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Abstract: We discuss linear system solvers invoking a messenger-field and compare them with (precondi-
tioned) conjugate gradients approaches. We show that the messenger-field techniques correspond to fixed
point iterations of an appropriately preconditioned initial system of linear equations. We then argue that
a conjugate gradient solver applied to the same preconditioned system, or equivalently a preconditioned
conjugate gradient solver using the same preconditioner and applied to the original system, will in general
ensure at least a comparable and typically better performance in terms of the number of iterations to con-
vergence and time-to-solution. We illustrate our conclusions on two common examples drawn from the
Cosmic Microwave Background data analysis: Wiener filtering and map-making. In addition, and contrary
to the standard lore in the CMB field, we show that the performance of the preconditioned conjugate gradi-
ent solver can depend importantly on the starting vector. This observation seems of particular importance
in the cases of map-making of high signal-to-noise sky maps and therefore should be of relevance for the
next generation of CMB experiments.
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Résolution d’équations linéaires avec un champ messager et des techniques
de gradients conjugués - une application à l’analyse de données en CMB

Résumé : Nous discutons la résolution de systèmes linéaires utilisant un champ messager et comparons cette approche
avec la méthode du gradient conjugué (préconditionné). Nous montrons que les techniques du champ messager corre-
spondent à des itérations de point fixe d’un système d’équations linéaires préconditionné de manière approprié. Nous
argumentons ensuite qu’un solveur de gradient conjugué appliqué au même système préconditionné, ou de manière
équivalente un solveur de gradient conjugué préconditionné utilisant le même préconditionneur et appliqué au système
original, assurera en général au moins une performance comparable et typiquement meilleure en termes de nombre
d’itérations pour converger et de délai de résolution.

Mots-clés : Méthodes numériques, résolution de systèmes linéaires, analyse du fond difus cosmique
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1 Introduction.
Studies of the Cosmic Microwave Background (CMB) anisotropies have been driving the progress in our understand-
ing of the Universe for nearly quarter of the century. The current forefront of the CMB research is the characterization
of polarization properties of the CMB anisotropies. The next generation of the CMB observatories has been, and
is, designed to ensure that the scientific potential of this new probe is fully exploited. This will call for advanced,
high performance data analysis techniques applicable to enormous data sets which will be collected by these new
observatories.

CMB data analysis commonly involves solutions of large, structured linear systems of equations. Two typical
and important examples of such systems are map-making and Wiener-Filter systems of equations (see, e.g., [10, 1],
respectively, for early pioneering work and [14, 18] for examples of more recent applications). These systems are
solved either as a stand-alone task or as part of more involved process, such as a power spectrum estimation, which
commonly require multiple solutions of such systems. In this work we study, from theoretical and practical perspective,
two specific algorithms for solving such systems of equations: a preconditioned conjugate gradient (PCG) approach
and a messenger-field (MF) technique. Both these approaches have been applied in the context of the applications
considered here. Of the two, the PCG approach has been more popular and more broadly used to date. Nevertheless,
it has been argued in a number of recent papers (e.g., [4, 16, 9]) that the messenger-field approach can be highly
efficient for both these applications and can deliver performance in some cases exceeding that of some specific PCG
approaches, while at the same time be more generally feasible, and straightforward to implement and apply [16, 9, 8].
We note that this is the combination of all these features, which makes the MF approach potentially attractive. Indeed,
performance of the PCG technique is hinged on a choice of a preconditioner matrix, M, and while very efficient
preconditioners can be constructed, in principle outperforming other methods, the construction typically gets quickly
difficult and potentially prohibitive from the computational point of view.

To be specific let us consider a linear system of equations,

A x = b (1)

where the system matrix A is symmetric and positive definite (SPD). Instead of solving this equation directly, in the
PCG approach one solves the preconditioned system,

M−1 A x = M−1 b, (2)

applying the conjugate gradient (CG) technique [5]. If the preconditioner is chosen in the way that M−1 A is better
conditioned than the original system matrix A, then the solution can be derived in a fewer and often significantly fewer
iterations. Hereafter, we define the condition number κ as

κ(A) ≡ ‖A‖2 · ‖A−1‖2 (3)

where ‖A‖2 is the spectral norm1 of the matrix A. For a good preconditioner κ(A) � κ(M−1 A) ≥ 1. A preconditioner
is then better, when its inverse succeeds in capturing more essential features of the inverse system matrix A−1, which
can not be computed directly by assumption. Consequently, a better preconditioner will typically be computationally
more demanding, requiring potentially some precomputation in order to be constructed, as well as more floating point
operations on each iteration step whenever its inverse has to be applied to a vector (see e.g., [6, 21] for a relevant
example from the CMB map-making). Thus the number of iterations needed to achieve some desired precision of the
solution may not always be a sufficient performance comparison metric.

While these observations make the method comparison cumbersome and potentially limited to very specific cases
and concrete implementations, the question which class of methods is more promising in ensuring performance suf-
ficient for forthcoming data sets, e.g., in the context of the CMB field, is of actual practical importance. This is the
question we tackle in this work.

Our methodology is as follows. We first show that any MF method applied to a linear system involves precon-
ditioning of the original set of equations with a specific preconditioner. Then we argue on theoretical grounds, and

1The spectral norm is equal to the largest singular value of the matrix. If the matrix is symmetric, the norm is equal to the largest (in magnitude)
eigenvalue and the condition number to the ratio of the largest and the smallest eigenvalues.
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later demonstrate on a few study cases that the corresponding PCG algorithm is at least as efficient as, and often much
better than, the MF technique, while featuring similar computational complexity. Combining the MF method with a
so-called cooling technique can further improve its performance at least in some cases. Nonetheless, this does not seem
to affect the overall assessment at least for the specific cooling prescriptions studied in this paper and motivated by
earlier work. Consequently, with an exception of some particular cases, where the MF technique may be found more
suitable, in general the PCG approach is more promising and should be the method of choice. Though we demonstrate
our conclusions using specific examples from applications to the Wiener filter and map-making procedures, we expect
them to hold more generally.

This paper is organized as follows. In Sect. 2 we provide a general discussion of the messenger-field technique
and contrast it with the PCG solvers. In Sec. 3 we discuss some general numerical aspects of their implementations
and performance, which we later illustrate with help of numerical experiments applied to simulated CMB data and
involving applications of both these techniques to polarized Wiener filtering, Sect. 4, and map-making, Sect. 5. We
conclude in Sect. 6. Some more technical considerations are deferred to the Appendices.

