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Density and flow reconstruction in urban traffic networks using
heterogeneous data sources

Andres Ladino, Carlos Canudas-de-Wit, Alain Kibangou, Hassen Fourati, and Martin Rodriguez ∗

Abstract— In this paper, we consider the problem of joint
reconstruction of flow and density in a urban traffic network
using heterogeneous sources of information. The traffic net-
work is modeled within the framework of macroscopic traffic
models, where we adopt Lighthill-Whitham-Richards model
(LWR) conservation equation characterized by a piecewise
linear fundamental diagram. The estimation problem considers
two key principles. First, the error minimization between the
measured and reconstructed flows and densities, and second
the equilibrium state of the network which establishes flow
propagation within the network. Both principles are integrated
together with the traffic model constraints established by the
supply/demand paradigm. Finally the problem is casted as a
constrained quadratic optimization with equality constraints in
order to shrink the feasible region of estimated variables. Some
simulation scenarios based on synthetic data for a manhattan
grid network are provided in order to validate the performance
of the proposed algorithm.

I. INTRODUCTION

Accurate state information of the network provides an
empowering tool for decisions about the usage of the traf-
fic infrastructure. Efficient road traffic management policies
strongly depend on the vehicle density information. Road ve-
hicle density (or road occupancy), i.e. number of vehicles per
kilometer, is a critical parameter regarding various aspects:
in road maintenance and traffic monitoring, it is essential to
inform the state of the network and to perform preventive
maintenance; in designing traffic light control policies, its
evolution is essential to construct efficient feedback laws,
see [10]. Despite the development of a large variety of
sensing technologies, measuring vehicle density is still a
difficult task in complex traffic networks. Magnetic loop
detector (MLD) has been the traditional technology but it
is very expensive for both deployment and maintenance.
The emergence of new technologies such as Floating car
data (FCD) has reduced the cost of measurement while
increasing the amount of traffic monitored. However, FCD
measures average velocity in a road sector (not densities),
often suffers from a limited penetration rate, and does not
suffices alone for a correct reconstruction of vehicle density.
The problem of traffic state reconstruction has been widely
investigated in the literature. Works in [19], [20], [21], [2],
[15] are some examples where Luenberger observers and
Kalman filter (KF) like techniques are applied to reconstruct
densities and speeds. Data fusion techniques are explored in
[7] where multiple sources of data are integrated in the three
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detector model. In more recent works [13], [14], authors
proposed to combine both FCD and MLD for flow and
density estimation. The study in [1] considers sources of
connected vehicles and not connected ones for the density
reconstruction. A different approach [4] formulated the prob-
lem for lagrangian and loop data integration into a model
from variational calculus perspective. For a more general
reviews on this problem, see [8], [18]. This paper is devoted
to the problem of joint reconstruction of flow and density
in traffic networks using heterogeneous data sources. To the
best of our knowledge, this problem has been partially treated
in some simple scenarios like highways, but very seldom
in urban traffic networks. The estimation process is carried
out on the basis of the steady-state equilibrium of traffic
network with an explicit model for the road intersections.
Each single road section is modeled by the well known
macroscopic fluid traffic model LWR, while the intersections
are modeled by solving the single junction problem [3] as
a set of optimization problems (maximum outflows) which
turn out to be Linear Programming (LP) if the piece-wise
linear fundamental (triangular) diagram is adopted.

The whole estimation problem is finally described as a
minimization of the quadratic error between the measurement
and their estimates under linear equality constraints coming
from the network model. One key general difficulty in this
problem, which is inherent to the nature of the system, is the
”non-invertibility” of the velocity-to-density map in free-flow
conditions. Namely, several density values are possible when
the network operate in free-flow velocity. Then, in this free-
flow regime, one velocity point maps to a bounded density
set. Although several regularization schemes are possible, the
results still remain very sensitive to noise in this domain, and
the errors can be spread out to the whole set of estimated
variables. To overcome this difficulty, we make use of the
equilibrium state of the system which intends to provide flow
propagation within the network and we adopt strict equality
constraints which allows the density recovery by promoting
solutions in the fundamental diagram.

