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SURJECTIONS AND DOUBLE POSETS

LOÏC FOISSY AND FRÉDÉRIC PATRAS

1. Introduction

The algebraic and Hopf algebraic structures associated to permutations
[18, 5, 8] have been intensively studied and applied in various contexts. A
reason for their ubiquity is that they occur naturally in geometry, algebraic
topology and classical and stochastic integral calculus because their (non-
commutative) shuffle products encode cartesian products of simplices [21].
In combinatorics, they appear naturally in the theory of twisted algebras
and twisted Hopf algebras (aka Hopf species) [22, Sect. 5] [2]. In the theory
of operads, through the associative operad [1] and its Hopf operad structure
[17, Sect. 2], and so on...

In another direction, permutations can be encoded by pictures in the
sense of Zelevinsky [24]. This encoding is a key ingredient of his proof of
the Littlewood-Richardson rule and of the Robinson-Schensted-Knuth cor-
respondence. Recently, the first of us introduced a new approach to Hopf
algebras of permutations by means of the notion of double posets [19], closely
related to the notion of picture [10, 9, 11]. Besides making a bridge between
the combinatorial, picture-theoretic, and the Hopf algebraic approaches to
permutations, this new construction is natural in that it originates in the en-
coding of the statistics of inversions in symmetric groups (recall that, given
a permutation σ in the symmetric group Sn, the pair of integers (i, j) in [n]2,
with i < j, defines an inversion if and only if σ(i) > σ(j). Inversions are a
key notion from the Coxeter group point of view on permutations; among
others, their cardinal computes the length of the permutation).

The present article is dedicated to constructing and proving analog objects
and results for surjections. Although they are a relatively less familiar object
in view of applications of algebra and combinatorics than permutations, there
are several reasons to be interested in surjections. For example, through the
usual bijection with ordered partitions of finite initial subsets of the integers,
they appear naturally in the study of the geometry of Coxeter groups [3]
and of twisted Hopf algebras (aka Hopf species) [23, 2]. They have also been
involved recently in the modelling of quasi-shuffle products [20, 15, 14] and
their applications in stochastics [7, 6].

The theory and structure of the Hopf algebra of surjections (known as
WQSym, the Hopf algebra of word quasi-symmetric functions) [16, 4] par-
allels largely the one of bijections. The study of surjections from a picture
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and double poset theoretic point of view, which is the subject of the present
article, seems instead new.

The article is organized as follows. We introduce first a family of double
posets, weak planar posets, that generalize the planar posets of [10] and are
in bijection with surjections or, equivalently, packed words. The following
sections investigate their Hopf algebraic properties, which are inherited from
the Hopf algebra structure of double posets and their relations with WQSym.

2. Weak plane posets

Recall that a double poset is a set equipped with two orders. A quasi-order
is a binary relation ≤ which is reflexive and transitive but not necessarily
antisymmetric (so that one may have x ≤ y and y ≤ x with x 6= y). A
quasi-order is total when all elements are comparable (it holds that x ≤ y

or y ≤ x for arbitrary x and y). When x ≤ y and y ≤ x, we write x ≡ y and
say that x and y are equivalent (the relation ≡ is an equivalence relation).
A quasi-poset is a set equipped with a quasi-order. All the posets, double
posets, quasi-posets... we will consider are assumed to be finite (we omit
therefore “finite” in our definitions and statements).

Definition 1. A weak plane poset is a double poset (P,≤1,≤2) such that:

(1) For all x, y ∈ P , (x ≤1 y and x ≤2 y) =⇒ (x = y).
(2) The relation � defined on P by (x ≤1 y or x ≤2 y) is a total quasi-

order.

In particular, the relation defined by (x � y and y � x) is an equivalence
relation (we denote it as above by ≡).

Example. A plane poset is a double poset (P,≤1,≤2) such that:

• For all x, y ∈ P , if x and y are comparable for both ≤1 and ≤2, then
x = y.

• For all x, y ∈ P , x and y are comparable for ≤1 or for ≤2.

