appearance models are composed of two color histograms (one for each class

- people object and background) of 3 × 256 bins each (one per color channel). Using the color

histogram models per channel of detected people, the belonging of each pixel of the frame to
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people and background classes can be estimated (denoted as P
obj
k (pi) with k the color channel)

and the superpixel probabilities deduced from:

P obj
c2

(Ri) =
1

|Ri|

∑

pi∈Ri

3
∑

k=1

β2
kP

obj
k (pi) (2)

and similarly for P bg
c2
(Ri). Parameters β2

k are coefficients affected to each histogram channel ac-

cording to their number of pixels.

4.2 Gaussian mixture models

Two independent Gaussian mixture models (GMM)29 using the classic EM algorithm are consid-

ered: one for each class: people object and background. Each class is modeled by five Gaussians.

The initialization is obtained from a k-means. Using the GMMs, the belonging of a pixel to peo-

ple and background classes can be estimated (denoted as P obj
k (pi) with k each Gaussian) and the

superpixel probabilities deduced from:

P obj
c3

(Ri) =
1

|Ri|

∑

pi∈Ri

5
∑

k=1

β3
kP

obj
k (pi) (3)

and similarly for P bg
c3
(Ri). Parameters β3

k are coefficients affected to each Gaussian according to

the number of pixels of each Gaussian.

5 Tracking-based People Classifiers

The third cue used to construct a people classifier is a tracking-based one. Indeed, since we are

dealing with video sequences, we can make the most of the temporal information to predict the

position of people between frames using tracking information.30 Three different tracking-based

people classifiers are considered that work at different scales: pixel, superpixel and silhouette.

They produce three probability maps: P obj
cj

(Ri) with j ∈ {4, 5, 6}. Each tracking method uses

the result of the people silhouette segmentation on the previous frame. To initialize each P obj
cj

(Ri)
when the tracking is performed for the first time, the result of the detection-based people classifier

P obj
c1

(Ri) on the previous frame is used.

5.1 Pixel tracking

To perform pixel tracking between frames, we follow the approach of SHI AND AL.31 In a video

frame It at time t, points of interest qti are extracted and their matching with the previous frame is

performed with the classic Lucas-Kanade optical flow. To enhance the performance of the tracking,

we set two parameters corresponding to the minimal accepted quality of interest points and the

minimum possible Euclidean distance between matched points. These parameters will be tuned

with genetic optimization. A matching function is then defined:

f(qti) =

{

qt−1
j

∅
(4)
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that associates, if possible, points from the actual frame to the previous one. Then, a matching

between regions is performed from matching points:

h(Rt
i) = {Rt−1

j |∃(qtk ∈ Rt
i, q

t−1
l ∈ Rt−1

j ), f(qtk) = qt−1
l } (5)

This associates a set of regions, if possible, from the actual frame to the previous one. The

probability of a region to belong to people and background classes can then be estimated from the

matching regions. Since one region can have no match or several matches, an average is performed:

P obj
c4

(Rt
i) =







1
|h(Rt

i)|

∑

Rt−1

j ∈h(Rt
i)

P obj
c4

(Rt−1
j ) if h(Rt

i) 6= ∅

0 if h(Rt
i) = ∅

(6)

and similarly for P bg
c4
(Rt

i).

5.2 Superpixel tracking

To perform superpixel tracking between frames, we use their barycentres position within consec-

utive frames. Given a frame I t, b(Rt
i) denotes the region on the previous frame that contains the

barycentre of Rt
i, so one has:

b(Rt
i) = {Rt−1

j |bti ∈ Rt−1
i }. (7)

This matching being only spatial, it cannot be correct but this provides an approximate position

useful in obtaining the correct matching. To determine which region of the previous frame located

around b(Rt
i) can be considered as the photometrically closest to Rt

i, we explore the k-hop around

b(Rt
i). This best matching region Rt−1

l∗ is obtained by:

