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Absolute and ConvectiveSecondarylnstabilities in Spatially Periodic ShearFlows

P.BrancherandJ.M. Chomaz
LadHyX,Ecole Polytechnique91128PalaiseauCedex,France

The genericproblem of the spatiotemporalinstability of a periodic basic flow (Stuartvortices)is
consideredn order to interpretthe sequenceof bifurcationsobservedin openshearflows. Using a
novel numericaltechnique we show that the more concentratedhe vortices, the smallerthe backflow
neededo triggerabsoluteinstability. Theseresultsallow usto proposean alternativeinterpretationfor
the subharmoniagesonancebservedn forced shearflows, which is classicallyattributedto an acoustic
feedback.

The classical description of the transition from lami- zigzaginstability [1] at shortspanwisevavenumbersand
nar flow to turbulence, or more generally from order tofinally a core instability associatedavith a varicosemodu-
disorder in extended systems, involves a sequence of priation of the core of the vortices. But, from the causality
mary, secondary, . .. bifurcations which successively breafrinciple, resultsfrom the temporally evolving flow are
the symmetries of the original problem [1]. In closed transposabl¢o the spatiallyevolving flow if, andonly if,
flows, such as Rayleigh-Bénard convection or the Taylorthe considerednstabilities are convectiveas definedby
Couette experiment, this sequence occurs while varyin@riggs [11,12]. Physicallythis meansthat the dynamics
some control parameter, for example, the temperature dibf a temporallyevolving flow, for which the futureis not
ference or the angular velocity. In particular, for thesesupposedo influencethe past(causality),will be equiva-
systems the first bifurcation breaks the invariance undelent to the dynamicsof a spatially evolving flow only if
translation in one direction;, and leads to a periodic so- the downstreamevolution of the flow doesnot influence
lution in x, like convection rolls or Taylor's rings. At theupstreamnstability. If thisis nottrue,the spatialcase
higher values of the control parameter the periodic sowill exhibit a global behavior[13,14], which is the result
lution will itself become unstable and will give rise to of the resonantioop due to the downstreampart of the
a new state eventually with less symmetry. For operemergingflow structureinducingthe genesisof its own
flows, such as shear flows, the picture is somewhat difupstreanpart[15].
ferent as these flows are strongly unstable and evolve in If the importanceof the absoluteand convectiveinsta-
space [2]. From experimental observations, their dynambility conceptis now widely recognizedfor the natural
ics may still be described by a sequence of bifurcationsnd the controlled dynamicsof open flows, the major-
which now take place successively in space. For instancéty of the studieshaveonly consideredts implication for
the spatial evolution of a mixing layer initially involves a the primary instability. But, asstressedy Huerrein pi-
two-dimensional instability which saturates into a row of oneeringwork [16], “primary and secondaryinstabilities
Kelvin-Helmholtz billows [3]. Further downstream, this arisingin fluid flows neednot havethe sameabsolute/con-
row of vortices is destabilized by thpairing instabil-  vective character,”and “absolute secondaryinstability”
ity associated with the spatial growth of the first subhar-might induce energetictransitionto turbulenceor select
monic [4]. Ultimately this secondary mode saturates intoa secondarymoderadically different from what might be
a new row of larger vortices with twice the initial spacing. deducedrom temporalstudies. This ideais not restricted
This spatial sequence of instability and saturation may reto openflow dynamicsbut appliesto any patternform-
peat itself until three-dimensional secondary instabilitiesng systemsupportingtraveling wavessuchas chemical
induce transition to turbulence. A similar sequence is obreactiong[17], nonlinearoptics[18], binary fluid convec-
tained for a temporally evolving shear flow, as realizedtion [19], or dynamotheoryof dishlike objects[20]. The
in the tilting tank experiment by Thorpe [5]. Numerous route to disorderinvolving intrinsic absoluteinstability
numerical simulations [6] and theoretical analyses [7,8] ocascadeor extrinsic noise inducedresponsewvould have
this temporal shear flow have shed light on the 2D ando be exploredin thosevariousfields. The novel tech-
3D instability mechanisms. In particular Pierrehumbertnique we implementshould be easily transposedo any
and Widnall [8], studying the Stuart model [9] of a row of thoseproblemsasit relies on a simple, nearly naive
of vortices, have identified three types of secondary instabut efficient method: absoluteor convectiveinstability
bility: the helical pairing, most unstable for 2D modes; beingdefined[11,12] by the behaviorof the impulsere-
the translativeinstability which preserves the periodicity sponseof the systemwith respecto a particularframe of
of the Stuart row and corresponds to the elliptic instabilityreference we numericallycomputethe impulseresponse
[10] at large spanwise wave numbers and to the so-calleith a singleframeandthenevaluatethe growthratein any