By proposition 11 of [10], if (P,≤1,≤2) is a plane poset, then � is a total
order, and obviously (1) is also satisfied. So plane posets are weak plane.
Moreover, if P is a weak plane poset, then � is an order if, and only if, P is
plane: by (2), two distinct elements x, y are always comparable and the fact
that � is an order implies that they cannot be comparable for both ≤1 and
≤2.

Lemma 2. Let (P,≤1,≤2) be a weak plane poset. Then:

(3) The relation ≪ defined on P by (y ≤1 x or x ≤2 y) is a total order.

Proof. Let x, y, z ∈ P , such that x≪ y and y ≪ z. Three cases are possible:

• (y ≤1 x and z ≤1 y) or (x ≤2 y and y ≤2 z). Then (z ≤1 x or
x ≤2 z), so x≪ z.

• x ≤2 y and z ≤1 y. As � is a total quasi-order, two subcases are
possible.
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– x � z, then x ≤1 z or x ≤2 z. If x ≤2 z, then x≪ z. If x ≤1 z,
then x ≤1 y and x ≤2 y. By (1), x = y, so x≪ z.

– z � x, then z ≤1 x or z ≤2 x. If z ≤1 x, then x≪ z. If z ≤2 x,
then z ≤2 y and z ≤1 y. By (1), y = z, so x≪ z.

• y ≤1 x and y ≤2 z. Similar proof.

Therefore, ≪ is transitive.
Let x, y ∈ P , such that x≪ y and y ≪ x. Two cases are possible:

(1) (y ≤1 x and x ≤1 y) or (x ≤2 y and y ≤2 x): then x = y.
(2) y ≤1 x and y ≤2 x, or x ≤1 y and x ≤2 y: by (1), x = y.

So ≪ is an order.
For all x, y ∈ P , x � y or y � x, so y ≤1 x or x ≤2 y or x ≤1 y or y ≤2 x,

so x≪ y or y ≪ x: ≪ is total. �

Remark. (3) implies (1), but not (2).

3. Surjections and packed words

When a surjection f from [n] to [k] is represented by the sequence of
its values, wf := f(1) . . . f(n), the word wf is packed: its set of letters
identifies with an initial subset of the integers (in that case, [k]). Conversely,
an arbitrary packed word of length n can always be obtained in that way:
packed words (on length n) are in bijection with surjections (with domain
[n] and codomain an initial subset of the integers).

Recall also that total quasi-orders � on [n] are in bijection with packed
words. An example gives the general rule: assume that n = 6 and that the
quasi-order is defined by

2 ≡ 5 � 1 ≡ 3 ≡ 6 � 4.

Then, the corresponding packed word is 212312: the first equivalence class
{2, 5} gives the position of letter 1, the second, {1, 3, 6}, the positions of
letter 2, and so on.

Proposition 3. Let w be a packed word of length n. The double poset Pw

(also written Dp(w)) is defined by Pw = ([n],≤1,≤2), with:

∀i, j ∈ [n], i ≤1 j ⇐⇒ (i ≥ j and w(i) ≤ w(j)),

i ≤2 j ⇐⇒ (i ≤ j and w(i) ≤ w(j))

It is a weak plane poset. The total quasi-order � is the one associated bijec-
tively to w.

Proof. The fact that Pw is a double poset is obvious. For all i, j ∈ [n], if
i ≤1 j and i ≤2 j, then i ≥ j and i ≤ j, so i = j: (1) is verified. Moreover:

i � j ⇐⇒ w(i) ≤ w(j),



4 LOÏC FOISSY AND FRÉDÉRIC PATRAS

so � is indeed a total quasi-order. Finally, remark that the total order ≪
agrees with the natural order:

i≪ j ⇐⇒ i ≤ j.

�

Theorem 4. The set of packed words of length n and of isomorphism
classes of weak plane posets are in bijection through Dp. The inverse map
pack is given as follows. Let P a weak double poset. By Lemma 2 we can
assume that P = [n] with ≪ the natural order. Then, Dp−1(P ) =: pack(P )
is the packed word associated to the total quasi-order �.