The paper is organized as follows. We first introduce the
network traffic model adopted in this paper and formulation
the problem under study in Sections II and III respectively. In
Section IV, we presents the optimization algorithms for both
the density and flow reconstructions which are evaluated in
Section V for a given scenario.

II. ROAD TRAFFIC NETWORK MODEL

A urban network is made of roads and junctions between
them. In what follows, we describe the dynamics governing



each road and their splitting or merging in junctions.

A. Macroscopic Traffic model for a single section

The most used instance of a continuous macroscopic traf-
fic model is the Lighthill-Whitham-Richards model (LWR)
[12], [17], which describes the spatio-temporal evolution of
vehicle density ρ(x, t) and flow Φ

(
ρ(x, t)

)
as:

∂

∂t
ρ(x, t) +

∂

∂x
Φ(ρ(x, t)) = 0, (1)

The characteristic curve of Φ(ρ), widely known as fun-
damental diagram, may take multiple forms including a
triangular one [16]. The discretized version of this model
is known as the Cell Transmission Model (CTM) [5], [6],
which is undoubtedly one of the main and most well known
traffic models to date. It is based on a first order Godunov
approximation of LWR [11].

In CTM, the road segment of interest is first partitioned
into a sequence of cells. The propagation of traffic dynamics
in each cell is given by the following set of equations:

ρi(k + 1) = ρi(k) +
T
li

(ϕi−1(k)−ϕi(k))

ϕi−1(k) = min
(
vfreeρi−1(k),ϕmax,w(ρmax−ρi(k))

) (2)

where ρi(k) denotes the current vehicles density in the ith cell
while ϕi(k) stands for the interface flow between the ith and
(i+1)th cells, li being the length of the cell. The followings
are the set of parameters associated to each cell1:
• ρmax, the maximum density, often referred as jam den-

sity,
• ϕmax, the maximum capacity flow,
• vfree, the maximum velocity of vehicles in the cell, said

the free–flow velocity,
• w, the speed of the congestion wave in back propaga-

tion.
These parameters can be easily found in the fundamental
diagram (See Fig. 1).
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Fig. 1: Left - Demand and Supply functions. Right - Density-
flow and density-speed fundamental diagrams where ρcrit

stands for the critical density which represents the switching
point between free-flow and congested regimes.

1We omit the i index in the notation of parameters of each cell to simplify
the reading process.

B. Junction model

Let G denote the set of junctions within the network.
A junction labeled g ∈ G represents a physical connection
between 2 or more roads and they can be found in shapes of
bottlenecks, divergences, or merges. A junction g is repre-
sented by the tuple (Ig,Rg) where Ig = {Ii : i = 1, . . . ,n + m}
represents a set of roads and r[i j] ∈ Rg are the splitting ratios
denoting driving preferences. Each element of G symbolizes
the existing junction between the set of n upstream roads
I−g = {Ii : i = 1, . . . ,n} and the set of m downstream roads
I+

g = {I j : j = n + 1, . . . ,n + m} as depicted in Fig. 2. The set
of junctions G along with the corresponding sets I−g ,I

+
g ,Rg

constitute the called Road Traffic Network (RTN).

a) Diverge junction

I− = {I1}
I+ − {I2, I3}

b) Merge junction

I− = {I1, I2}
I+ = {I3}
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Fig. 2: Simplified case of junction types

Each cell represents a node in a network and it is character-
ized by a set of unique variables describing the macroscopic
behavior: ρi(k), the density, ϕin

i (k), the ingoing flow, and
ϕout

i (k), the outgoing one. We refer to ρ(k), ϕin(k), ϕout(k)
as the vectors collecting all the densities and flows of the
network.