movingframe using the Galilean invariance of the systemthe box or the resolution has been shown to have no sig-
Application of this principle to shear flow secondary in- nificant effect. This size represents therefore an optimum
stability is detailed in the following as much as possiblefor computer efficiency.
in a general and concise manner because we feel that theThe numerical simulation is initialized by a localized
technique as well as the physical implications are equallperturbation with a Gaussian envelope whose size is cho-
important. sen large enough to be well represented in the truncated
The present Letter represents a first attempt to despectral domain. Comparing results while varying the lo-
termine the absolute/convective nature of a secondargation of the initial perturbation, its actual size, and the
instability of a primary saturated periodic mode. Follow-total duration of the simulation allows us to estimate the er-
ing Pierrehumbert and Widnall [8], we consider the Stu-ror on all the measured quantities. The initial perturbation
art model and analyze the absolute/convective nature dafives rise to a wave packet growing in time and expanding
the 2D pairing instability. The theoretical foundation of in space. In order to separate the phase and the amplitude
our study relies on a recent paper by Brevdo and Bridgesf the signal, we construct its analytic continuation by ap-
[21] which extends the absolute/convective criteria to peplying a Hilbert transform [25]. Instead of computing the
riodic base flows. Although the proof is highly technical, Floquet exponent while moving on a ray, we filter out all
the final result is remarkably simple. They show, usingthe wave numbers higher than the wave number of the ba-
the Floquet theory, that the homogeneous criterion [11,12ic flow. In this particular case, because the spectrum in
(i.e., the sign of the imaginary part of the frequeneyf  presents a suitable band structure, this filtering proves itself
the wave such thatw /dk = 0, with k its complex wave sufficient and the computed response exhibits no variation
number) stays valid, withk being now the logarithm synchronized with the underlying basic flow. Using the
of the Floquet multiplier. Instead of numerically deter- Hilbert transform on the wave packet one has to be con-
mining the complex dispersion relation and its associatedcious that the associated convolution withrx produces
saddle point, we implement a direct numerical determinaan algebraic spatial decay on the side of the wave packet.
tion of the asymptotic wave packet issuing from a local-Therefore the reconstructed amplitude was systematically
ized initial perturbation using the technique developed byplotted with the initial signal to delineate the region where
Delbendeet al. [22]. We obtain, at large, the absolute the wave packet amplitude was correctly estimated. Af-
or convective nature of the instability in any frame mov-ter this control procedure, the time series of the wave
ing at velocityv compared to the frame of the simulation packet envelope was drawn versus= x/¢t, t (x) being
by measuring the growth rate(v) of the wave packet on the time (distance) from the initial perturbation. Figure 1,
the spatiotemporal ray defined by= vr. In reality the obtained forp = 0 (defining the hyperbolic tangent pro-
laboratory frame singled out by the boundary or entrancéile), clearly shows that the wave packet grows exponen-
conditions will correspond to a particular valug and the  tially between two critical values af = x/¢, *v.. The
instability will be absolute ir(vy) is positive. Inthe case growth rate measured on each rayr = v is presented
of the mixing layer, a single relative velocity profile corre- in Fig. 2. Asymptotic theory for an infinite domain tells
sponds to several experimental configurations, as increags that, when goes to infinity, the wave which emerges
ing the speed of both streams by the same amount jugin a ray corresponds téw/dk = v and its growth rate
changes the value af to be considered. Therefore for a along the ray is such that(v) = Im (o — vk). As our
given relative velocity profile, the quantity(v) defines
the nature of the instability for a family of experimen-
tal configurations differing only by the mean advection A aaas e
velocity v. 10" ¢
In order to compute the asymptotic linear impulse 100 [
response of the periodic flow, the two-dimensional in-
compressible Navier-Stokes equation expressed for the
vorticity (2 and the stream functio (such thatQ) =
—AW) is linearized around the Stuart basic state de- 10
fined by the stream functioW, (x,y) = %In[cosh(z)) -
p cos(2y], and solved using a pseudospectral Fourier

A(x/t)

code validated by Vincent and Meneguzzi [23] and 0y N
Brancheret al.[24]. The perturbation is supposed pe- 008 08 04 02 00 02 o4 06 05 10
riodic in both x and y directions but the domain is X/t

extremely elongated in the longitudinal directio32 pe-  FIG. 1. Evolution of the wave packet generated by an initial

riods of the base flow resolved by 1024 collocation points)perturbation localized in space. The time series is computed
and large in the transverse direction(256 collocation by a direct numerical simulation of the Navier-Stokes equations

. . . . - linearized around the homogeneous hyperbolic tangent profile.
points representing 8-periods of the basic flow) in or- 6 amplitude of the wave packet is plotted versyis = v in
der to minimize the boundary effects. On the test casegrder to follow its evolution on rays radiating from the initial

p = 0 (hyperbolic tangent profile) doubling the size of perturbation location.