Rt−1
l∗ = argmin

Rt−1

l
∼k b(Rt

i)

‖Rt−1
l −Rt

i‖2 (8)

where ‖Rt−1
l − Rt

i‖2 is the l2 norm between the mean color of the two regions. The k-hop is

2 in order to limit processing time. Then, the probability of a region to belong to people and

background classes can be estimated from the matching regions and we set:

P obj
c5

(Rt
i) =

{

P obj
c5

(Rt−1
l∗ ) if P obj

c5
(Rt−1

l∗ ) > 0.5
0 otherwise

(9)

and similarly for P bg
c5
(Rt

i).
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5.3 Silhouette tracking

Silhouette tracking is used to predict the shape of the silhouette across frames. A silhouette is

represented by a set of n key points {qt1, · · · , q
t
n} plus its barycentre qt0. These key points are

used to draw the contour of the silhouette. The barycentre qt0 of the silhouette is used as a stable

reference across frames and key points qti are obtained with a regular radial sampling of angle θ on

the silhouette. The position of key points and barycentre are predicted with an Extended Kalman

Filter (EKF).32 The position of the barycentre is obtained by prediction on X and Y axes. The

position of key points is obtained by prediction of the distance between the barycentre and the

silhouette contour. Once points have been predicted, the silhouette S is reconstructed by linking

key points with lines. All pixels inside the silhouette are considered as being an object. Since the

estimation of class probabilities is performed at the superpixel level, a superpixel is considered as

being part of the people silhouette if at least 60% of its area overlaps the silhouette. Then, the

probability of a region to belong to people and background classes can then be estimated from the

matching regions and we set:

P obj
c6

(Rt
i) =

{

1 if
|pti∈(R

t
i∧S)|

|Rt
i |

> 0.6

0 otherwise
(10)

and similarly for P bg
c6
(Rt

i). The number of key points n and all the parameters of the EKF will be

optimized with the genetic algorithm.

6 Multi-frame graph-cut from combined classifiers

6.1 Classifier Combination

Now that we have presented the six people classifiers we have considered, we detail the step of

their combination. Given one people classifier ck, P obj
ck

(Rt
i) provides the estimated probability of a

region Rt
i to be a moving foreground object, and P bg

ck
(Rt

i) the probability of a region to belong to

background. Given the set of 6 people classifiers we have introduced, a weighted combination is

performed to obtain the global final probability estimation for each region:

P obj(Rt
i) =

6
∑

k=1

γobj
ck

(t)P obj
ck

(Rt
i) (11)

and respectively for P bg(Rt
i). The combination weights affected to each classifier are defined such

that
∑6

k=1 γ
obj
ck

= 1 and similarly for γbg
ck

. The best combination weights will be determined by

the genetic algorithm. The combination also uses an additional time-dependent function γ applied

on weighting coefficients. Since we consider fixed cameras, during the first frames that a person

appears, all people detection classifiers do not always enable good detection (this is especially the

case for point tracking for instance). But as time goes by, detection becomes better and better until

the person goes out of the camera field of view. The goal of using time-dependent function γck is

therefore to adapt the classifiers’ coefficients in function of their significance during the detection

for a specific camera position. The function γck is defined in the form of a non-linear function

approximated by three line segments. The coefficients of this learning function will also be tuned

by the genetic algorithm. This enables us to verify the significance of the use of such a function.
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Fig 2 Example of superpixel segmentation and graph: (a) original image, (b) SLIC superpixel segmentation superim-

posed in red and (c) reduced superpixel graph superimposed Gt (each region is shown with its mean color).

6.2 Connected-frame graph

After classifier combination, we use of a probability map for a given frame, estimated at the super-

pixel level. This information not being a segmentation, we use it to initialize a graph-cut clustering

that operates on a specific graph. The latter is a superpixel graph that connects adjacent frames to

make the most of temporal information.

