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Introduction

The algebraic and Hopf algebraic structures associated to permutations [START_REF] Malvenuto | Duality between quasi-symmetrical functions and the Solomon descent algebra[END_REF][START_REF] Duchamp | Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras[END_REF][START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] have been intensively studied and applied in various contexts. A reason for their ubiquity is that they occur naturally in geometry, algebraic topology and classical and stochastic integral calculus because their (noncommutative) shuffle products encode cartesian products of simplices [START_REF] Patras | Construction géométrique des idempotents eulériens. filtration des groupes de polytopes et des groupes d'homologie de hochschild[END_REF]. In combinatorics, they appear naturally in the theory of twisted algebras and twisted Hopf algebras (aka Hopf species) [START_REF] Patras | On descent algebras and twisted bialgebras[END_REF]Sect. 5] [START_REF] Aguiar | Monoidal functors, species and hopf algebras[END_REF]. In the theory of operads, through the associative operad [START_REF] Aguiar | The associative operad and the weak order on the symmetric groups[END_REF] and its Hopf operad structure [START_REF] Livernet | Lie theory for Hopf operads[END_REF]Sect. 2], and so on... In another direction, permutations can be encoded by pictures in the sense of Zelevinsky [START_REF] Zelevinsky | A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence[END_REF]. This encoding is a key ingredient of his proof of the Littlewood-Richardson rule and of the Robinson-Schensted-Knuth correspondence. Recently, the first of us introduced a new approach to Hopf algebras of permutations by means of the notion of double posets [START_REF]A self paired Hopf algebra on double posets and a Littlewood-Richardson rule[END_REF], closely related to the notion of picture [START_REF]Plane posets, special posets, and permutations[END_REF][START_REF]Algebraic structures on double and plane posets[END_REF][START_REF]Deformation of the Hopf algebra of plane posets[END_REF]. Besides making a bridge between the combinatorial, picture-theoretic, and the Hopf algebraic approaches to permutations, this new construction is natural in that it originates in the encoding of the statistics of inversions in symmetric groups (recall that, given a permutation σ in the symmetric group S n , the pair of integers (i, j) in [n] 2 , with i < j, defines an inversion if and only if σ(i) > σ(j). Inversions are a key notion from the Coxeter group point of view on permutations; among others, their cardinal computes the length of the permutation).

The present article is dedicated to constructing and proving analog objects and results for surjections. Although they are a relatively less familiar object in view of applications of algebra and combinatorics than permutations, there are several reasons to be interested in surjections. For example, through the usual bijection with ordered partitions of finite initial subsets of the integers, they appear naturally in the study of the geometry of Coxeter groups [3] and of twisted Hopf algebras (aka Hopf species) [START_REF] Patras | Twisted descent algebras and the Solomon-Tits algebra[END_REF][START_REF] Aguiar | Monoidal functors, species and hopf algebras[END_REF]. They have also been involved recently in the modelling of quasi-shuffle products [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras[END_REF][START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF][START_REF] Foissy | Lie theory for quasi-shuffle bialgebras[END_REF] and their applications in stochastics [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF][START_REF] Ebrahimi-Fard | Flows and stochastic Taylor series in Itô calculus[END_REF].

The theory and structure of the Hopf algebra of surjections (known as WQSym, the Hopf algebra of word quasi-symmetric functions) [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF][START_REF] Chapoton | Algebres de Hopf des permutoèdres, associaèdres et hypercubes[END_REF] parallels largely the one of bijections. The study of surjections from a picture and double poset theoretic point of view, which is the subject of the present article, seems instead new.

The article is organized as follows. We introduce first a family of double posets, weak planar posets, that generalize the planar posets of [START_REF]Plane posets, special posets, and permutations[END_REF] and are in bijection with surjections or, equivalently, packed words. The following sections investigate their Hopf algebraic properties, which are inherited from the Hopf algebra structure of double posets and their relations with WQSym.