04 T T T T

0.5
03 -

0.4
02 |

0.3

G (x/t)

01 [ ] E
o 02 B
0.0
0.1 4
_01 1 1 1 1 1 1 1 1
-1.0 -08 -06 -04 -02 0.0 02 04 06 08 1.0 0.0
x/t
FIG. 2. Growth rate of the wave packet envelope measured at O o6 o 07 00 o o4 o6 o5 1o
fixed x/t = v on Fig. 1 (dashed line) versus the growth rate x/t

predicted by Huerre and Monkewitz [26] (solid line). FIG. 3. Same as Fig. 2 for various values of the Stuart

parameterp. For p = 0 to 0.75 the growth rate is computed,
whereas forp = 1 (the limiting case of point vortices) the

numerical domain is finite, the total time of the simulation 9™OWh rate is theoretically predicted [27].

max Should remain short enough for the wave packet to be

smaller than half the box in order to avoid interaction be- . A . .

tween the leading and the trailing edges of the wave packeltUte instability is smaller when the primary vortices are
but large enough to correspond to the asymptotic regiméﬁore concentrated. These results_are synthes_lzed in Fig. 4
In the numerical simulation,,, is about 40 and the valid- V\{here the threghold _f(_)r the velocity ratf, which will

ity of this crucial approximation is verified posteriorifor yield absolute instability, is plotted versys Whereas

each run by checking that the growth raté) has indeed a strong backflowfR = 1.36) is necessary to trigger ab-
saturated solute primary instability (with no preexisting vortices

Figure 2 compares the growth rate on rays = v ob-  ° — 0), the secondary instability becomes absolute for

tained for the hyperbolic tangent profilp = 0) by the- = :rac\‘jg?t‘a’:eas'f';?:tsr&#ii;‘tll) (\;\ghnir; ggztégtgrit)ed pri-
oretical inviscid analysis of Huerre and Monkewitz [26] ,, . y y ;
and by our numerical technique. The agreement betweeﬁp's latter case the selected wave number (obtained from

theoretically and numerically estimated valuesodb) is the gradient in ther direction of the phase of the analyti-

remarkably good, the small departure being due to viscou(_':‘,al signal) on the trailing edge of thg wave pa_lcket t?r!ds
effects as our Reynolds number Re is finite and equal 1 1 and therefore corresponds to period doubling (pairing

o i . nstability).
500. This is confirmed by the fact that the maximum spa When considering the nonlinear evolution of a sepa-

tiotemporal growth rate we have measured is extremel o :
close to the maximum temporal growth rate reported i#ated shear flow (a mixing layer, a jet, or a backward fac-

the literature [2] for this Reynolds number as it should."9 step) one may imagine that, for small or even nearly

From Fig. 2 we determine the trailing edge velocity,
v. = 0.735 += 0.015, as the point such that(v.) = 0.

Using a Galilean transformation to return to the labora- T

tory frame, we predict that, for the homogeneous viscous ®—e numerical simulations
[ inviscid theory

mixing layer, the velocity in the lower layer of the profile

should be negative and such that the velocity ratio [26]

R = 1/v is greater thamR, = 1/v, = 1.36 = 0.03 for

the instability to be absolute, in excellent agreement with R
the inviscid theoretical result of Huerre and Monkewitz

[26], who find the value 1.315. Having now validated the
numerical procedure, we repeat this study for the family

of Stuart vortices withp varying from 0 to 0.75 (Fig. 3). 100 & c 0
The inviscid theoretical result [27] for the absolute insta-

bility of a single row of point vortice§p = 1), which 0.90 e
giveso(v) =1 — v? andk = 1 + iv, is reported on 00 01 0% 08 B4 00 06 07 08 08 10

Fig. 3 together with the numerical results. Figure 3 shows ) ) , ,
that the more concentrated the Stuart vortices are, thig/C- 4. Domains of absoluted) and convectiveC) instabil-

faster the | | ket d hi ify in the (R, p) plane. The error bars represent the maximum
aster the Impuise wave packet spreads, reacning asymgz iation of the critical values ok while varying the location

totically the front velocity =1 for p = 1. Practically, of the initial perturbation, its actual size, and the total duration
this means that the back flow needed to trigger absosf the simulation.
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