2 Messenger-field iterative solver.
In this Section we first introduce the messenger-field solvers in a consistent and general algebraic framework and
outline its relation with the PCG method. We specialize this general discussion in the follow-up Sections.

2.1 Basic approach.
Let us consider a system of linear equations as in Eq. (1). In general, the messenger-field approach involves a split of
the system matrix A, such as

A ≡ C − D = C
(
I − C−1 D

)
, (4)

where C is invertible by construction and its inverse is easy to compute. I is an identity matrix. After multiplying
Eq. (1) by C−1 from the left (which corresponds to preconditioning the original system), we get the system(

I − C−1 D
)

x = C−1 b. (5)

The MF method introduces an extra data object t, the messenger field, which can be defined as

t ≡ D x + b, (6)

so Eq. (5) can be represented as

t = D x + b, (7)
x = C−1 t. (8)

This can be used to define an iterative scheme

t(i+1) = D x(i) + b, (9)
x(i+1) = C−1 t(i+1). (10)

We note that the messenger field t introduced in this way is a dummy object. Therefore, barring some implementational
advantages, the equations above are equivalent to a reduced system from which the messenger field has been explicitly
eliminated and which can be directly derived from Eq. (5). This reads,

x = C−1 D x + C−1 b, (11)

and the corresponding iterative scheme is given by

x(i+1) = C−1 D x(i) + C−1 b. (12)

RR n° 9157
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This is a fixed-point iteration scheme (e.g., [17]) and its derivation is analogous to the derivation of the classical it-
eration methods that also rely on the splitting of the system matrix as in Eq.(4). The Jacobi iterative method takes C
as the diagonal of A, while in the Gauss–Seidel method C is equal to the lower triangular part (including the diag-
onal) of A. Therefore, the convergence results of the classical iteration methods (see, e.g., [17, Sections 4.1–4.2],
or [5, Section 10.1]) can be applied also for the messenger field. In particular, the iterations in Eq. (12) will always
(asymptotically) converge to the true answer provided that the absolute value of the eigenvalues of C−1 D is bound to
be smaller than unity. Indeed, it can be seen from Eqs. (11) and (12) that the error of the ith approximation satisfies

ε(i) ≡ x − x(i) = C−1 D
(
x − x(i−1)

)
≡ C−1 D ε(i−1) =

[
C−1 D

]i
ε(0) (13)

This is the case of the splits used in the Wiener Filter and map-making examples considered in this paper as shown in
Appendix B. The convergence of the method will depend on the specific values of the eigenvalues and the eigenmode
with the largest eigenvalue, i.e., closest to 1, will be the slowest to converge.

We emphasize that whether we choose to implement the single equation version as in Eq. (12) or the double
equation one as in Eqs. (9)–(10), the result will be the same to within numerical precision as both these cases we solve
the same linear system, Eq. (5), performing equivalent iterations. Consequently, the messenger-field approach is a
fixed point iteration technique applied to a preconditioned system in Eq. (5). However, this equation can be solved
using other means, for instance, a conjugate gradient (CG) approach, which is typically more efficient than the fixed
point iterations (see, e.g., [11, Section 5.5] as well as Sect. 3.1). Moreover, solving Eq. (5) with help of the CG
technique is equivalent to solving the initial set of equations, Eq. (1), using a PCG technique with the preconditioner
set to M ≡ C. In cases when the fixed point method is expected to converge very efficiently, i.e., when A ' C, also
the PCG solver will perform well since C−1 A ' I, a hallmark of a good preconditioner. Similarly, the MF solver
based on the split involving a good preconditioner will likely be efficient. From the computational point of view,
both techniques require multiple applications of the inverse preconditioner M−1 to a vector, thus resulting in similar
numerical cost.

The main message of this Section is that the messenger-field method involves fixed point iterations applied to a
preconditioned system of linear equations. Its performance is determined by an adopted split of the system matrix,
which also defines the preconditioner applied to precondition the initial system. This preconditioner can be used
alternately in a PCG solver employed to solve directly the initial system, what is expected to ensure performance as
good as, or better than, that of the MF technique as far as the number of iterations but also time to convergence are
concerned.

2.2 Cooling technique.
The convergence of the fixed-point method, Eq. (13), depends on the components of the initial error x − x(0) in the
invariant subspaces associated with the eigenvalues of C−1 D, especially with the dominant (largest) ones. The cooling
technique proposed in [4] aims at providing iteratively a good initial guess x(0). In the general setting considered
above, the cooling technique replaces the original problem, Eq. (1), represented in a split form as in Eq. (4) by

A(λ)x(λ) = b(λ), A(λ) = C(λ) − D(λ) (14)

where the cooling parameter λ is defined so that: (a) for λ = 1, the above problem is equivalent to the original problem
in Eqs. (1) and (4); (b) for λ→ ∞, D(λ)→ 0 and (C(λ))−1D(λ)→ 0. This means that for large values of λ an accurate
solution of the modified system, Eq. (14), i.e, x(λ), can be recovered within few (fixed-point) iterations. Naturally,
x(λ) can be far from the desired solution x(1), however, it is claimed that x(λ) is a good starting vector for fixed-point
iterations corresponding to the modified problem with a smaller value λ. In the cooling method λ is progressively
adapted in the course of the iterations with its value gradually decreasing from an initial, and rather large value, down
to 1. While no general prescription is given in the literature, it has been claimed [4, 9] that at least in some applications
significant gains can be derived as compared to the fixed point iterations, if the rate of change of λ is appropriately
tuned. In most of the studied applications the value of λ is kept constant for some number of iterations and after that
it is discretely changed to a lower value. The relative comparison of the performance of the cooling method with that
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of the PCG solver of the initial equation, i.e., with λ = 1, is unclear and the freedom in defining the rate at which λ is
changed makes the mathematical analysis of this method and in particular its potential advantages over others difficult.
Consequently, in this work we resort to numerical experiments to investigate pros and cons of this technique in the
specific cases of interest, Sects. 4 and 5.

