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Absolute and Convective Secondary Instabilities in Spatially Periodic Shear Flows

P. Brancher and J. M. Chomaz
LadHyX, Ecole Polytechnique, 91128 Palaiseau Cedex, France

The generic problem of the spatiotemporal instability of a periodic basic flow (Stuart vortices) is 
considered in order to interpret the sequence of bifurcations observed in open shear flows. Using a 
novel numerical technique, we show that the more concentrated the vortices, the smaller the backflow 
needed to trigger absolute instability. These results allow us to propose an alternative interpretation for 
the subharmonic resonance observed in forced shear flows, which is classically attributed to an acoustic 
feedback. 
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The classical description of the transition from lam
nar flow to turbulence, or more generally from order
disorder in extended systems, involves a sequence of
mary, secondary, . . . bifurcations which successively bre
the symmetries of the original problem [1]. In close
flows, such as Rayleigh-Bénard convection or the Taylo
Couette experiment, this sequence occurs while vary
some control parameter, for example, the temperature
ference or the angular velocity. In particular, for thes
systems the first bifurcation breaks the invariance und
translation in one direction,x, and leads to a periodic so
lution in x, like convection rolls or Taylor’s rings. At
higher values of the control parameter the periodic s
lution will itself become unstable and will give rise to
a new state eventually with less symmetry. For op
flows, such as shear flows, the picture is somewhat d
ferent as these flows are strongly unstable and evolve
space [2]. From experimental observations, their dyna
ics may still be described by a sequence of bifurcatio
which now take place successively in space. For instan
the spatial evolution of a mixing layer initially involves a
two-dimensional instability which saturates into a row o
Kelvin-Helmholtz billows [3]. Further downstream, this
row of vortices is destabilized by thepairing instabil-
ity associated with the spatial growth of the first subha
monic [4]. Ultimately this secondary mode saturates in
a new row of larger vortices with twice the initial spacing
This spatial sequence of instability and saturation may
peat itself until three-dimensional secondary instabiliti
induce transition to turbulence. A similar sequence is o
tained for a temporally evolving shear flow, as realize
in the tilting tank experiment by Thorpe [5]. Numerou
numerical simulations [6] and theoretical analyses [7,8]
this temporal shear flow have shed light on the 2D a
3D instability mechanisms. In particular Pierrehumbe
and Widnall [8], studying the Stuart model [9] of a row
of vortices, have identified three types of secondary ins
bility: the helical pairing, most unstable for 2D modes
the translative instability which preserves the periodicity
of the Stuart row and corresponds to the elliptic instabili
[10] at large spanwise wave numbers and to the so-ca
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zigzag instability [1] at short spanwise wave numbers; and 
finally a core instability associated with a varicose modu-
lation of the core of the vortices. But, from the causality 
principle, results from the temporally evolving flow are 
transposable to the spatially evolving flow if, and only if, 
the considered instabilities are convective as defined by 
Briggs [11,12]. Physically this means that the dynamics 
of a temporally evolving flow, for which the future is not 
supposed to influence the past (causality), will be equiva-
lent to the dynamics of a spatially evolving flow only if 
the downstream evolution of the flow does not influence 
the upstream instability. If this is not true, the spatial case 
will exhibit a global behavior [13,14], which is the result 
of the resonant loop due to the downstream part of the 
emerging flow structure inducing the genesis of its own 
upstream part [15].

If the importance of the absolute and convective insta-
bility  concept is now widely recognized for the natural 
and the controlled dynamics of open flows, the major-
ity of the studies have only considered its implication for 
the primary instability. But, as stressed by Huerre in pi-
oneering work [16], “primary and secondary instabilities 
arising in fluid flows need not have the same absolute/con-
vective character,” and “absolute secondary instability” 
might induce energetic transition to turbulence or select 
a secondary mode radically different from what might be 
deduced from temporal studies. This idea is not restricted 
to open flow dynamics but applies to any pattern form-
ing system supporting traveling waves such as chemical 
reactions [17], nonlinear optics [18], binary fluid convec-
tion [19], or dynamo theory of dishlike objects [20]. The 
route to disorder involving intrinsic absolute instability 
cascade or extrinsic noise induced response would have 
to be explored in those various fields. The novel tech-
nique we implement should be easily transposed to any 
of those problems as it relies on a simple, nearly naive 
but efficient method: absolute or convective instability 
being defined [11,12] by the behavior of the impulse re-
sponse of the system with respect to a particular frame of 
reference, we numerically compute the impulse response 
in a single frame and then evaluate the growth rate in any
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movingframe using the Galilean invariance of the system
Application of this principle to shear flow secondary in
stability is detailed in the following as much as possib
in a general and concise manner because we feel that
technique as well as the physical implications are equa
important.