Proof. Let us show first that for any packed words w, w′, the double posets
Pw and Pw′ are isomorphic if, and only if, w = w′. Let f : Pw → Pw′ be an
isomorphism. Then f is increasing from ([n],≪) to ([n′],≪′). As ≪ and ≪′

are the usual total orders of [n] and [n′], n = n′ and f = Id[n]. Consequently,
for all i, j ∈ [n], assuming that i ≤ j:

w(i) ≤ w(j) ⇐⇒ i ≤2 j ⇐⇒ i ≤′
2 j ⇐⇒ w′(i) ≤ w′(j).

As w and w′ are packed words, w = w′.

Let P now be a weak plane poset and let us show that Dp(pack(P )) = P .
We can assume that (P,≪) = ([n],≤). The packed word w = pack(P ) is
such that for all i, j ∈ [n], i � j ⇐⇒ w(i) ≤ w(j). We denote by ≤′

1 and ≤′
2

the orders of Pw. Then, for all i, j ∈ [n]:

i ≤′
1 j ⇐⇒ (j ≤ i) and (w(i) ≤ w(j))

⇐⇒ (j ≪ i) and (i � j)

⇐⇒ (i ≤1 j or j ≤2 i) and (i ≤1 j or i ≤2 j)

⇐⇒ (i ≤1 j) or (j ≤2 i and i ≤2 j)

⇐⇒ (i ≤1 j) or (i = j)

⇐⇒ i ≤1 j.

So ≤′
1=≤1. Similarly, ≤′

2=≤2. �

4. The self-dual Hopf algebra structure

We denote by HWPP the vector space generated by isomorphism classes
of weak plane posets and show below how definitions and results in [19, 13]
apply in this context (definitions and results relative to double posets are
taken from [19]).
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Let P,Q be two double posets. Two preorders are defined on P ⊔Q by:

∀i, j ∈ P ⊔Q, i ≤1 j if (i, j ∈ P and i ≤1 j)

or (i, j ∈ Q and i ≤1 j);

i ≤2 j if (i, j ∈ P and i ≤2 j)

or (i, j ∈ Q and i ≤2 j)

or (i ∈ P and j ∈ Q).

This defines a double poset denoted by PQ. Extending this product by bi-
linearity makes the linear span HDP of double posets an associative algebra,
whose unit is the empty double poset denoted 1. If P and Q are weak plane
posets, then so is PQ: HWPP is a subalgebra of HDP .

Definition 5. Let P be a double poset (resp. weak double poset) and let
X ⊆ P .

• X is also a double poset (resp. weak) by restriction of ≤1 and ≤2:
we denote this double poset (resp. weak) by P|X .

• We shall say that X is an open set of P if:

∀i, j ∈ P, i ≤1 j and i ∈ X =⇒ j ∈ X.

The set of open sets of P is denoted by Top(P ).
• A coproduct is defined on HDP (resp. HWPP ) by

∆(P ) =
∑

O∈Top(P )

P|P\O ⊗ P|O.

Theorem 6. The product and the coproduct equip HDP and therefore its
subspace HWPP with the structure of a graded, connected Hopf algebra.

See [19] for a proof of the compatibility properties between the product
and the coproduct characterizing a Hopf algebra.

Recall that, for P = (P,≤1,≤2), ι(P ) := (P,≤2,≤1). If P is a weak plane
poset, then so is ι(P ). Recall also that there exists a pairing on HDP defined,
for two double posets P,Q by

〈P,Q〉 := ♯P ic(P,Q),

where Pic(P,Q) stands for the number of pictures between P and Q (a
picture between P and Q is a bijection f such that

i ≤1 j ⇒ f(i) ≤2 f(j), f(i) ≤1 f(j) ⇒ i ≤2 j.)

The Hopf algebra of double poset HDP is self-dual for this pairing. By
Proposition 24 of [13]:

Proposition 7. The Hopf algebra HWPP is a self-dual Hopf subalgebra
of the Hopf algebra of double poset HDP .
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5. Linear extensions and WQSym.

Definition 8. Let P = (P,≤1,≤2) be a weak plane poset. We assume that
(P,≪) = ([n],≤). A linear extension of P is a surjective map f : [n] −→ [k]
such that:

(1) For all i, j ∈ [n], i ≤1 j =⇒ f(i) ≤ f(j).
(2) For all i, j ∈ [n], f(i) = f(j) =⇒ i ≡ j.

The set of linear extensions of P is denoted by Lin(P ).