We note however that a PCG solver could be used instead of the fixed point iterations within the cooling scheme.
Though, the fixed point iterations would still be preferable whenever the value of λ is adjusted after each or every few
iterations, e.g., as in the cooling scheme proposed in [4, Sect. 2.2]. However, in the cases when the value of λ is kept
unchanged over a number of iterations, as in the numerical experiments presented in [9] and in [16], replacing the
fixed-point iterations by a PCG method is expected to result in some performance gain accumulated from all the gains
obtained from the solves for a fixed value of λ.

3 Numerical considerations.

3.1 Convergence.
Given a current approximation, x(i), to the solution of Eq. (1), the appropriate measure of the error x − x(i), which has
in most of the applications a physical meaning, is given by the A-norm (often called energy norm) of the error,

‖x − x(i)‖A ≡
(
(x − x(i))T A(x − x(i))

)1/2
. (15)

We note that the energy norm of the error requires the exact solution of Eq. (1) and it is therefore not computable.
In practice, it is often replaced by other choices such as the relative (euclidean) norm of the residual, which however
may give misleading information about the convergence in cases when matrix A is ill-conditioned. We discuss some
alternative options later on.

We now show that the PCG method is superior to the fixed-point method in terms of minimizing the energy norm
of the error. We first recall key properties of (P)CG approach; see, e.g., [17, Lemma 6.28].

Let x(CG,i) be the ith approximation given by the CG method for solving Ax = b with the initial guess x(0). Then,

x − x(CG,i) = ϕ̂i(A)(x − x(0)), (16)

where ϕ̂i is a polynomial with deg(ϕ̂i) ≤ i, ϕ̂i(0) = 1, what we write succinctly as ϕ̂i ∈ P
i
0, and,

‖ϕ̂i(A)(x − x(0))‖A = min
ψ̂i∈P

i
0

‖ψ̂i(A)(x − x(0))‖A. (17)

Similarly, when x(PCG,i) is the ith approximation given by the PCG method for solving the system Ax = b precondi-
tioned by C, using the initial guess x(0), we have

x − x(PCG,i) = ϕi(C−1A)(x − x(0)), (18)

with ϕi ∈ P
i
0 and

‖ϕi(C−1A)(x − x(0))‖A = min
ψi∈P

i
0

‖ψi(C−1A)(x − x(0))‖A. (19)

Let us now consider the fixed-point method as defined in Eq. (12) assuming the same initial guess, x(0). From
Eqs. (19) and (13),

‖x − x(PCG,i)‖A = ‖ϕi(C−1A)(x − x(0))‖A (20)

≤ ‖(C−1D)i(x − x(0))‖A = ‖x − x(i)‖A, (21)

as (C−1D)i = (I−C−1A)i and ψi(x) ≡ (1− x)i ∈ Pi
0. This means that, in terms of the energy norm of the error, the PCG

method converges at least as fast as the fixed-point method. In practice, one can however expect significantly faster
convergence, as suggested by Eq. (19).

RR n° 9157



Solving linear equations with messenger-field and conjugate gradient techniques 7

Finally, we recall that the (preconditioned) conjugate gradient method yields a monotonic decrease of the energy
norm of the error, i.e.,

‖x − x(PCG,i+1)‖A ≤ ‖x − x(PCG,i)‖A, i = 0, 1, . . . . (22)

This does not hold, in general, for the approximations given by the fixed-point iterations. Even for splitting of A
such that the largest eigenvalue of C−1D is strictly smaller than 1, and therefore x(i) → x, i → ∞, one can observe
(especially in initial iterations) that

‖x − x(i+1)‖A > ‖x − x(i)‖A. (23)

3.2 Computational complexity.
Regarding the computational and memory cost of each iteration, the fixed point scheme, Eq. (12), is the simplest and
the cheapest method as it requires to evaluate C−1Dx(i) only once per iteration and to store only two vectors, x(i), C−1b.
The PCG method requires more memory needed to store up to 4 or 5 vectors, depending on the implementation and
each iteration requires additionally two inner products plus some scalar multiplications and vector updates. However,
typically and in particular in the applications considered in this paper, the most time consuming operations are the mul-
tiplications by matrix A and by C−1, rendering these additional costs mostly irrelevant. As an example in Appendix A
we describe an implementation of the PCG algorithm in the context of the Wiener Filter that allows to perform a single
PCG iteration with the computational cost comparable to the cost of one fixed-point iteration, Eq. (12).

We can further capitalize on using the PCG method whenever the relative residual or an error measure correspond-
ing to the A-norm of the error need to be frequently evaluated; in the extreme case, at each iteration. The residual r(i)

is updated on each PCG iteration and it is therefore at our disposal; this is not the case of the fixed-point iterations,
Eq. (12). Similarly, there is a numerically stable way to evaluate the problem-related error measure corresponding to
the A-norm of the error, see also Appendix A. This evaluation involves only scalar quantities that are already at our
disposal during the PCG iterations.

We conclude that in terms of the time per iterations, both approaches, the MF and the corresponding PCG, are
comparable, and therefore the number of iterations to convergence is a sufficient comparison metric.

4 Application to Wiener Filtering.

4.1 The problem.
Let us consider a sky map m composed of a sky signal s and some noise n due to our instrument, so

m = s + n. (24)

We assume that the sky signal is Gaussian over an ensemble of sky realizations with zero mean and known covariance
given by S. The noise is also Gaussian with zero mean and the covariance given by N over the ensemble of noise
realizations. We further assume that the noise is uncorrelated and therefore its covariance N is block-diagonal. The
minimum variance estimate of the sky signal, i.e., its Wiener Filter, is then given by e.g., [1],

sWF =
(
S−1 + N−1

)−1
N−1 m. (25)

Computing the Wiener Filter of the measured map, m, does require an inversion of the system matrix, S−1 + N−1.
As modern CMB maps may contain up to many millions of pixels this task can indeed be daunting. This is because
in general there is no obvious domain in which both the signal and noise covariances are simultaneously diagonal.
Indeed, the signal covariance S is diagonal in harmonic domain, where the pixel-domain map m is described by a
vector of coefficients m`m obtained as a result of a spherical harmonic transform applied to the map, while the noise
covariance is diagonal in the pixel domain and only diagonal in the harmonic one, if the noise is homogeneous what
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is unlikely to be realized in practice. Consequently, a standard way to tackle this problem is to rewrite Eq. (25) as a
linear set of equations, (

S−1 + N−1
)

sWF = N−1 m, (26)

and solve it using some iterative method (e.g., [19]). Both CG and PCG techniques have been applied in this context
and while the former was found to show a rather unsatisfactory convergence rate, it was demonstrated that it could
be improved significantly albeit with help of a rather advanced and involved from the implementation point of view
preconditioner borrowed from multi-grid techniques [19].