Weak plane posets

Recall that a double poset is a set equipped with two orders. A quasi-order is a binary relation ≤ which is reflexive and transitive but not necessarily antisymmetric (so that one may have x ≤ y and y ≤ x with x = y). A quasi-order is total when all elements are comparable (it holds that x ≤ y or y ≤ x for arbitrary x and y). When x ≤ y and y ≤ x, we write x ≡ y and say that x and y are equivalent (the relation ≡ is an equivalence relation). A quasi-poset is a set equipped with a quasi-order. All the posets, double posets, quasi-posets... we will consider are assumed to be finite (we omit therefore "finite" in our definitions and statements). Definition 1. A weak plane poset is a double poset (P, ≤ 1 , ≤ 2 ) such that:

(1) For all x, y ∈ P , (x ≤ 1 y and x ≤ 2 y) =⇒ (x = y).

(2) The relation defined on P by (x ≤ 1 y or x ≤ 2 y) is a total quasiorder.

In particular, the relation defined by (x y and y x) is an equivalence relation (we denote it as above by ≡).

Example. A plane poset is a double poset (P, ≤ 1 , ≤ 2 ) such that:

• For all x, y ∈ P , if x and y are comparable for both ≤ 1 and ≤ 2 , then x = y. • For all x, y ∈ P , x and y are comparable for ≤ 1 or for ≤ 2 . By proposition 11 of [START_REF]Plane posets, special posets, and permutations[END_REF], if (P, ≤ 1 , ≤ 2 ) is a plane poset, then is a total order, and obviously (1) is also satisfied. So plane posets are weak plane. Moreover, if P is a weak plane poset, then is an order if, and only if, P is plane: by (2), two distinct elements x, y are always comparable and the fact that is an order implies that they cannot be comparable for both ≤ 1 and ≤ 2 . Lemma 2. Let (P, ≤ 1 , ≤ 2 ) be a weak plane poset. Then:

(3) The relation ≪ defined on P by (y ≤ 1 x or x ≤ 2 y) is a total order.

Proof. Let x, y, z ∈ P , such that x ≪ y and y ≪ z. Three cases are possible:

• (y ≤ 1 x and z ≤ 1 y) or (x ≤ 2 y and y ≤ 2 z). Then (z ≤ 1 x or x ≤ 2 z), so x ≪ z. • x ≤ 2 y and z ≤ 1 y.
As is a total quasi-order, two subcases are possible.

-x z, then x ≤ 1 z or x ≤ 2 z. If x ≤ 2 z, then x ≪ z. If x ≤ 1 z, then x ≤ 1 y and x ≤ 2 y. By (1), x = y, so x ≪ z. -z x, then z ≤ 1 x or z ≤ 2 x. If z ≤ 1 x, then x ≪ z. If z ≤ 2 x,
then z ≤ 2 y and z ≤ 1 y. By (1), y = z, so x ≪ z. • y ≤ 1 x and y ≤ 2 z. Similar proof. Therefore, ≪ is transitive.

Let x, y ∈ P , such that x ≪ y and y ≪ x. Two cases are possible:

(1) (y ≤ 1 x and x ≤ 1 y) or (x ≤ 2 y and y ≤ 2 x): then x = y.

(2) y ≤ 1 x and y ≤ 2 x, or x ≤ 1 y and x ≤ 2 y: by ( 1), x = y.

So ≪ is an order. For all x, y ∈ P , x y or y x, so y ≤ 1 x or x ≤ 2 y or x ≤ 1 y or y ≤ 2 x, so x ≪ y or y ≪ x: ≪ is total.

Remark. (3) implies ( 1), but not (2).

Surjections and packed words

When a surjection f from [n] to [k] is represented by the sequence of its values, w f := f (1) . . . f (n), the word w f is packed: its set of letters identifies with an initial subset of the integers (in that case, [k]). Conversely, an arbitrary packed word of length n can always be obtained in that way: packed words (on length n) are in bijection with surjections (with domain [n] and codomain an initial subset of the integers).