To speed up the processing time of the graph cut clustering algorithm, we use a bounding box

around the silhouette that was detected on the previous frame. For a given frame I t, its superpixel

graph Gt = (Rt, Et) is therefore reduced to Gt = (Rt, E t) with Rt ⊂ Rt and E t ⊂ Et. These

subsets are obtained by retaining only regions that are within the bounding box, and the edges that

connect them. Figure 2(c) shows such an example.

Finally a connected-frame graph G∗ = (R∗, E∗) is created by connecting adjacent frames It to

It−n. The interest in this construction is based on the fact that the segmentation obtained on the

previous frames can ease the segmentation on the actual frame. We explain how is constructed the

connection between two adjacent graphs of frames Gt and Gt−1, the principal being the same to

connect Gt−i and Gt−i−1. To do so, the same procedure that was used in Sec. 5.2 is performed.

A matching of each region Rt with regions of Gt−1 is obtained. The matching region Rt−1
l of a

region Rt
i is then connected to Rt

i and all the regions within a k-hop neighborhood around Rt−1
l

are connected to Rt
i. The optimal size of the k-hop neighborhood will be determined by the genetic

algorithm and remains the same for all adjacent frames to be connected. Since we connect adjacent

frames It to It−n with n defined by the genetic algorithm, one has therefore:

R∗ = Rt ∪Rt−1 ∪ · · · ∪ Rt−n (12)

and

E∗ = E t ∪ E t−1 ∪ {Rt
i ∼k R

t−1
l } ∪ · · ·

∪E t−n+1 ∪ E t−n ∪ {Rt−n+1
i ∼k R

t−n
l }.

(13)
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6.3 Graph-cut clustering

Graph cuts33 are a powerful segmentation algorithm that enables binary clustering of a graph. It

consists in formulating the clustering problem as an energy minimization in the form of a labeling

problem.34 In this paper, we have used the min-cut/max-flow implementation.35 As a result, the

superpixel connected frame graph G∗ = (R∗, E∗) is classified into two classes starting with an

initialization of vertices labels in sources (i.e., foreground object) and sinks (i.e., background),

given the result of the clustering on the previous frame. This means that each node R∗
i ∈ R∗ is

assigned a binary label li ∈ {obj, bg}. To perform the graph-cut clustering, we assign a capacity

to each node of R∗ for these two classes and a similarity for each edge of E∗. Given both, the

minimum ı̂ of the energy shown below corresponds to the best segmentation among the set F of

all possible labeling solutions:

ı̂ = argmin
l∈F





∑

Ri∈R∗

W li(Ri) +
∑

Ri∈R∗

∑

Ri∼1Rj

S(Ri,Rj) · δli 6=lj



 (14)

where S(Ri,Rj) is the similarity between two superpixel regions, W li(Ri) is the capacity of a

node, and the term δli 6=lj in the second sum is the Potts prior that encourages piecewise-constant

labelling. Each label li corresponds to either background or object. The capacities are obtained

directly from the probabilities obtained from the step of classifier combination:

W obj(Ri) = − log(P obj(Ri)) (15)

and similarly for W bg(Ri). The similarity S(Ri,Rj) between two regions Ri and Rj is given by:

S(Ri,Rj) =
exp

(

−‖Ri−Rj‖2
2θ2

)

‖bi − bj‖2
(16)

where ‖.‖2 is the Euclidean distance between the barycentres of the regions. When comparing re-

gions, mean colors are used. The θ coefficient is a bandwidth similarity parameter that will be fixed

by the genetical algorithm. To perform the minimization, the min-cut/max-flow implementation35

is used.

7 Experimental results

7.1 BOSS European Dataset

To test the performance of our proposed approach, we have considered a video database that has

been shot in real transportation environments. In literature, to the best of our knowledge, no video

database in real transportation environments (inside a vehicle such as train, tramway, bus, etc.)

currently exists with an associated ground truth mandatory to perform both training for machine

learning and segmentation quality evaluation. We have therefore considered video sequences from

the BOSS European project database.36 Video sequences were recorded inside a train in motion.