The MF method, originally proposed in this context by [4], involves splitting the noise covariance into homoge-
neous and inhomogeneous parts by representing N ≡ N̄ + T, where T = τI, is a homogeneous part, τ = min(diag(N)).
This leads to a split of the system matrix S−1 + N−1 owing to the fact that,

N−1 = T−1 − T−1
(
N̄−1 + T−1

)−1
T−1; (27)

see, e.g., [7, p. 258]. Taking then,

C ≡ S−1 + T−1, (28)
D ≡ T−1 (N̄−1 + T−1)−1 T−1, (29)

and on introducing the messenger field t, Eq. (6), we can rewrite Eq. (25) in its messenger-field representation, i.e.,(
N̄−1 + T−1

)
t(i+1) = T−1 s(i)

WF + N̄−1 m,(
S−1 + T−1

)
s(i+1)

WF = T−1t(i+1),
(30)

with the former equation solved in the pixel and the latter in the harmonic domain and with the spherical harmonic
transforms used to switch between these domains. These equations are equivalent to Eqs. (3) and (4) of [4]. Their
numerical experiments showed that the solver tended to converge quickly to the solution given desired precision and
therefore the method was proposed as an efficient way to resolve the slow convergence problem of the CG method
without a need for potentially complex preconditioners needed for an efficient PCG solver where both these methods
should be applied directly to the initial problem, Eq. (26).

As argued earlier, Eqs. (30) are equivalent to a fixed-point iteration solver applied to the equation, Eq. (5),(
I −

(
S−1 + T−1

)−1
T−1

(
N̄−1 + T−1

)−1
T−1

)
sWF =

=
(
S−1 + T−1

)−1
T−1

(
N̄−1 + T−1

)−1
N̄−1 m, (31)

what can be rewritten in an explicitly iterative form as,(
S−1 + T−1

)
s(i+1)

WF = T−1
(
N̄−1 + T−1

)−1
T−1 s(i)

WF + T−1
(
N̄−1 + T−1

)−1
N̄−1 m. (32)

In the next Section, we compare the performance of different solvers applied to Eqs. (26), (31), and (32). From the
general consideration of the previous section our expectation is that the CG solver applied to Eq. (31), and equivalent
to the PCG solution of Eq. (26) with M ≡ C = S−1 + T−1 should perform better than the messenger-field solver,
Eq. (32).

4.2 Simulated cases.
To demonstrate and validate our analytical expectation we apply both these solvers to simulated data sets. These are
obtained as follows. We first generate maps of three Stokes parameters, I, Q and U, in the Healpix pixelization with the
Healpix resolution parameter nside set to 512. These maps are computed using a HEALpy routine, synfast, providing
as the input CMB power spectra as computed for the standard cosmological model with the current best values of
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the parameters [13]. In the following calculations we set the band-limit of the sky signal `max to 2nside. This is low
enough to ensure the orthogonality of the relevant spherical harmonics over the grid of Healpix pixels. However, it
leads to a rank-deficient signal covariance matrix. Consequently, hereafter, its inverse, S−1, is to be understood as a
pseudo-inverse. We checked on selected cases that setting `max to 3nside, did not impact our conclusions. We add to
these sky maps inhomogeneous albeit uncorrelated noise with rms changing over the sky as in the case of the WMAP
observations2.

We consider two cases with either full or partial sky observations. In this latter case, only 20% of the sky is
observed corresponding to the polar cap regions as defined by the Planck HFI mask3.

4.3 Numerical results.
We consider hereafter the following solvers:

• CG applied to the redefined system, Eq. (31), that is equivalent to PCG applied to the original system Eq. (26)
with a preconditioner given by M = S−1 + T−1; (in figures denoted by ”PCG”);

• MF solver, Eq. (32); (in figures denoted by ”MF”);

• MF method within three different cooling schemes as proposed in [4], [9], and [16], respectively. In the first
one, the value of the cooling parameter λ is adjusted adaptively after each iteration. This scheme requires an
a priori knowledge (estimate) on the error measure (see Eq. (33) below) of the solution. For the purpose of the
experiments, this is tightly approximated using the solution of the PCG solver. The scheme of [9] defines a
discrete grid of logarithmically spaced values of λ, which spans the range from 1 up to some suitable maximal
value, which in our runs we set to λmax = 104. For each value of λ, a fixed number of iterations is performed.
Hereafter, we adopt the scheme 16×10, i.e., we perform 10 iterations for each of the 16 values of λ. For the case
with partial sky observations, we continue with the fixed-point iterations (32) for λ = 1. The cooling scheme
of [16, Algorithm 1] reduces λ by a constant factor, η, so λ → λ × η and iterates as long as two consecutive
approximations satisfy ‖s(i) − s(i−1)‖/‖s(i)‖ < ε. In our experiments we start with λmax = 104, we set η = 3/4 and
ε ≡ 10−4.

We start the iterations with a vector of zeros as an initial guess.
The signal covariance, S, is computed assuming the CMB power spectra as used for the simulations. The noise

covariance is block-diagonal in the pixel domain but not proportional to I as the noise is assumed to be inhomogeneous.
It is taken to be exactly the same as the noise covariance used for the simulations.

For all solvers the inverse signal covariance is applied to a map-length pixel domain vector in the harmonic domain,
when first the vector is represented by a vector of its harmonic coefficients computed with help of a HEALpy routine,
map2alm, these are subsequently weighted by the inverse of the power spectra and transformed back to the pixel
domain using HEALpy’s alm2map routine. The inverse noise covariance is applied to any pixel-domain vector directly
with the elements corresponding to unobserved pixels set to 0.

We note that we always estimate the Wiener-filtered sky signal over the full sky. In all cases shown below we apply
all the solvers to exactly the same input data sets.