Recall also that total quasi-orders on [n] are in bijection with packed words. An example gives the general rule: assume that n = 6 and that the quasi-order is defined by

2 ≡ 5 1 ≡ 3 ≡ 6 4.
Then, the corresponding packed word is 212312: the first equivalence class {2, 5} gives the position of letter 1, the second, {1, 3, 6}, the positions of letter 2, and so on. Proposition 3. Let w be a packed word of length n. The double poset P w (also written Dp(w)) is defined by

P w = ([n], ≤ 1 , ≤ 2 ), with: ∀i, j ∈ [n], i ≤ 1 j ⇐⇒ (i ≥ j and w(i) ≤ w(j)), i ≤ 2 j ⇐⇒ (i ≤ j and w(i) ≤ w(j))
It is a weak plane poset. The total quasi-order is the one associated bijectively to w.

Proof. The fact that P w is a double poset is obvious. For all i, j ∈ [n], if i ≤ 1 j and i ≤ 2 j, then i ≥ j and i ≤ j, so i = j: (1) is verified. Moreover:

i j ⇐⇒ w(i) ≤ w(j), so
is indeed a total quasi-order. Finally, remark that the total order ≪ agrees with the natural order: Proof. Let us show first that for any packed words w, w ′ , the double posets P w and P w ′ are isomorphic if, and only if, w = w ′ . Let f : P w → P w ′ be an isomorphism. Then f is increasing from

i ≪ j ⇐⇒ i ≤ j.
([n], ≪) to ([n ′ ], ≪ ′ ). As ≪ and ≪ ′ are the usual total orders of [n] and [n ′ ], n = n ′ and f = Id [n] .
Consequently, for all i, j ∈ [n], assuming that i ≤ j:

w(i) ≤ w(j) ⇐⇒ i ≤ 2 j ⇐⇒ i ≤ ′ 2 j ⇐⇒ w ′ (i) ≤ w ′ (j).
As w and w ′ are packed words, w = w ′ .

Let P now be a weak plane poset and let us show that Dp(pack(P )) = P . We can assume that (P, ≪) = ([n], ≤). The packed word w = pack(P ) is such that for all i, j ∈ [n], i j ⇐⇒ w(i) ≤ w(j). We denote by ≤ ′ 1 and ≤ ′ 2 the orders of P w . Then, for all i, j ∈ [n]:

i ≤ ′ 1 j ⇐⇒ (j ≤ i) and (w(i) ≤ w(j)) ⇐⇒ (j ≪ i) and (i j)

⇐⇒ (i ≤ 1 j or j ≤ 2 i) and (i ≤ 1 j or i ≤ 2 j) ⇐⇒ (i ≤ 1 j) or (j ≤ 2 i and i ≤ 2 j) ⇐⇒ (i ≤ 1 j) or (i = j) ⇐⇒ i ≤ 1 j. So ≤ ′ 1 =≤ 1 . Similarly, ≤ ′ 2 =≤ 2 .

The self-dual Hopf algebra structure

We denote by H W P P the vector space generated by isomorphism classes of weak plane posets and show below how definitions and results in [START_REF]A self paired Hopf algebra on double posets and a Littlewood-Richardson rule[END_REF][START_REF] Foissy | A theory of pictures for quasi-posets[END_REF] apply in this context (definitions and results relative to double posets are taken from [START_REF]A self paired Hopf algebra on double posets and a Littlewood-Richardson rule[END_REF]).

Let P, Q be two double posets. Two preorders are defined on P ⊔ Q by: ∀i, j ∈ P ⊔ Q, i ≤ 1 j if (i, j ∈ P and i ≤ 1 j) or (i, j ∈ Q and i ≤ 1 j); i ≤ 2 j if (i, j ∈ P and i ≤ 2 j) or (i, j ∈ Q and i ≤ 2 j) or (i ∈ P and j ∈ Q).