Definition 1 (Single Junction Problem): Consider a junc-
tion g with n incoming roads I−g and m outgoing ones I+

g
under the vehicle conservation law, i.e.

n∑
i=1

ϕout
i (ρi(k)) =

n+m∑
j=n+1

ϕin
j (ρ j(k)). (3)

The single junction problem consists in determining values
of inflow and outflow consistent with the solutions of the
LWR model (or its discretized counterpart (2)).
Since solutions of ϕin, ϕout to the traffic distribution problem
in (3) are non unique, additional rules to incorporate drivers’
behavior can be added to define a particular solution. Typical
rules for Manhattan-like networks2 are:
A) Drivers follow fixed routes. Hence there exists traffic

routing coefficients ri j ∈ (0,1], representing the splitting
ratio from road Ii to road I j. The resulting matrix,
called Splitting Ratio matrix, Rg = [r]i j is row stochastic∑n+m

j=n+1 ri j = 1. This matrix is assumed to be known (at
least in average).

2For the sake of simplicity we have limited our approach to Manhattan-
like networks where there are no merging junctions in which n > m.
However, it is also possible to generalize for any other type of networks
including also merging junctions by adding priority driving rules, see [9],[3]



B) Drivers tend to maximize the network throughput. So
drivers behavior is such that incoming flows to the
junctions ϕout are maximized.

A solver for the junction problem: Consider the rules A)
and B) together with the triangular fundamental diagram of
Fig. 1 having the density-flow map,

Φ(ρi) =

 vfreeρi 0 ≤ ρi ≤ ρ
crit

w(ρmax−ρi) ρcrit < ρi ≤ ρ
max , (4)

and, its corresponding speed-density map,

Ψ(ρi) =


vfree 0 ≤ ρi ≤ ρ

crit

w
(
ρmax

ρi
−1

)
ρcrit < ρi ≤ ρ

max . (5)

Note that the admissible solutions are those satisfying the
Riemann problem [9]. The Riemann’s admissible solutions
can be rewritten using the Demand-Supply formalism, where
the demands D(ρi) and supplies S (ρi) functions are given as
(see also Fig 1):

D(ρi) = min
(
vfreeρi,ϕ

max), (6)
S (ρi) = min

(
ϕmax,w(ρmax−ρi)

)
. (7)

In a simple junction of one inflow and one outflow, the
interface flow corresponds to

ϕout
i = min

(
D(ρi),S (ρi+1)

)
, (8)

and the solutions ϕout
i can be expressed as upper bounds of

the inequalities
0 ≤ ϕout

i ≤ D(ρi)
0 ≤ ϕout

i ≤ S (ρi+1).
(9)

Maximizing the throughput as suggested by rule B), implies
maximizing

max
ϕout

n∑
i=1

ϕout
i (10)

and introducing rule A), implies that inflows and outflows
are linearly related by the relation ϕin

j =
∑

i∈I− ri jϕ
out
i , trans-

forming the inflows in

ϕin = RTϕout +ϕext. (11)

where ϕext = Bλe is a vector containing exogenous external
inflows to the network in the corresponding positions of ϕin

and zeros elsewhere. B is a selection matrix for the incoming
boundary flows of the network.

In problem (10) the flow ϕout should respect the rela-
tionships (9) for each one of the entering roads to the
intersection. Let us consider first an organization of the set
of constraints for a single junction g as

Ďg :
{
ϕout

i ≤ vfreeρi ∀ i ∈ I−
}
,

Dmax
g :

{
ϕout

i ≤ ϕ
max ∀ i ∈ I−

}
,

(12)

Šg :
{ n∑

i=1

ri jϕ
out
j ≤ w(ρmax−ρ j) ∀ j ∈ I+

}
,

Smax
g :

{ n∑
j=1

ri jϕ
out
j ≤ ϕ

max ∀ j ∈ I+
}
.

(13)

The set of constraints Dg = Ďg∩D
max
g and Sg = Šg∩S

max
g ,

complete the formulation required for the junction problem.
With Pϕg :Dg∩Sg the solution to the junction problem can
then be finally stated as:

max
ϕout

n∑
i=1

ϕout
i

s.t. ϕout ∈ P
ϕ
g .

(14)

Solutions of the optimization problem (14) typically reach
the upper boundaries of the constraints (See Fig. 1), and
they provide a single unique solution for cases where m > n.