We have validated our implementations by considering a simplified data set with white noise. In this case, the
noise covariance N is proportional to the unit matrix, and the PCG solver with preconditioner M = S−1 + T−1, and the
MF solver converged to within the numerical precision in a single step as expected, as in this case T = N. Moreover, in
the cases of the actual simulated data sets used in our test, the results obtained with the different solvers are consistent.

4.3.1 Convergence metric.

The Wiener Filter problem (26) can be recast as a minimization of the functional,

χ2(x) = xtS−1x + (m − x)tN−1(m − x). (33)
2We use specifically the noise pattern for the 9-year observation of the V-band, available from https://lambda.gsfc.nasa.gov/product

/map/dr5/maps band r9 iqu 9yr get.cfm.
3http://irsa.ipac.caltech.edu/data/Planck/release 2/ ancillary-data/previews/HFI Mask GalPlane-apo2 2048 R2.

00/index.html
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Indeed, we have
argmin χ2(x) =

(
S−1 + N−1

)−1
N−1m = sWF .

Algebraic manipulations show that χ2 is directly related to the energy norm, as we have

‖sWF − x‖2S−1+N−1 = χ2(x) − χ2(sWF).

We can thus use physically motivated χ2 as a convergence measure instead of the energy norm. We note that we expect
that

χ2(x)→ χ2(sWF) = mt (S + N)−1 m. (34)

As with the energy norm, Sect. 3.1, this asymptotic value of χ2 can not be straightforwardly computed without knowing
the Wiener filter estimate precisely. However, we expect that it should be close to 〈χ2(sWF)〉 = nS tokes npix ≡ nDOF

within a small scatter on order of O(
√

2 nS tokes npix), if our assumptions about the sky signal and the noise are correct.
Here the angle brackets denote the average over an ensemble of sky and noise realizations and nS tokes stands for
the number of considered Stokes parameters and is equal to 3 for most of our tests. We can therefore define the
convergence in this case by requiring that the incremental change of χ2 between consecutive iterations is not larger
than some small fraction of 〈χ2(sWF)〉 [4]. If the absolute value of the final χ2 is statistically inconsistent with the
expected one, this could be an indication of prematurely stalled convergence or of a problem with the model assumed
for the measured data, m.

Given the discussion of Sect. 3.1, we expect that in terms of minimizing the χ2-measure, the PCG method with
preconditioner M = S−1 + T−1 should be superior to the fixed-point iterations, Eq. (32).

In addition to the χ-measure we also plot the norm of the residual corresponding to the (preconditioned) problem
as suggested in [16]. This is given by,

S1/2
(
S−1 + N−1

)
S1/2S−1/2sWF = S1/2N−1m; (35)

[16, Appendix C]. This system is significantly better conditioned than the original one, Eq. (26). The corresponding
relative norm of the residual reads then,

‖S1/2N−1m − S1/2
(
S−1 + N−1

)
x‖

‖S1/2N−1m‖
=
‖N−1m −

(
S−1 + N−1

)
x‖S

‖N−1m‖S
. (36)

4.3.2 Performance.

Figure 1 shows a comparison between the PCG, Eq. (31), and the MF, Eq. (32), solvers as applied to the Wiener Filter
problem. As expected PCG indeed reduces the error significantly faster.

In Figs. 2 and 3, we compare PCG (with the MF preconditioner S−1 + T−1 and λ = 1) with the MF method using
the adaptive cooling schemes described above. We can see that PCG yields robust performance in all the test cases.
In the case with full sky observations, the MF solvers (with or without cooling) reach on the level 10−7 of the relative
S-norm of the residual, their asymptotic convergence rate and exhibit a plateau of convergence. This is not the case
of PCG solver that converges to the machine precision level. In the experiment with partial sky coverage, we observe
a decrease of the convergence rate for the PCG as well as the MF solvers due to significantly worse conditioning
of the problem. However, even in this case, the PCG method is superior to the MF solvers. We expect that using
more advanced preconditioners, which can alleviate the effect of very small eigenvalues can bring a further significant
improvement.

We, however, note that PCG appears to be outperformed by the MF method with the [4] cooling proposal within
the first ten or so iterations. As both methods solve then different linear systems, due to different values of λ, this does
not contradict our conclusions in Sect. 3.1. This also does not change the overall assessment of the relative merit of
both these techniques as no convergence is then ever reached in terms of any of the considered metrics. We discuss a
possible origin of this behavior later on, Sect. 5.3, in the map-making context, where we suggest a simple antidote for
it that could potentially further ameliorate performance of the PCG approach.

RR n° 9157



Solving linear equations with messenger-field and conjugate gradient techniques 11

0 20 40 60 80 100 120 140 160
iteration

100

101

102

2 (
s i

,
)/n

D
O

F

441.764

1.000

PCG
MF

0 20 40 60 80 100 120 140 160
iteration

10 11

10 9

10 7

10 5

10 3

10 1

re
l. 

S-
no

rm
 o

f r
es

id
ua

l

PCG
MF

0 50 100 150 200 250 300
iteration

100

101

102

2 (
s i

,
)/n

D
O

F

439.697

1.005

PCG
MF

0 50 100 150 200 250 300
iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

re
l. 

S-
no

rm
 o

f r
es

id
ua

l

PCG
MF

Figure 1: Convergence of PCG and MF methods using two different convergence measure: χ2, Eq. (33), left panels,
and the S-weighted relative residual, Eq. (36), right panels. The top/bottom row shows the case with the full/partial
sky coverage.
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Figure 2: Comparison of the convergence of the PCG solver and the MF technique with an adaptive cooling for
different cooling prescriptions and using different convergence criteria: the χ2, left, the S-weighted relative residual,
middle. The right panel shows the values of λ as a function of the iteration as adapted by the different cooling schemes.
These results are for the data sets with the full sky coverage.