This defines a double poset denoted by P Q. Extending this product by bilinearity makes the linear span H DP of double posets an associative algebra, whose unit is the empty double poset denoted 1. If P and Q are weak plane posets, then so is P Q: H W P P is a subalgebra of H DP .

Definition 5. Let P be a double poset (resp. weak double poset) and let X ⊆ P .

• X is also a double poset (resp. weak) by restriction of ≤ 1 and ≤ 2 :

we denote this double poset (resp. weak) by P |X . • We shall say that X is an open set of P if: ∀i, j ∈ P, i ≤ 1 j and i ∈ X =⇒ j ∈ X.

The set of open sets of P is denoted by T op(P ).

• A coproduct is defined on H DP (resp. H W P P ) by

∆(P ) =

O∈T op(P ) P |P \O ⊗ P |O . Theorem 6. The product and the coproduct equip H DP and therefore its subspace H W P P with the structure of a graded, connected Hopf algebra.

See [START_REF]A self paired Hopf algebra on double posets and a Littlewood-Richardson rule[END_REF] for a proof of the compatibility properties between the product and the coproduct characterizing a Hopf algebra.

Recall that, for P = (P, ≤ 1 , ≤ 2 ), ι(P ) := (P, ≤ 2 , ≤ 1 ). If P is a weak plane poset, then so is ι(P ). Recall also that there exists a pairing on H DP defined, for two double posets P, Q by P, Q := ♯P ic(P, Q), where P ic(P, Q) stands for the number of pictures between P and Q (a picture between P and Q is a bijection f such that

i ≤ 1 j ⇒ f (i) ≤ 2 f (j), f (i) ≤ 1 f (j) ⇒ i ≤ 2 j.)
The Hopf algebra of double poset H DP is self-dual for this pairing. By Proposition 24 of [START_REF] Foissy | A theory of pictures for quasi-posets[END_REF]: Proposition 7. The Hopf algebra H W P P is a self-dual Hopf subalgebra of the Hopf algebra of double poset H DP .

Linear extensions and WQSym.

Definition 8. Let P = (P, ≤ 1 , ≤ 2 ) be a weak plane poset. We assume that (P, ≪) = ([n], ≤). A linear extension of P is a surjective map f :

[n] -→ [k] such that: (1) For all i, j ∈ [n], i ≤ 1 j =⇒ f (i) ≤ f (j). ( 2 
) For all i, j ∈ [n], f (i) = f (j) =⇒ i ≡ j.
The set of linear extensions of P is denoted by Lin(P ).

If f is a linear extension of a weak plane poset P , we see it as a packed word f (1) . . . f (n).

Let us denote by P W (n) the set of packed words of length n. Recall that WQSym is given two products, its usual one, denoted by ., and the shifted shuffle product [START_REF] Foissy | The Hopf algebra of finite topologies and T -partitions[END_REF]. Denoting by ∆ the usual coproduct of WQSym, both (WQSym, , ∆) and (WQSym, ., ∆) are Hopf algebras.

For example:

(1) (1) = ( 12) + ( 21),

(1).( 2) = ( 12) + ( 21) + [START_REF]Deformation of the Hopf algebra of plane posets[END_REF].

Proposition 9. The following map is a Hopf algebra morphism:

φ :    H W P P -→ (WQSym, , ∆) P -→ f ∈Lin(P ) f.
Proof. We omit it since it is similar to the proof of Theorem 18 of [START_REF]Plane posets, special posets, and permutations[END_REF].

Proposition 10. For all f, g ∈ P W (n), we shall say that f ≤ g if:

(1) For all i, j ∈ [n], i ≥ j and f (i) ≤ f (j) =⇒ g(i) ≤ g(j).