C. Full traffic network model

The full network of roads can be described by a weighted
directed graph H := (I,R). The graph is represented by the
union of all tuples

(
I :=

⋃
g∈GIg,R := ∪g∈GRg

)
for each

intersection resulting in nH roads3.
The complete traffic network model combines, dynamic

equations of the density evolution of each road (2), in its
vector form

ρ(k + 1) = ρ(k) + T L−1(ϕin(k)−ϕout(k)), (15)

or equivalently, using rule A),

ρ(k + 1) = ρ(k) + T L−1
(
(RT − I)ϕout(k) +ϕext(k)

)
, (16)

where T the sampling time and L = diag{li}, with the junction
models compactly represented by a graph resulting form the
union of multiple single junction problems.

Definition 2 (Network Junction Problem): The extension
of the single junction problem to the network case is
represented as the union of all local problems respecting
simultaneously all the constraints imposed by the traffic
model at each junction.

max
ϕout

1
Tϕout s.t. ϕout ∈ Pϕ. (17)

The network junction problem is the solution to the opti-
mization problem (17). The union of all problems is obtained
through the maximization of the total throughput

∑nH
i=1ϕ

out
i =

1
Tϕout and the constraints Pϕ :=

⋃
g∈GP

ϕ
g .

III. DENSITY AND FLOW RECONSTRUCTION

In this section we present the joint density and flow
reconstruction problem. We first indicate the main data
characteristics and their associated observation model.

A. Observations model and its mathematical properties

Let IFCD be the set of roads where FCD are collected.
FCD measurements can be considered to be available ev-
erywhere in the network, i.e. |IFCD| = nH . They describe
the average velocity at each road. On the other hand, let
IMLD be the set where MLD data is collected. They measure
outflows at the road ends where sensors are installed. Loop

3We consider, all the roads in the graph H to be re-labelled with a single
index i so that each road keeps a unique identifier.



detectors are not available at all roads |IMLD| = NM < nH .
These measurements have the following observation models,

v̄i(k) = Ψ(ρi,k) +ηv(ρi,k), i ∈ IFCD (18)
ϕ̄out

l (k) = Φ(ρl,k) +ηϕout (ρl,k), l ∈ IMLD (19)

where the terms ηϕout ,ηv represent additive noise produced by
factors such as aggregation time, penetration rate, measure-
ment noise, etc, which naturally may affect the measurement
quality. The velocity measurement (18) will be used as a
basis for density reconstruction as velocity are sensed in all
the network road. However, its inverse map (noise apart)

ρi = Ψ−1(v̄i +ηv) (20)

is not invertible in the free-flow part (See Fig. 1). From other
hand the inverse map of the flow,

ρl = Φ−1(ϕ̄out
l +ηϕout ) (21)

has the problem that is not uniquely defined and that flow
measures are spatially sparse. The non-unicity of (21) can be
tackled by using the velocity measures allowing to discrimi-
nate congested from free-flow regimes, but can only be used
in some roads. Therefore, velocity measurements and flow
measurements will be used in different way to facilitate the
signal reconstructions. The density/flow reconstruction algo-
rithm is designed in the basis of the following assumptions:

Assumption 1 (Boundary flows): All inflows and outflows
at the network boundaries are measurable.

Assumption 2 (Measured FCD speeds): Speeds captured
by FCD are measured everywhere in the network.

Assumption 3 (Density pseudo-observation): Consider
the fundamental diagram. Consider a measurement of speed
measured in the congested regime, then there exists a
density observation which can be uniquely recovered from
the map (5), ∀ρi ∈ [ρcrit,ρmax],∀v̄i ∈ [0,vfree)

ρ̄i = Ψ−1(v̄i) =
ρmax

1 + v̄i/w
, (22)

Assumption 4 (Network Equilibrium): The reconstruction
is done in a fast enough time scale so that the network
can be considered to be at the equilibrium. At the network
equilibrium, the flows are then related by the steady-state
equation of (16),

(RT − I)ϕout + Bλe = 0. (23)
Remark: Under full rank conditions for the matrix RT − I a
unique solution ϕout = −(RT − I)−1Bλe can be obtained for
the vector of outflows in the traffic network.