5 Application to map-making.

5.1 The problem.
Data collected by modern, single-dish CMB experiments are modeled as

d = P m + n, (37)
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Figure 3: As Fig. 2 but for the data set with the partial sky coverage, fsky = 0.2.

where d stands for a vector of all measurements, m is a pixelized map of the sky signal and n is the instrumental
noise. We assume for simplicity that experimental beams are axially symmetric and that the sky signal m is already
convolved with the beam. In this case, pointing matrix P simply defines which pixel of the map, m, is observed at each
measurement and with what weight it contributes to the measurement. In such case, the pointing matrix is very sparse
as it contains only one, for the total intensity measurements, or three, for the polarization-sensitive ones, non-zero
elements per each row. Moreover, P t P is either diagonal or block-diagonal with 3 × 3 blocks. If we assume that the
instrumental noise is Gaussian with the covariance given by N, a maximum-likelihood estimate of the sky signal can
be written as

mML ≡
(
P t N−1 P

)−1
P t N−1 d, (38)

and therefore requires a solution of large linear system. The sizes of the involved object vary wildly depending on
the experiment but the number of pixels in the map m can easily reach O(106), while the number of measurements,
O(1012−15). Consequently, the system could be only solved iteratively explicitly capitalizing on the structure and
sparsity of the involved data objects.

Traditionally (e.g. [3, 2]) the iterative method of choice was a PCG technique with a simple preconditioner given
by

M = P t diag(N−1) P. (39)

Hereafter we refer to this standard preconditioner as block-diagonal or Jacobi. However, more involved precondition-
ers have been also considered and found successful, e.g., [6, 21, 12, 15].

More recently, [9] (see also [8]) have proposed to apply the messenger-field technique to the map-making problem.
Below, we discuss the approach of this former work. The proposal here is again to split the noise covariance into two
parts, N ≡ N̄ + T, where T = τI, τ = min(diag(N)), using then Eq. (27) we can rewrite the system matrix of the
map-making equation, Eq. (38), as

P t N−1 P = P t T−1 P − P t T−1
(
N̄−1 + T−1

)−1
T−1 P, (40)

Where the first term on the right hand side corresponds to matrix C and the second one to matrix D as defined in
Eq. (4). Following the formalism from Sect. 2.1 we can now write the messenger-field equations for this system,
which read (

N̄−1 + T−1
)

t = N̄−1 d + T−1 P mML, (41)(
P t T−1 P

)
mML = P t T−1 t, (42)

with the messenger field t appearing explicitly, or[
I −

(
P t T−1 P

)−1
P t T−1

(
N̄−1 + T−1

)−1
T−1 P

]
mML =

(
P t T−1 P

)−1
P t N−1 d, (43)
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without it. (N.B., note that unlike in Eq. (6) the matrix P t is taken out of the definition of the messenger field.)
Solving any of these two sets of equations using fixed-point iterations is equivalent to the messenger-field solver. For
comparison we will also solve the last equation using CG technique. The latter is equivalent to solving the map-making
equation, Eq. (38), using a PCG method with the preconditioner taken to be M = P t T−1 P, which in the case under
consideration is equivalent to the standard preconditioner.

5.2 Simulated data.
We simulate mock time ordered data d as a sum of two terms, one corresponding to the sky signal and the other to
instrumental noise. These are computed as,

dt = Ip(t) + Qp(t) cos 2ϕ(t) + Up(t) sin 2ϕ(t) + nt, (44)

where p(t) denotes the sky pixels observed at time t and ϕ(t) – the corresponding orientation of the polarizer. The signal
terms are read off from the signal only maps of Stokes parameters I, Q, and U, following assumed scanning strategy
defined by p(t) and ϕ(t). These maps are produced in the Healpix pixelization with the resolution parameter nside

set to 1024. These signals are random realizations of the CMB anisotropies corresponding to the currently preferred
cosmological model [13].

We produce two data sets with different statistical properties. Each data set comprises the data of a single detector
that are however scaled to represent the performance of an entire detector array and thus being more representative of
the current data. In both cases we assume a raster scan pattern in the sky coordinates, when a rectangular sky patch
made of 256×256 Healpix pixels is scanned either horizontally, i.e., in right ascension or vertically, i.e., in declination.
The patch is centered at the equator. The length of the simulated data vector is the same for the two cases and roughly
equal to 108.

In the first data set, the sky patch is first scanned horizontally and later vertically. The horizontal scanning assumes
256 complete, i.e., left-to-right followed by right-to-left, sweeps when each pixel is sampled on average 4 times on
each sweep. Once this is done the declination is changed and the new horizontal scan commences. This is repeated
256 times with each horizontal scan corresponding to a different row of the Healpix pixels. The vertical scan is
implemented in a similar way.

In this case we assume that the polarizer direction is quickly modulated so the full 2π angle is sampled within
each single crossing of each sky pixel. This is ensured by setting the polarizer angle in the sky coordinates to follow
a repeating sequence of 0, π/4, π/2, 3π/4. In practice, this could mimic the case of an experiment using a smoothly
rotating half wave plate.

For the second data set, we divide it into 4 equal consecutive subsets, each of which implements the same raster
scan made of horizontal scanning within the first half of the subset followed by the vertical scan in the second half.
However, the scanning is assumed to be faster and there is only 1 sample taken per pixel for each pixel crossing. This
ensures the same data length. For each subsets the angle of the polarizer in the sky coordinates is fixed and equal to
0, π/4, π/2, 3π/4. This scanning strategy mimics an experiment where the polarizer is stepped discretely only after
each of the four subscans.

We simulate the instrumental noise as a correlated noise with a power spectrum given by

P( f ) ≡ σ2 (1 +
fknee

f
), (45)

where 1/ fknee is taken to be ∼ 500 times longer than the sampling rate, i.e., corresponding to a length of a single full
sweep of the sky. We further apodize the low frequency noise effectively flattening the noise spectrum for frequencies
lower than a tenth of the knee frequency.

We consider two different noise levels, one ensuring rather high signal to noise of the resulting maps, with rms
noise σQ,U

rms = σI
rms ·
√

2 ' 2µK for the recovered Q and U maps and the other with lower signal-to-noise corresponding
to σQ,U

rms ' 30µK. We refer to these cases as the low and high noise data.
We note, that if the instrumental noise were white then both scanning strategies would have been equivalent and

the standard, block-diagonal preconditioners in both these cases would have been identical. This is however not the
case in the presence of the correlated noise. In fact we expect that the off-diagonal noise correlation of the recovered
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Q and U maps should be small for the first data set with the quickly rotating HWP while they should be non-negligible
in the case of the second data set with the stepped polarizer, leading to a different convergence patterns of the studied
solvers.