They contain many difficulties for people silhouette segmentation. First, video sequences were

shot during a sunny afternoon and according to the position of the camera one can see only inside

the train or also outside through windows. Since the train is moving, many moving elements can be

seen through windows with a speed effect when the train runs fast. Second, because of the sun, the
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Fig 3 Sample video frames of the BOSS project database:36 (a) sequence 1, (b) sequence 2 and (c) sequence 3.

good weather brings a lot of shadows: shadows projected through windows of objects outside the

train, and shadows of objects inside the train. Third, the train speed causes a lot of fast brightness

changes. Fourth, several people move inside the train. They wear different clothes (dress, shirt,

jean, pants) with different textures (united to complex patterns), and some people carry accessories

(e.g., bags). During their displacement in the train, people can have special behaviors such as

running, turning round or making large movements with their arms. Figure 3 illustrates three

video sequences of the BOSS European project. All these elements render video sequences of

the BOSS project database very challenging for people silhouette segmentation. Anyway, there

is no associated ground truth where on each frame the people’ silhouettes are delineated. The

selected video dataset contains a total of 12920 frames (720 × 576 pixels) and is divided into three

sequences that contain the scientific locks we have just mentioned: 4257 frames in sequence 1,

4585 frames in sequence 2, 4078 frames in sequence 3. The first sequence contains 12 people

displacements with front camera shooting. The second one contains 11 people displacements

with perspective camera shooting. The third sequence contains 11 people displacements with side

camera shooting equipped with fish-eye lens. In each sequence, only some frames contain moving

people, the other ones being empty. We have manually created 3252 reference segmentations

corresponding to the crossing of the 12 persons in the camera’s field of view: 1439 frames in

sequence 1; 1117 frames in sequence 2; 996 frames in sequence 3. Whether for the training,

testing or evaluation phase, we only consider frames containing people. As it will be discussed

in details in Sec. 7.3, the dataset in not shared for training and testing since we use a specific

Leave-One-Out (LOO) procedure that leaves one person out of the sequence for training and tests

on the remaining ones. This database and the ground truth of the video sequences are available at

our website.15 Providing such a database is also one strong contribution of this paper and future

research can benefit from it as well as comparing with the results we have obtained.

7.2 Genetic Optimization

As we have previously mentioned it, the whole strategy we propose involves a lot of different pos-

sibilities of methods and associated parameters, and combination weights. A genetic optimization

is used to automatically determine the best configurations and optimize our proposed approach. It

is performed with a population of 24 chromosomes that encode possible solutions. Each chromo-

some corresponds to a complete setting of our proposed people extraction method. A chromosome

13



is divided into several blocks that are composed of one or several genes. For instance, for the

filtering preprocessing, each gene encodes either the use of a method (binary gene) or the value

of a parameter (quantized possible values). Figure 4 illustrates a four genes encoding of the use

of a filter block in the proposed approach as well as the two steps of crossover and mutation. In

this figure, the first gene corresponding to the chosen filter method is illustrated in green color, the

associated parameters of the filter are illustrated in yellow and those that are not used are marked

in grey. The genetic algorithm uses a standard configuration and begins with an initialization step

and iteratively processes steps of selection, crossover and mutation steps until the population is

stable.

Fig 4 Example of crossover and mutation steps of our genetic algorithm.

We detail these steps in the sequel:

• The initialization step constructs a list of candidate solutions (called population). The initial-

ization of the chromosome is made by block. Thus, the genes corresponding to a choice of

method are first randomly initialized. Then, the genes corresponding to methods parameters

are in turn randomly initialized. Finally, if certain genes are not used, they are set to zero. As

an example, let us consider the blur filter illustrated in Figure 4, the first gene of the parent

A corresponds to the filter choice (value = 2) and is marked in green, the next two genes

correspond to the associated parameters (sizeX = 3 and sizeY = 1) and are illustrated in

yellow, and the last gene which is not used for this type of filter is set to 0 and marked in

grey.