IV. RECONSTRUCTION PROBLEM

We consider the reconstruction problem expressed as the
solution to an optimization problem at a fixed time instant

min
ϕ̂out,ρ̂

Jϕout + Jρ s.tMϕ,ρ (24)

where Mϕ,ρ denotes a RTN model. The terms Jϕout and
Jρ represent penalty functions for the error between the
estimated values ϕ̂out, ρ̂ and the measurements from the
observation model in the systems.

The integration of these penalty functions allow the system
to consider the reality captured by the observation model
(20),(21). In particular, Jϕ integrates into the problem direct
information contained in the MLD measurements. This cost
function minimizes the error between available measure-
ments ¯ϕout = {ϕ̄out

l , l ∈ IMLD} through the quadratic norm∑
l∈IMLD (ϕ̂out

l − ϕ̄
out
l )2 .

On the other hand, assumption (3) allows a good recovery
of information in the congested zones. According to Fig. 1
density values on congested zones are contained in the speed
measurements. Let us consider

S v̄i =

1, v̄i < vfree

0,elsewhere

For all the network the selection matrix S v̄ = diag{S v̄i }

is a transformation that contains on its diagonal ones for
cells in congested zones and zeros everywhere else. The
penalty goal for the density case is achieved by considering∑

v̄ j<vfree
(
ρ̂ j− ρ̄ j)

2, which has as an objective the minimiza-
tion of density error in congested measured links. Finally the
two terms can be exchanged transforming the problem into

min
ϕ̂out,ρ̂

NM∑
i=1

(ϕ̂out
l − ϕ̄

out
l )2 +

NH∑
j=1

(
S v̄ j (ρ̂ j− ρ̄ j)

)2 s.tMϕ̂,ρ

(25)
a) Difficulties and relaxation of the estimation problem:

Some difficulties lie in the formulation of the problem (25).
Non linearities of Mϕ,ρ may appear in the fundamental
diagram and no explicit solution is known to the problem.
When introducing non linear constraints to the estimation
problem, the solutions are regularly hard to approximate
and most algorithms extract local minima. In addition, the
computational cost and the complexity to solve the problem
increases when the size of the network augments.

We introduce then a relaxed version of this problem which
considers two main aspects. First, given the sparse nature of
the flow measurements, and considering assumption 4 the
steady state of the system constitutes an additional source
of information to the flow reconstruction problem. This can
be can be integrated into the cost function through the norm∥∥∥(I−RT )ϕout + Bλe

∥∥∥2.
Even though this term adds information to (25), it does

not tackle the nonlinearity. In order to relax the non linear
constraints we make use of piecewise linear fundamental
diagrams (4), (5). The set of constraints is then transformed
into linear equalities. They shape boundaries of the space
of solutions established by the network junction problem.
This aims to push solutions of the estimation within the
fundamental diagram. Given assumption 2 the information
about speeds provides a way to classify congested from free-
flow cell constraints as:

D̄g :
{
ϕout

i = vfreeρi ∀ i ∈ I−∧ v̄i = vfree
}
,

S̄g :
{ n∑

i=1

ri jϕ
out
j = w(ρmax−ρ j) ∀ j ∈ I+∧ v̄ j < vfree

}
,

(26)
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Fig. 3: Manhattan network topology under study

Such constraints can be expressed in terms of the selection
matrix S v̄

A(v̄)ϕout = B(v̄)ρ+C(v̄), (27)

where

A(v̄) =

[
S v̄− I
RT S v̄

]
, B(v̄) =

[
vfree(S v̄− I)
−wS v̄

]
,

C(v̄) =

[
0

wρmax
1S v̄

]
.

(28)

The resulting optimization problem is quadratic with linear
equalities which provide good properties for the solution.
The reconstruction problem can be formulated as follows.