5.3 Numerical results.
5.3.1 Convergence metric.

For measuring the error of an approximation x we consider, following [9], a χ-measure

χ2(x) = (d − Px) t N−1(d − Px). (46)

Analogously to the Wiener Filtering application, this measure is minimized by the maximum-likelihood estimate (38)
and it is equivalent to the energy norm of the error, Eq. (15), with respect to the system matrix, A ≡ P t N−1 P. Indeed,

χ2(x) = ‖x − mML‖ P t N−1 P + +dt (N−1 − N−1P (Pt N−1 P)−1 Pt N−1) d, (47)

and thus,

χ2(mML) = dt (N−1 − N−1P (Pt N−1 P)−1 Pt N−1) d. (48)

As before this value is not directly available. However, we can compute the average value of χ2(mML) over the
statistical ensemble of the input data realizations and use it as a benchmark for the convergence using the χ2-measure.
This can be done analytically on observing that the matrix on the right hand side of Eq. (48) is a projection operator,
which projects out all time-domain modes, which are sky stationary, i.e., objects of the form P y for some arbitrary
pixel-domain object y. If so,

χ2(mML) = nt (N−1 − N−1P (Pt N−1 P)−1 Pt N−1) n, (49)

and

〈χ2(mML)〉noise = tr (I − N−1/2P (Pt N−1 P)−1 Pt N−1/2)
= nt − nS tokes npix ≡ nDOF , (50)

where nt and npix denote the sizes of the data set in time and pixel domains respectively and we have assumed that
the system matrix, P t N−1 P, is non-singular, and used the fact that N−1/2 〈n nt〉N−1/2 = I. Having this value, we then
define the convergence criterion in terms of the χ2-measure by requiring that the incremental change of χ2 between
two consecutive iterations is sufficiently small as compared to nDOF .

We note that in the figures in order to make the behavior of the χ-measure more conspicuous, instead of the χ2

itself, we plot its relative difference with respect to the minimal value of χ2 derived within the PCG iterations, which
we denote as χ2(mmin), and the plotted quantity is then given by,

χ2(x)/χ2(mmin) − 1. (51)

For completeness we also plot the standard relative residual defined as,

‖P t N−1d −
(
P t N−1 P

)
x‖

‖P t N−1d‖
. (52)

5.3.2 Performance.

We reconstruct the sky signal from the data using different solvers as discussed here and compare their relative perfor-
mance. In all cases, we use the same pixelization, i.e., Healpix with nside = 1024, for the recovered maps as we used
for the simulations. We have validated our implementation by running cases with noise-free data and recovering the
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Figure 4: Comparison of the convergence for the PCG, the messenger-field methods standalone and incorporated
within a cooling scheme, 8 × 5, for the 1st, top row, and the 2nd, bottom row, simulated data set and assuming the low
noise level.

input maps within the numerical precision. We have also found that the results produced by different solvers for each
of the data sets agree.

We first compare the convergence of the PCG solver, of the MF iterations without cooling, and of the PCG and
MF with the 8× 5 cooling scheme. The results for the low noise cases are given in Figs. 4 and the high noise cases are
shown in Fig. 5.

We can see that, as claimed in [9], the MF with cooling technique indeed reaches higher accuracy in comparison
to MF without cooling. However, the standard PCG is in these experiments still superior. As in the Wiener Filter
application, Sect. 4.3, we observe that in the low noise cases the cooling technique, used either with PCG or with MF,
improves more rapidly on the solution within the first iterations than the PCG method with no cooling. We attribute
this to the fact that during those initial iterations the cooling method solves a modified system of the initial equations
with an assumed large value of λ. The approximate solution derived on these first iteration is then equivalent to a
simple binned map. This for the low noise cases provides a good rendition of the sky signal, thus leading to an abrupt
decrease of the residuals. In the absence of the cooling the PCG technique initiated with vector of zeros needs to
perform at least a few iterations to reach a comparably good solution. We can however improve on the performance of
the standalone PCG by using a simple binned map given by

m(0) = (P t diag(N)−1P)−1P t diag(N)−1d, (53)

as the starting vector for the PCG solver. Such a map is quickly computable and thus can be readily available at the
onset of the solution.

We illustrate these considerations in Fig. 6, where we compare the convergence of the PCG run with the initial
vector made of zeros and the convergence of the solvers: standalone PCG, MF with cooling, and PCG with cooling,
assuming m(0), Eq. (53), as the initial vector. The results shown are for the low noise case. As expected there is
a significant improvement in the overall performance of the PCG method relatively to the other solvers but also as
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Figure 5: As Fig. 4 but for the high noise level.

compared to the case of the vanishing initial guess. This showcases the importance of the appropriate choice of
the initial guess for the PCG approaches in the cases of high signal-to-noise solution. As the new CMB data sets
target predominantly CMB B-mode polarization, the maps of Stokes parameters will be increasingly having very high
signal-to-noise and this observation may be therefore of importance for their data analysis.
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Figure 6: Comparison of the convergence rates of different iterative solvers for a non-zero starting vector, m(0), as
given in Eq. (53). For comparison the blue curve shows the case of the PCG with a starting vector of zeros. The results
are for the 2nd scanning strategy and the low noise case.

RR n° 9157



Solving linear equations with messenger-field and conjugate gradient techniques 17

6 Conclusions.
We have shown that the messenger-field solvers of sets of linear equations perform fixed-point iterations of an appropri-
ately preconditioned system of equations. Consequently, in general they are expected to display inferior performance
to that of a conjugate gradient solver applied to the same preconditioned systems or, equivalently, to that of a PCG
solver with the same preconditioner as implicitly used in the messenger-field method in order to precondition the initial
problem. We have backed up this contention with analytic arguments and demonstrated it on numerical experiments
involving two applications drawn from modern CMB data analysis practice: Wiener Filters and CMB map-making
problem. We have compared the performance of the studied methods from the perspective of the number of iterations
needed to reach convergence. However, our conclusions are expected to be directly applicable also to considerations
involving time-to-solution, as the computational cost per iteration incurred in the different methods is found to be
roughly comparable.

We thus conclude that looking towards the future advanced preconditioning coupled with the conjugate gradient
technique offers more promise for more expeditious solvers that the current ones than the messenger-field approach
does. While at this time, the PCG solvers with the standard, block-diagonal, Eq. (39), preconditioner in the map-
making case, and the preconditioner given by S−1 + T−1, Eq. (28), in the Wiener filter case, with a potentially ap-
propriately adapted initial guess should outperform the currently proposed messenger-field approaches. We also note
that better preconditioners have been already proposed in particular in the map-making context e.g. [6, 21]. This
notwithstanding, the messenger-field approach may still be found of interest in some specific applications.