If f is a linear extension of a weak plane poset P , we see it as a packed
word f(1) . . . f(n).

Let us denote by PW (n) the set of packed words of length n. Recall that
WQSym is given two products, its usual one, denoted by ., and the shifted
shuffle product [12]. Denoting by ∆ the usual coproduct of WQSym,
both (WQSym, ,∆) and (WQSym, .,∆) are Hopf algebras.

For example:

(1) (1) = (12) + (21),

(1).(2) = (12) + (21) + (11).

Proposition 9. The following map is a Hopf algebra morphism:

φ :







HWPP −→ (WQSym, ,∆)

P −→
∑

f∈Lin(P )

f.

Proof. We omit it since it is similar to the proof of Theorem 18 of [10]. �

Proposition 10. For all f, g ∈ PW (n), we shall say that f ≤ g if:

(1) For all i, j ∈ [n], i ≥ j and f(i) ≤ f(j) =⇒ g(i) ≤ g(j).
(2) For all i, j ∈ [n], g(i) = g(j) =⇒ f(i) = f(j).

Then ≤ is an order on PW (n). Moreover, for all f ∈ PW (n):

φ(Pf ) =
∑

f≤g

g.

Proof. The relation ≤ is clearly transitive and reflexive. Let us assume that
f ≤ g and g ≤ f . By (2), for all i, j ∈ [n], f(i) = f(j) if, and only if,
g(i) = g(j). Hence, putting k = max(f) = max(g), there exists a unique
permutation σ ∈ Sk such that for all i ∈ [k], f−1(i) = g−1(σ(i)). By (1), if
i ≥ j, then g(i) ≤ g(j) ⇐⇒ f(i) ≤ f(j). Hence:

max f−1(1) = max{i ∈ [n] | ∀j ≤ i, f(i) ≤ f(j)}

= max{i ∈ [n] | ∀j ≤ i, g(i) ≤ g(j)}

= max g−1(1)

= max(g−1(σ(1)),
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so σ(1) = 1. Iterating this, one shows that σ = Idk, so f = g: the relation
≤ is an order. Let f, g ∈ PW (n). Then:

g ∈ Lin(f) ⇐⇒

{

∀i, j ∈ [n], i ≥ j and f(i) ≤ f(j) =⇒ g(i) ≤ g(j),

∀i, j ∈ [n], g(i) = g(j) =⇒ f(i) = f(j)

⇐⇒ f ≤ g.

So Lin(Pf ) = {g ∈ PW (n), f ≤ g}. �

Corollary 11. φ is a Hopf algebra isomorphism.

Here are the Hasse graphs of (PW (2),≤) and (PW (3),≤).
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Remark. If f and g are two permutations, then:

f ≤ g ⇐⇒ ∀i, j ∈ [n], i > j and f(i) < f(j) =⇒ g(i) < g(j)

⇐⇒ Desc(f) ⊆ Desc(g).

So the restriction of ≤ to Sn is the right weak Bruhat order.

Definition 12. Let P = (P,≤1,≤2) be a weak plane poset. We assume
that (P,≪) = ([n],≤). A weak linear extension of P is a surjective map
f : [n] −→ [k] such that:

(1) For all i, j ∈ [n], i ≤1 j =⇒ f(i) ≤ f(j).
(2) For all i, j ∈ [n], if i ≤1 j and f(i) = f(j) =⇒ i ≡ j.

The set of weak linear extensions of P is denoted by WLin(P ).

In [12], an order is defined on PW (n): for all f, g ∈ PW (n), f ≺ g if

(1) For all i, j ∈ [n], g(i) ≤ g(j) =⇒ f(i) ≤ f(j).
(2) For all i, j ∈ [n], i < j and g(i) > g(j) =⇒ f(i) > f(j).

It is proved that the following map is a Hopf algebra isomorphism:

ψ :







(WQSym, ,∆) −→ (WQSym, .,∆)

f −→
∑

g�f

g.
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Lemma 13. Let P be a weak plane poset. Then:

WLin(P ) =
⊔

f∈Lin(P )

{g ∈ PW (n), g � f}.