The present Letter represents a first attempt to d
termine the absolute/convective nature of a second
instability of a primary saturated periodic mode. Follow
ing Pierrehumbert and Widnall [8], we consider the St
art model and analyze the absolute/convective nature
the 2D pairing instability. The theoretical foundation of
our study relies on a recent paper by Brevdo and Bridg
[21] which extends the absolute/convective criteria to p
riodic base flows. Although the proof is highly technica
the final result is remarkably simple. They show, usin
the Floquet theory, that the homogeneous criterion [11,1
(i.e., the sign of the imaginary part of the frequencyv of
the wave such thatdvydk  0, with k its complex wave
number) stays valid, withik being now the logarithm
of the Floquet multiplier. Instead of numerically deter
mining the complex dispersion relation and its associat
saddle point, we implement a direct numerical determin
tion of the asymptotic wave packet issuing from a loca
ized initial perturbation using the technique developed
Delbendeet al. [22]. We obtain, at larget, the absolute
or convective nature of the instability in any frame mov
ing at velocityy compared to the frame of the simulation
by measuring the growth ratessyd of the wave packet on
the spatiotemporal ray defined byx  yt. In reality the
laboratory frame singled out by the boundary or entran
conditions will correspond to a particular valuey0 and the
instability will be absolute ifssy0d is positive. In the case
of the mixing layer, a single relative velocity profile corre
sponds to several experimental configurations, as incre
ing the speed of both streams by the same amount j
changes the value ofy to be considered. Therefore for a
given relative velocity profile, the quantityssyd defines
the nature of the instability for a family of experimen
tal configurations differing only by the mean advectio
velocity y.

In order to compute the asymptotic linear impuls
response of the periodic flow, the two-dimensional in
compressible Navier-Stokes equation expressed for
vorticity V and the stream functionC (such thatV 
2DC) is linearized around the Stuart basic state d
fined by the stream functionCbsx, yd 

1
2 lnfcoshs2yd 2

r coss2xdg, and solved using a pseudospectral Fouri
code validated by Vincent and Meneguzzi [23] an
Brancheret al. [24]. The perturbation is supposed pe
riodic in both x and y directions but the domain is
extremely elongated in the longitudinal directionx (32 pe-
riods of the base flow resolved by 1024 collocation point
and large in the transverse directiony (256 collocation
points representing 8x-periods of the basic flow) in or-
der to minimize the boundary effects. On the test cas
r  0 (hyperbolic tangent profile) doubling the size o
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the box or the resolution has been shown to have no s
nificant effect. This size represents therefore an optimu
for computer efficiency.

The numerical simulation is initialized by a localize
perturbation with a Gaussian envelope whose size is c
sen large enough to be well represented in the trunca
spectral domain. Comparing results while varying the l
cation of the initial perturbation, its actual size, and th
total duration of the simulation allows us to estimate the e
ror on all the measured quantities. The initial perturbati
gives rise to a wave packet growing in time and expandi
in space. In order to separate the phase and the amplit
of the signal, we construct its analytic continuation by a
plying a Hilbert transform [25]. Instead of computing th
Floquet exponent while moving on a ray, we filter out a
the wave numbers higher than the wave number of the
sic flow. In this particular case, because the spectrum ix
presents a suitable band structure, this filtering proves its
sufficient and the computed response exhibits no variat
synchronized with the underlying basic flow. Using th
Hilbert transform on the wave packet one has to be co
scious that the associated convolution withiypx produces
an algebraic spatial decay on the side of the wave pac
Therefore the reconstructed amplitude was systematic
plotted with the initial signal to delineate the region whe
the wave packet amplitude was correctly estimated. A
ter this control procedure, the time series of the wa
packet envelope was drawn versusy  xyt, t sxd being
the time (distance) from the initial perturbation. Figure
obtained forr  0 (defining the hyperbolic tangent pro
file), clearly shows that the wave packet grows expone
tially between two critical values ofy  xyt, 6yc. The
growth rate measured on each rayxyt  y is presented
in Fig. 2. Asymptotic theory for an infinite domain tells
us that, whent goes to infinity, the wave which emerge
on a ray corresponds todvydk  y and its growth rate
along the ray is such thatssyd  Im sv 2 ykd. As our

FIG. 1. Evolution of the wave packet generated by an initi
perturbation localized in space. The time series is compu
by a direct numerical simulation of the Navier-Stokes equatio
linearized around the homogeneous hyperbolic tangent pro
The amplitude of the wave packet is plotted versusxyt  y in
order to follow its evolution on rays radiating from the initia
perturbation location.
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FIG. 2. Growth rate of the wave packet envelope measure
fixed xyt  y on Fig. 1 (dashed line) versus the growth ra
predicted by Huerre and Monkewitz [26] (solid line).

numerical domain is finite, the total time of the simulatio
tmax should remain short enough for the wave packet to
smaller than half the box in order to avoid interaction b
tween the leading and the trailing edges of the wave pac
but large enough to correspond to the asymptotic regi
In the numerical simulationtmax is about 40 and the valid-
ity of this crucial approximation is verifieda posteriorifor
each run by checking that the growth ratessyd has indeed
saturated.