Problem 1 (Joint density / flow reconstruction): Given a
set of measurements of flow ϕ̄out ∈ IMLD and a set of speed
measurements v̄ ∈ I the inverse problem defined to recover
ρ̂, ˆϕout is given by the solution of the following optimization
problem:

min
ˆϕout,ρ̂

∥∥∥CMϕ̂
out− ϕ̄out

∥∥∥2
γϕ

+
∥∥∥S v̄

(
ρ̂−Ψ−1(v̄)

)∥∥∥2
γρ

+∥∥∥(RT − I)ϕ̂out + Bλe
∥∥∥2
γ

s.t. A(v̄)ϕ̂out = B(v̄)ρ̂+C(v̄)
ρ̂ ∈ Pρ.

(29)

In (29) Pρ :=
⋃

g∈GP
ρ
g define the boundaries for ρ. In this

case this particular boundaries can be determined from the
speed measurements v̄. CM selection matrix for the outgoing
flows wherever they are available. The terms γϕ,γρ,γ are
weighting factors.

V. SIMULATION SCENARIOS & RESULTS

A. Scenario description

We have built a manhattan topology network as depicted
in Fig. 3. In this case, each one of the junctions is specified
by 2 ingoing roads and 2 outgoing roads. The system is
excited externally with maximum demands ϕmax for external
inflows and outflows selected from a uniform distribution in
[0,ϕmax], meaning the boundary conditions of the network
are known. The selection of the splitting ratios is fixed so that
70% of the flow continues in a straight direction while the
remaining turns. We consider all cells are uniform li = 500m,
vfree = 50Km/h, ϕmax = 2000veh/h. The corresponding value

Fig. 4: Comparison of ground truth and estimated values for
density (top) and flow (bottom) at network equilibrium

of w is obtained from (4). For the purpose of this simulation
γϕ = γρ = γ = 1.

B. Performance measurement

In order to assess performance of the method, we consider
the Absolute Error (AE) as a reference:

APEρ(k) =
1
N

N∑
i=1

|ρi(k)− ρ̂i(k)| (30a)

APEϕout (k) =
1
N

N∑
i=1

|ϕout
i (k)− ϕ̂out

i (k)| (30b)

We illustrate the performance and limitations of the dis-
cussed estimation method. Initially, a simulation of the
Manhattan grid using the CTM and the network junction
problem solver was run until it reached equilibrium. These
results were taken as ground truth. Using this equilibrium
state, the density and flow reconstruction method was applied
by using measurements of the inflows at the boundaries and
speed information everywhere. Results are shown in Figure
4.

Even though the algorithm has been proposed for a static
case, to illustrate the performance of the algorithm we
consider a dynamical scenario. For this, a second experiment
was carried out. For this instance, the traffic network was
given an random initial condition of flow and density, and
the inflows at the boundaries were initialized with a demand
equal to random but fixed values in the interval [0,ϕmax].
Each of the iterations of the simulation process represents 15
seconds. At every step, the estimation method was applied
with the assumption that the network had reached equilib-
rium. Results are presented in Fig. 5.As it can be observed,
the estimation algorithm is able to capture the free-flow
and congested locations of the network, with values close
to ground truth. For the case of vehicle density, the mean
absolute error is 0.025 veh/km with a maximum error of
0.037 veh/km, whereas vehicle flow presented a mean error
of 0.45 veh/h and a maximum error of 1.5 veh/h. It should
also be noted that for traffic flow the proposed method tends
to approximates in a good way to the real values as desired.

VI. CONCLUSION

This research has addressed the problem of joint den-
sity/flow reconstruction over urban traffic networks based
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on the fusion of multiple sources of information. The re-
covery process was achieved by introducing an estimation
problem in which the cost function considers the integration
of measurements and the network traffic model. We have
introduced a relaxation to the original reconstruction problem
and we have converted it into a quadratic problem under
linear constraints which presents nice properties to be solved.
The solutions of the problem show a good recovery in a static
as well as in a dynamic case.

Future works on this aspect involves the validation of
the current technique within a micro simulated scenario, the
analysis of robustness of the method with respect to pene-
tration rate, in particular the noise characterization related to
the observability model of speeds. Other future works include
the study the optimal sensor placement problem to improve
the efficiency of the method and a study of the scalability of
this model.
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