Proof. ⊆. Let g ∈ WLin(P ). For any p ∈ [max(g)], we put Pp = P|g−1(p).
Then Pp is a weak plane poset, so there exists a unique packed word fp such
that Pp is isomorphic to Pfp . Let us define g′ by g′(i) = fp(i) + max(f1) +
. . .+max(fp−1) for any i ∈ Pp; g

′ is a packed word.
Let us show first that g′ ∈ Lin(p). Assume that i ≤1 j. Then g(i) ≤ g(j).

Let us show that we also have g′(i) ≤ g′(j):

• If we don’t have i ≡ j, then, as g is a weak linear extension of P ,
g(i) < g(j), which implies g′(i) < g′(j).

• If g(i) = g(j) = p, then i ≡ j in Pp, so fp(i) = fp(j) and finally
g′(i) = g′(j).

Now, if g′(i) = g′(j), then g(i) = g(j) = p and fp(i) = fp(j), so i ≡ j in Pp

and finally i ≡ j: g′ ∈ Lin(P ).
Let us show finally that g � g′. If g′(i) ≤ g′(j), then necessarily g(i) ≤

g(j). Let us assume i < j and g′(i) > g′(j). Then g(i) ≥ g(j). If
g(i) = g(j) = p, then fp(i) > fp(j), so j ≤i 1 and we do not have i ≡ j: this
contradicts the fact that g is a weak linear extension. So g(i) > g(j), and
finally g � g′.

⊇. Let f ∈ Lin(P ) and g � f . If i ≤1 j, then f(i) ≤ f(j), so
g(i) ≤ g(j). If moreover g(i) = g(j), as i ≥ j (because i ≤1 j), we can
not have f(i) < f(j) as g � f , so f(i) = f(j) and i ≡ j. So g ∈WLin(P ).

Disjoint union. Let f, f ′ ∈ Lin(P ), such that there exists g ∈ PW (n),
g � f, f ′. Let us consider i < j. If f(i) > f(j), then g(i) > g(j). If f ′(i) ≤
f ′(j), we would have g(i) ≤ g(j), contradiction. Hence, by symmetry:

∀i, j ∈ [n] such that i < j, f(i) > f(j) ⇐⇒ f ′(i) > f ′(j),

f(i) ≤ f(j) ⇐⇒ f ′(i) ≤ f ′(j).

Let us assume that i < j and f(i) = f(j). Then i ≡ j, and f ′(i) ≤ f ′(j). As
P is isomorphic to Ph for a certain packed word h, i < j and h(i) = h(j),
so j ≤1 i in P ; consequently, f ′(j) ≤ f ′(i) and finally f ′(i) = f ′(j). As a
conclusion:

∀i, j ∈ [n] such that i < j, f(i) > f(j) ⇐⇒ f ′(i) > f ′(j),

f(i) = f(j) ⇐⇒ f ′(i) = f ′(j),

f(i) < f(j) ⇐⇒ f ′(i) < f ′(j).

So Pf = Pf ′ , which implies f = f ′. �
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Proposition 14. The following map is a Hopf algebra isomorphism:

φ′ = ψ ◦ φ :







HWPP −→ (WQSym, .,∆)

Pf −→
∑

f∈WLin(P )

f.

Proof. Indeed, for any packed word f , by the preceding lemma:

ψ ◦ φ(Pf ) =
∑

f∈Lin(P )

∑

g�f

g =
∑

f∈WLin(P )

f.

By composition, φ′ is an isomorphism. �

Examples. We order the packed words of degree 2 in the following way:
(11,12,21).

(1) The matrices of φ and φ′ from the basis (Pf )f∈PW (2) to the basis
PW (2) are respectively given by:





1 0 0
0 1 0
1 1 1



 ,





1 1 0
0 1 0
1 1 1



 .

(2) The matrix of the pairing of HWPP in the basis (Pf )f∈PW (2) is given
by:





1 1 0
1 2 1
0 1 0



 .

(3) Via φ and φ′, (WQSym, ,∆) and (WQSym, .,∆) inherit nonde-
generate Hopf pairings. The matrices of these pairings in the basis
PW (2) are respectively given by:





1 0 0
0 0 1
0 1 0



 ,





1 −1 0
−1 1 1
0 1 0



 .
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