• The crossover step aims at generating new candidate solutions from existing ones in the

population. A child is produced from mixing two chromosomes randomly chosen. Figure

4 illustrates an example of the crossover step in our genetical algorithm. The child C is

obtained by successively copying the block of one of the two parents A or B. A random

sampling is used to determine the block to copy. In our example, the child C obtains the

color space choice and the color invariant choice genes of the parents B marked in blue and

the filter method and the associated parameters choice genes (corresponding to the blur filter)

of the parents A marked in red.

• The mutation step consists in slightly modifying a part of the new chromosome generated in

the previous crossover step. It is motived to obtain new chromosomes different from parents

in order to cover a wide range of solutions. To increase this phenomenon, we have chosen the

following configurations: i) in the case of a mutation of a gene corresponding to the choice

of a method (case 1 in Figure 4), the selected gene (which is marked in pink) is randomly

modified with a mutation rate of 25% and the others genes of the considered block are re-

initialized (as described in the initialization step); ii) in the case of a mutation of a gene
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corresponding to a parameter of a method (case 2 in Figure 4), the selected gene (which is

marked in brown) is randomly modified with a mutation rate of 25% or a small value is added

within an interval that is plus or minus 10% of the actual value with a mutation rate of 50%.

Since several parameters of our proposed method are linked together (e.g., a filtering method

and its parameters) the steps of crossover and mutation are specially designed to combine

them correctly. These parameters values are selected in order to enable a fast convergence

of the genetic algorithm.

• For the selection step, selected candidates (the first half of the generated chromosomes) are

kept in order to obtain a stable size of population for each generation. The other ones (the

second half) are rejected. The fitness measure used to sort the population corresponds to an

average of all F-Measure scores of the sequence determined for each image by comparing

the segmentation result of the initial image with its handmade ground truth. In the state-of-

the-art, the F-Measure score is usually used to evaluate results of people segmentation on one

image. But, in our application, we must adapt this criterion to the use of videos composed

of several sets of images, where each one characterizes 11 different people displacements in

the train. To that aim, the displacement of one people is evaluated by an average of the F-

Measure computed on each image. Then, the video sequence (where many people appears)

is evaluated by an average of the F-Measure of each people. The fitness function uses this

strategy. The genetic algorithm is stopped when the best candidate of the population has not

changed during ten generations.

F −Measure = 2×
precision× recall

precision+ recall
(17)

recall =
true positives

true positives+ false negatives
(18)

precision =
true positives

true positives+ false positives
(19)

7.3 Extraction of right candidates

Each video sequence corresponds to a specific camera position in the train, and therefore we might

expect that having a common strategy of people silhouette segmentation for all silhouettes will be

very difficult. Indeed, given a camera position, some specific processings might be necessary (e.g.,

by applying a colorimetric invariant) because of light changes whereas in other configurations, this

is not the case. In addition, camera shooting is very different from one sequence to another and

this complicates considerably the conception of a common segmentation strategy.

To assess this assumption, we first have conceived a segmentation strategy per video sequence

(i.e., per camera position). This means that we perform a genetic optimization for each sequence.

However, the number of people in each sequence is not so high (around eleven) with around hun-

dred frames for each person. To better evaluate the performance of our proposal, we use a specific

Leave-One-Out (LOO) procedure that leaves one person out of the sequence for training and tests

on the remaining ones. Given a video sequence that contains k different persons, we take all the
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Fig 5 F-Measure scores obtained with People LOO cross validation on the three sequences (a), (b) and (c) of the

BOSS project database.

frames that contain a given person Pi and perform the genetic optimization of our strategy to ob-

tain the best configuration. This configuration is tested on the remaining frames that contain other

people Pj (with j ∈ {1, .., k} \ {i}) in the video sequence and an F-Measure is obtained for each

person. This is performed for all the possible values of i ∈ {1, .., k} and an average F-Measure for

each person is obtained from all the results. The genetic optimization was realized on a cluster of

96 cores (2 Ghz - 768Go).