(2) For all i, j ∈ [n], g(i) = g(j) =⇒ f (i) = f (j). Then ≤ is an order on P W (n). Moreover, for all f ∈ P W (n):

φ(P f ) = f ≤g g.
Proof. The relation ≤ is clearly transitive and reflexive. Let us assume that f ≤ g and g ≤ f . By [START_REF] Aguiar | Monoidal functors, species and hopf algebras[END_REF], for all i, j ∈ [n], f (i) = f (j) if, and only if, g(i) = g(j). Hence, putting k = max(f ) = max(g), there exists a unique permutation σ ∈ S k such that for all i ∈

[k], f -1 (i) = g -1 (σ(i)). By (1), if i ≥ j, then g(i) ≤ g(j) ⇐⇒ f (i) ≤ f (j). Hence: max f -1 (1) = max{i ∈ [n] | ∀j ≤ i, f (i) ≤ f (j)} = max{i ∈ [n] | ∀j ≤ i, g(i) ≤ g(j)} = max g -1 (1)
= max(g -1 (σ(1)), so σ(1) = 1. Iterating this, one shows that σ = Id k , so f = g: the relation ≤ is an order. Let f, g ∈ P W (n). Then:

g ∈ Lin(f ) ⇐⇒ ∀i, j ∈ [n], i ≥ j and f (i) ≤ f (j) =⇒ g(i) ≤ g(j), ∀i, j ∈ [n], g(i) = g(j) =⇒ f (i) = f (j) ⇐⇒ f ≤ g. So Lin(P f ) = {g ∈ P W (n), f ≤ g}.
Corollary 11. φ is a Hopf algebra isomorphism.

Here are the Hasse graphs of (P W (2), ≤) and (P W (3), ≤).

21 f ≤ g ⇐⇒ ∀i, j ∈ [n], i > j and f (i) < f (j) =⇒ g(i) < g(j)
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⇐⇒ Desc(f ) ⊆ Desc(g).

So the restriction of ≤ to S n is the right weak Bruhat order. Definition 12. Let P = (P, ≤ 1 , ≤ 2 ) be a weak plane poset. We assume that (P, ≪) = ([n], ≤). A weak linear extension of P is a surjective map

f : [n] -→ [k] such that: (1) For all i, j ∈ [n], i ≤ 1 j =⇒ f (i) ≤ f (j). ( 2 
) For all i, j ∈ [n], if i ≤ 1 j and f (i) = f (j) =⇒ i ≡ j.
The set of weak linear extensions of P is denoted by W Lin(P ).

In [START_REF] Foissy | The Hopf algebra of finite topologies and T -partitions[END_REF], an order is defined on P W (n): for all f, g

∈ P W (n), f ≺ g if (1) For all i, j ∈ [n], g(i) ≤ g(j) =⇒ f (i) ≤ f (j). (2) 
For all i, j ∈ [n], i < j and g(i) > g(j) =⇒ f (i) > f (j). It is proved that the following map is a Hopf algebra isomorphism:

ψ :    (WQSym, , ∆) -→ (WQSym, ., ∆) f -→ g f g.
Lemma 13. Let P be a weak plane poset. Then:

W Lin(P ) = f ∈Lin(P ) {g ∈ P W (n), g f }.
Proof. ⊆. Let g ∈ W Lin(P ). For any p ∈ [max(g)], we put P p = P |g -1 (p) . Then P p is a weak plane poset, so there exists a unique packed word f p such that P p is isomorphic to P fp . Let us define g ′ by g ′ (i) = f p (i) + max(f 1 ) + . . . + max(f p-1 ) for any i ∈ P p ; g ′ is a packed word.

Let us show first that g ′ ∈ Lin(p). Assume that i ≤ 1 j. Then g(i) ≤ g(j). Let us show that we also have g ′ (i) ≤ g ′ (j):

• If we don't have i ≡ j, then, as g is a weak linear extension of P , g(i) < g(j), which implies g ′ (i) < g ′ (j). • If g(i) = g(j) = p, then i ≡ j in P p , so f p (i) = f p (j) and finally g ′ (i) g ′ (j).

Now, if g ′ (i) = g ′ (j), then g(i) = g(j) = p and f p (i) = f p (j), so i ≡ j in P p and finally i ≡ j: g ′ ∈ Lin(P ).