Figure 2 compares the growth rate on raysxyt  y ob-
tained for the hyperbolic tangent profilesr  0d by the-
oretical inviscid analysis of Huerre and Monkewitz [26
and by our numerical technique. The agreement betw
theoretically and numerically estimated values ofssyd is
remarkably good, the small departure being due to visc
effects as our Reynolds number Re is finite and equa
500. This is confirmed by the fact that the maximum sp
tiotemporal growth rate we have measured is extrem
close to the maximum temporal growth rate reported
the literature [2] for this Reynolds number as it shou
From Fig. 2 we determine the trailing edge velocit
yc  0.735 6 0.015, as the point such thatssycd  0.
Using a Galilean transformation to return to the labo
tory frame, we predict that, for the homogeneous visco
mixing layer, the velocity in the lower layer of the profil
should be negative and such that the velocity ratio [2
R ; 1yy is greater thanRc ; 1yyc  1.36 6 0.03 for
the instability to be absolute, in excellent agreement w
the inviscid theoretical result of Huerre and Monkewi
[26], who find the value 1.315. Having now validated th
numerical procedure, we repeat this study for the fam
of Stuart vortices withr varying from 0 to 0.75 (Fig. 3).
The inviscid theoretical result [27] for the absolute inst
bility of a single row of point vorticessr  1d, which
gives ssyd  1 2 y2 and k  1 1 iy, is reported on
Fig. 3 together with the numerical results. Figure 3 sho
that the more concentrated the Stuart vortices are,
faster the impulse wave packet spreads, reaching asy
totically the front velocity61 for r  1. Practically,
this means that the back flow needed to trigger ab
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FIG. 3. Same as Fig. 2 for various values of the Stua
parameterr. For r  0 to 0.75 the growth rate is computed,
whereas forr  1 (the limiting case of point vortices) the
growth rate is theoretically predicted [27].

lute instability is smaller when the primary vortices are
more concentrated. These results are synthesized in Fig
where the threshold for the velocity ratioR, which will
yield absolute instability, is plotted versusr. Whereas
a strong backflowsR  1.36d is necessary to trigger ab-
solute primary instability (with no preexisting vortices
r  0), the secondary instability becomes absolute fo
a backflow almost nilsR , 1d when the saturated pri-
mary vortices are sufficiently concentratedsr , 1d. In
this latter case the selected wave number (obtained fro
the gradient in thex direction of the phase of the analyti-
cal signal) on the trailing edge of the wave packet tend
to 1 and therefore corresponds to period doubling (pairin
instability).

When considering the nonlinear evolution of a sepa
rated shear flow (a mixing layer, a jet, or a backward fac
ing step) one may imagine that, for small or even near

FIG. 4. Domains of absolutesAd and convectivesCd instabil-
ity in the sR, rd plane. The error bars represent the maximum
variation of the critical values ofR while varying the location
of the initial perturbation, its actual size, and the total duratio
of the simulation.
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zerobackflow, a subharmonic resonance, due to the pr
ence of a region of absolute secondary instability pr
vailing on the saturated row of Kelvin-Helmoltz billows
could occur when the flow is forced at a suitable fund
mental frequency. A subharmonic cascade could occ
because the pairing instability while saturating will giv
rise to a periodic row of vortices with twice the origi
nal spacing, which in turn might be absolutely unstab
to the pairing. If one forces the primary mode of a she
layer, one should observe a coherent sequence of pai
events, associated with a strong subharmonic compon
in the power spectrum of any physical signal. This ca
cade, although attributed to an acoustic feedback, has b
observed in the recent experiments [28] where a jet o
flow over a backward facing step is forced close to
natural frequency, and in which period doubling and qu
drupling are naturally strongly present and phase lock
The absolute subharmonic instability mechanism cons
tutes another interpretation of these observations. N
experiments or numerical simulations where, for examp
a coflow is added around the jet, are desirable to discrim
nate between the acoustic feedback and the absolute in
bility explanations.

A similar analysis is presently being undertaken f
the three-dimensional instabilities of the same basic flo
(Stuart vortices), because we believe that transition to
absolute secondary 3D instability might actually be a
alternative interpretation of the mixing transition and
route to turbulence for open shear flows. The concept
secondary absolute or convective instability, already re
ognized and applied for amplitude equations [13,21,2
should be systematically taken into account when co
sidering the sequence of bifurcations occurring in
extended system in which a particular frame (here t
laboratory frame) is singled out by the boundary cond
tions or continuous forcing. The present Letter gives
practical and general tool to determine for a real flow t
absolute or convective nature of the secondary instabil
These results allow us to propose an alternative interpre
tion based on the absolute subharmonic instability for t
subharmonic resonance of a forced jet or a forced ba
ward facing step flow, attributed previously to an acous
feedback [28].
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