In the context of the PCG methods, we have found that the convergence may be sped up by an appropriate choice
of the initial vector. While the gain is largely negligible for the cases with a low signal-to-noise solution, it can become
significant if the solution is expected to have high signal content. We have found this effect particularly relevant for
the map-making procedure, where we have showed that the choice of the simple binned map as the initial vector can
result in a significant improvement of the map-making solver convergence.
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A Implementation of PCG for Wiener Filter.
In the context of solving the Winer Filter problem, Eq. (25), each step of fixed-point method, Eq. (12), resp. Eq. (32),
requires one direct and one inverse spherical harmonic transforms that are assumed to be the most time consuming
elements of the solution process. To keep the same number of transforms in each PCG iteration, we cannot apply first
matrix A = S−1+N−1 and then precondition the residual by C−1 ≡ (S−1+T−1)−1 as it is done in one of the standard PCG
implementations listed below in Algorithm A.1. This implementation involves two direct and two inverse transforms:
in the evaluation of Ap(i−1) and in C−1r(i).

Using the formula for p(i), r̃(i) and the form of the matrix A = C − D, we can write

Ap(i) = A
(̃
r(i) + δ(i)p(i−1)

)
= CC−1r(i) − D̃r(i) + δ(i)Ap(i−1) = r(i) − D̃r(i) + δ(i)Ap(i−1).

Therefore the vector Ap(i) can be computed recursively without spherical harmonic transforms and the cost of one
PCG iteration is the same (in terms of spherical harmonic transforms) as the cost of one iteration of the fixed-point
method, Eq. (12).

Another formula that proved in our numerical experiments to be more stable (yet slightly more costly) is to evaluate
at once the vectors C−1r(i) and S−1C−1r(i) (recall that AC−1r(i) = (S−1 + N−1)C−1r(i)). This can be done using direct
spherical harmonic transform of one vector, r(i), and inverse spherical harmonic transform of two vectors4. Then we
simply update Ap(i) = AC−1r(i) + δ(i)Ap(i−1).

4with the typical computational cost significantly smaller than twice the cost of one single inverse spherical harmonic transform.
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Algorithm A.1 PCG for As = b with the preconditioner C
Given s(0), r(0) = b − As(0), r̃(0) = C−1r(0), p(0) = r̃(0).
For i = 1, 2, . . .

γ(i−1) =
(r(i−1), r̃(i−1))

(p(i−1),Ap(i−1))
,

s(i) = s(i−1) + γ(i−1)p(i−1) ,

r(i) = r(i−1) − γ(i−1)Ap(i−1) ,

r̃(i) = C−1r(i) ,

δ(i) =
(r(i), r̃(i))

(r(i−1), r̃(i−1))
,

p(i) = r̃(i) + δ(i)p(i−1) .

Moreover, the properties of (P)CG also allow to evaluate the decrease of the χ-measure without computing it
explicitly using Eq. (33) (this computation involves S−1 and therefore also direct and inverse spherical harmonic
transforms). The evaluation proposed below is numerically stable; see a thorough analysis in [20]. There holds

‖s − s(0)‖2A =

i∑
j=1

γ j (r( j), r̃( j)) + ‖s − s(i)‖2A.

Using the above discussion on the relationship between the energy norm and the χ-measure, we have

χ2(s(0)) =

i∑
j=1

γ j (r( j), r̃( j)) + χ2(s(i)).

After computing χ2(s(0)) (that is for zero initial approximation s(0) = 0 equal to m tN−1m) we can therefore simply eval-
uate the χ-measure in every PCG iteration using already computed scalar quantities without any additional spherical
harmonic transforms.

B Proof of convergence of the messenger-field method.
In this appendix we prove that the messenger-field method for Wiener Filter is (asymptotically) converging. An
analogous proof can be used also for the map-making application.

Following the discussion below the Eq. (13), we prove the convergence by showing that the eigenvalues of C−1D
are in the absolute value smaller than unity. We start by rewriting Eq. (30) as the systemN̄−1 + T−1 −T−1

−T−1 S−1 + T−1

︸                          ︷︷                          ︸
≡ A

 t
sWF

 =

N̄−1 m
0


The reduced system (after the elimination of the messenger field t) then corresponds to forming the Schur complement
S of A,

S ≡
(
S−1 + T−1

)
− T−1

(
N̄−1 + T−1

)−1
T−1

and solving
SsWF = T−1

(
N̄−1 + T−1

)−1
N̄−1 m.

The MF iterations are obtained by multiplying (preconditioning) the above system by (S−1 + T−1)−1 from the left.
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Now we show the bounds on the eigenvalues of

C−1D =
(
S−1 + T−1

)−1
T−1

(
N̄−1 + T−1

)−1
T−1 = I −

(
S−1 + T−1

)−1
S.

Since A is an SPD matrix, its Schur complement S is also SPD. Moreover, the spectrum of (S−1 + T−1)−1S satisfies

Λ

((
S−1 + T−1

)−1
S
)

= Λ

((
S−1 + T−1

)−1/2
S
(
S−1 + T−1

)−1/2
)

and therefore the eigenvalues of (S−1 + T−1)−1S are positive. Plugging into the above equation the formula for the
Schur complement S, we have

Λ

((
S−1 + T−1

)−1
S
)

= Λ

(
I −

(
S−1 + T−1

)−1/2(
N̄−1 + T−1

)−1(
S−1 + T−1

)−1/2
)

= 1 − Λ

((
S−1 + T−1

)−1/2(
N̄−1 + T−1

)−1(
S−1 + T−1

)−1/2
)
.

The matrix (S−1 + T−1)−1/2(N̄−1 + T−1)−1(S−1 + T−1)−1/2 is SPD. Altogether,

Λ

((
S−1 + T−1

)−1
S
)
∈ (0, 1).

Consequently,

Λ
(
C−1D

)
= 1 − Λ

((
S−1 + T−1

)−1
S
)
∈ (0, 1),

which proves that the MF iterations are asymptotically converging.
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