Let us show finally that g g ′ . If g ′ (i) ≤ g ′ (j), then necessarily g(i) ≤ g(j). Let us assume i < j and g ′ (i) > g ′ (j). Then g(i) ≥ g(j). If g(i) = g(j) = p, then f p (i) > f p (j), so j ≤ i 1 and we do not have i ≡ j: this contradicts the fact that g is a weak linear extension. So g(i) > g(j), and finally g g ′ .

⊇. Let f ∈ Lin(P ) and g f . If i ≤ 1 j, then f (i) ≤ f (j), so g(i) ≤ g(j). If moreover g(i) = g(j), as i ≥ j (because i ≤ 1 j), we can not have f (i) < f (j) as g f , so f (i) = f (j) and i ≡ j. So g ∈ W Lin(P ).

Disjoint union. Let f, f ′ ∈ Lin(P ), such that there exists g ∈ P W (n), g f, f ′ . Let us consider i < j. If f (i) > f (j), then g(i) > g(j). If f ′ (i) ≤ f ′ (j), we would have g(i) ≤ g(j), contradiction. Hence, by symmetry:

∀i, j ∈ [n] such that i < j, f (i) > f (j) ⇐⇒ f ′ (i) > f ′ (j), f (i) ≤ f (j) ⇐⇒ f ′ (i) ≤ f ′ (j).
Let us assume that i < j and f (i) = f (j). Then i ≡ j, and f ′ (i) ≤ f ′ (j). As P is isomorphic to P h for a certain packed word h, i < j and h(i) = h(j), so j ≤ 1 i in P ; consequently, f ′ (j) ≤ f ′ (i) and finally f ′ (i) = f ′ (j). As a conclusion: ∀i, j ∈ [n] such that i < j, f (i) > f (j) ⇐⇒ f ′ (i) > f ′ (j), Proof. Indeed, for any packed word f , by the preceding lemma:

f (i) = f (j) ⇐⇒ f ′ (i) = f ′ (j), f (i) < f (j) ⇐⇒ f ′ (i) < f ′ (j).
ψ • φ(P f ) = f ∈Lin(P ) g f g = f ∈W Lin(P ) f.
By composition, φ ′ is an isomorphism.

Examples. We order the packed words of degree 2 in the following way: [START_REF]Deformation of the Hopf algebra of plane posets[END_REF][START_REF] Foissy | The Hopf algebra of finite topologies and T -partitions[END_REF][START_REF] Patras | Construction géométrique des idempotents eulériens. filtration des groupes de polytopes et des groupes d'homologie de hochschild[END_REF].

(1) The matrices of φ and φ ′ from the basis (P f ) f ∈P W (2) to the basis P W (2) are respectively given by:  

1 0 0 0 1 0 1 1 1   ,   1 1 0 0 1 0 1 1 1   .
(2) The matrix of the pairing of H W P P in the basis (P f ) f ∈P W (2) is given by:   1 1 0 1 2 1 0 1 0   .

(3) Via φ and φ ′ , (WQSym, , ∆) and (WQSym, ., ∆) inherit nondegenerate Hopf pairings. The matrices of these pairings in the basis P W (2) are respectively given by:   1 0 0 0 0 1 0 1 0

  ,   1 -1 0 -1 1 1 0 1 0   .

Theorem 4 .

 4 The set of packed words of length n and of isomorphism classes of weak plane posets are in bijection through Dp. The inverse map pack is given as follows. Let P a weak double poset. By Lemma 2 we can assume that P = [n] with ≪ the natural order. Then, Dp -1 (P ) =: pack(P ) is the packed word associated to the total quasi-order .

  If f and g are two permutations, then:

So

  P f = P f ′ , which implies f = f ′ .Proposition 14. The following map is a Hopf algebra isomorphism:φ ′ = ψ • φ :    H W P P -→ (WQSym, ., ∆) P f -→ f ∈W Lin(P )f.