Figure 5 shows the LOO results obtained on the three sequences for each person. Results on

two first sequences (a) and (b) are very good with an F-Measure close to 0.9. Moreover, recall

and precision are also very good and the gap between them is small to assess the reproducibility

of the approach. Results on the third (c) sequence are more mitigated. Indeed the results are less

similar and 8 scores out of 11 are above an F-Measure of 0.75. For three persons (5, 8 and 9) the F-

Measure is below 0.70. These less good performances can be explained by the difference between

the people used for genetic optimization and used for training. However, a good configuration
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of the strategy exists since, with a genetic optimization performed on person 7, an F-Measure of

0.83 is obtained. This shows that the genetic optimization is an essential step of our approach

and this enables us to find good configurations of the proposed strategy. Figure 9 illustrates the

people extraction results obtained with our proposed method. We can notice that results of people

extraction are very satisfactory, and robust, whatever the angle of view used. These fine results

could be used in our future works: people re-identification.

7.4 Summary of right candidates setting

The optimization strategy that we perform has generated and evaluated several thousands of set-

tings. Figure 6 illustrates the best settings for a given time processing. The evaluation function

used to place the points in this figure is the same as that used for the genetic optimization step.

One can notice that the processing time is high but the fitness function (and the implementation

code) was not thought to reduce the computation time in order to achieve to a real time application

but more to define the optimal parameters and methods of the proposed approach. Thus, we have

kept the swiftest optimizations (marked by black points in Figure 6) which obtain an F-Measure

upper to a manually set threshold (0.80 for the two first sequences (a) and (b) and 0.70 for the third

sequence (c)).

Table 1 presents the main parameters and methods. We can see that optimums kept on a given

sequence does not share much common configuration items with another. This shows that our

assumption was true and it is preferable to have one optimal configuration per camera instead of a

common one.

Figure 7 shows the evolution of the time coefficient for the combination step. For the two first

sequences, the people-based detection classifier always has the highest combination weights. In

the sequence (a) where the camera shoots front, the evolution of the coefficient in time is not so

high, which is normal since there is little evolution and all classifiers perform similarly. In the

sequence (b), the evolution is visible and coefficients grow during the displacement of the person.

Again, this was expected since there is a perspective shooting effect and both shape and appearance

of the person become more reliable as the person moves forward in the train. In contrast, for

the third sequence, the appearance-based Histogram classifier always has the best combination

weights. One can see that, for the third sequence, we have an evolution of the coefficients that is

in between sequences (a) and (b). In addition, the optimal combination is very different from that

of other sequences. Indeed, for the third sequence, this optimal configuration undoubtedly shows

that an accurate classifier for one given camera position is not accurate for another camera position

anymore. This justifies our strategy towards a camera position-dependent approach.

7.5 Best candidate comparison between sequences and well-known methods

We begin by choosing one setting for each sequence which has been trained during the LOO

procedure. Each sequence contains k persons, and we obtain k different optimal configurations θk.

To select the best one θ∗, we choose the configuration that performs the best on the whole sequence

with the k persons. This gives us the optimal configuration for each sequence. We have determined

that: the optimum trained with person 5 of sequence 1 is the best with an F-Measure score of 0.85,

the optimum trained with person 2 of sequence 2 is the best with an F-Measure score of 0.86, and

the optimum trained on person 7 of sequence 3 is the best with an F-Measure score of 0.80.
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Fig 6 Processing time by frame for each setting generated with the genetic algorithm for sequences (a), (b) and (c) of

the BOSS project database.
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Fig 7 Time-Dependent coefficient for people classifier combination. Curves show the evolution in time of γci(t, α
obj
ci

)

with i ∈ {1 − 6}. Each color corresponds to a people classifier (blue: c1 – detection-based classifier, light orange:

c2 – Appearance-based Histogram classifier, dark orange: c3 – appearance-based GMM classifier, green: c4 – Pixel

Tracking-based People Classifier, light green: c5 – Superpixel Tracking-based People Classifier, dark green: c6 –

Silhouette Tracking-based People Classifier).
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Table 1 Best methods and parameters of the proposed strategy obtained with genetic optimization for the three se-

quences (a), (b) and (c) of the BOSS project database.

Detection-based People Classifier Sequence 1 (a) Sequence 2 (b) Sequence 3 (c)

Filter Gaussian Median Median
Invariant Grey World RGBRank ØForeground detection
Method MultiLayerBGS18 MultiLayerBGS18 MultiLayerBGS18

Filter Blur Gaussian Median
Invariant Grey World Reduced Coords Grey WorldBackground learning
Method FuzzyChoquetIntegral5 LBMixtureofGaussian2 FuzzyChoquetIntegral5

Filter Gaussian Gaussian Ø
Invariant m1m2m3 RGBRank m1m2m3Shadow Removal
Method Chromacity25 LrTexture28 Chromacity25

Appearance-based People Classifier Sequence 1 Sequence 2 Sequence 3

Filter Bilateral Gaussian Bilateral
Color Histograms

Invariant GreyWorld RGB Rank RGB Rank

Filter Median Bilateral Bilateral
Gaussian Mixture Models

Invariant Affine normalization RGB Rank RGB Rank

Tracking-based People Classifier Sequence 1 Sequence 2 Sequence 3

Filter Gaussian Gaussian Blur
Superpixel tracking

Invariant Affine normalization Affine normalization GreyWorld

#Points 584 194 779
EKF Points Position Velocity AccelerationSilhouette tracking
EKF Center Position Position Position

Multi-frame Graph-cut Superpixel clustering Sequence 1 Sequence 2 Sequence 3

#Connected-frames 4 3 3
Graph

k-hop 3 3 3

Finally, we have tested the optimal combination and parameters determined for the first se-

quence on the two others sequences of the BOSS European project (with other types of camera

or angle of view). We have also tested our method on two strategies for people segmentation.37, 38

These methods provide a high number of false positives and do not seem to be not adapted for our

complex transportation dataset including many locks. This is why, we have chosen to illustrate

several settings of the proposed method and some well-known background subtraction methods in

Figure 8. For this comparison, we have tested: i) three basic methods: Fuzzy Gaussian4 (called

LBFuzzyGaussian), Fuzzy Sugeno Integral39 (called FuzzySugenoIntegral) and Fuzzy Choquet In-

tegral3 (called FuzzyChoquetIntegral); ii) one statistical method using multiple Gaussians: Gaus-

sian Mixture Model2 (called LBMixtureofGaussians); iii) one statistical method using color and

texture features: Multi-Layer BGS18 (called MultiLayerBGS); iv) one non-parametric method:

VuMeter;19 v) one neural method: Adaptive SOM5 (called LBAdaptiveSOM). We would like to

clarify that the parameters of these state of the art methods, like those of the proposed method,

have been genetically optimized. To know the list of optimized parameters of each method, the

reader can refer to Table 3 of the SOBRAL AND AL.’s paper.1 One can notice that the optimum

found on a given sequence performs always much better on that sequence than the one found on

the other sequences. This can be explained by the difference of camera angle between sequences:

in sequence 1, the camera is front shooting, in sequence 2, the camera is three-quarter shooting,

and in sequence 3, the camera is side shooting and the lens is particular. This also explains why the

optimum found on the second sequence performs the best on the other two sequences. Again, this

shows that having an optimal configuration per camera is preferable. In addition, we can conclude

that several techniques well-known of background subtraction do not offer good results for this

application, and our complete strategy play its full role. Regarding the computation time, once the

choice of the optimal parameters has been realized, the proposed approach can be implemented in a

smartest way than the generic approach used for parameter tuning. This dedicated implementation

has been tested on a laptop equipped with one CPU thread cadenced at 3.4 Ghz, has an average
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Fig 8 Comparison of F-Measure scores obtained with our proposed genetically optimized method and best method of

foreground detection of the state-of-the-art on three sequences (a), (b) and (c) of the BOSS project database.

computation time of 180ms per image. It is actually longer than the two state of the art approaches

of MIGNIOT AND AL.40 (which does not use any people detector and requires a computation time

of 16ms) or YANG AND AL.41 (which uses only one people detector and requires a computation

time of 90ms), but our approach that combines many detectors, offers better segmentation perfor-

mances. Nevertheless, we think that this computation time could be strongly reduced by using

GPGPU implementation in future works.

8 Conclusion

In this paper, we have proposed a strategy that combines several state-of-the-art methods for people

segmentation with detection-based, appearance-based and tracking-based approaches. The optimal

combination of the people classifiers and the parameters of these used people classifiers being
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Fig 9 People extraction image test results with genetic optimization done on the three sequences (a), (b) and (c) of the

BOSS project database.
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difficult to determine altogether, a genetic algorithm is used to obtain the optimal configuration

and combination of the classifiers. A temporal graph-cut based clustering is used to delineate

peoples’ silhouettes from estimated probabilities of the combined people classifiers. The proposed

approach has been tested on a video database shot in real transportation conditions, for which

we have manually constructed a silhouette ground-truth available at our website.15 We have shown

that: (i) given different camera configurations, it is preferable to optimize the strategy optimally for

each camera, (ii) the obtained optimal strategy always performs better than foreground detection

state-of-the-art methods. Some segmentation errors still remain and future works will consist in

enhancing the appearance model associated to superpixels: a simple color mean was used and

this is not sufficient for some complex situations. The proposed method can be adapted to the

setting of hyper parameters of any method, that is why, in future works, it could be interesting to

combine deep learning approaches. Another perspective will be to integrate intrinsic parameters of

the camera. Moreover, due to the low consumption of time processing, it could be useful to define

a real-time strategy including the appearance-based classifier and the processing time in the fitness

function of the genetic algorithm.
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List of Figures

1 Synopsis of the proposed method of people extraction (where ⊗ corresponds to a

weighted combination and where the people classifier outputs are marked in three

colours : blue=background, red=foreground and green=undetermined).

2 Example of superpixel segmentation and graph: (a) original image, (b) SLIC su-

perpixel segmentation superimposed in red and (c) reduced superpixel graph su-

perimposed Gt (each region is shown with its mean color).

3 Sample video frames of the BOSS project database:36 (a) sequence 1, (b) sequence

2 and (c) sequence 3.

4 Example of crossover and mutation steps of our genetic algorithm.

5 F-Measure scores obtained with People LOO cross validation on the three se-

quences (a), (b) and (c) of the BOSS project database.

6 Processing time by frame for each setting generated with the genetic algorithm for

sequences (a), (b) and (c) of the BOSS project database.

7 Time-Dependent coefficient for people classifier combination. Curves show the

evolution in time of γci(t, α
obj
ci

) with i ∈ {1− 6}. Each color corresponds to a peo-

ple classifier (blue: c1 – detection-based classifier, light orange: c2 – Appearance-

based Histogram classifier, dark orange: c3 – appearance-based GMM classifier,

green: c4 – Pixel Tracking-based People Classifier, light green: c5 – Superpixel

Tracking-based People Classifier, dark green: c6 – Silhouette Tracking-based Peo-

ple Classifier).

8 Comparison of F-Measure scores obtained with our proposed genetically optimized

method and best method of foreground detection of the state-of-the-art on three

sequences (a), (b) and (c) of the BOSS project database.

9 People extraction image test results with genetic optimization done on the three

sequences (a), (b) and (c) of the BOSS project database.
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