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Abstract

In the framework of the supervised learning of a real function defined on
an abstract space X , the so called Kriging method stands on a real Gaussian
field defined on X . The Euclidean case is well known and has been widely
studied. In this paper, we explore the less classical case where X is the non
commutative finite group of permutations. In this framework, we propose
and study an harmonic analysis of the covariance operators that allows us to
put into action the full machinery of Gaussian processes learning. We also
consider our framework in the case of partial rankings.

Keywords
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1 Introduction

The problem of ranking a set of items is a fundamental task in today’s data driven
world. Analysing observations which are not quantitative variables but rankings
has been often studied in social sciences. It has also become a popular problem
in statistical learning thanks to the generalization of the use of automatic rec-
ommendation systems. Rankings are labels that model an order over a finite set
EN := {1, . . . , N}. Hence, an observation is a set of preferences between these
N points. It is thus a one to one relation σ acting from EN onto EN . In other
words, σ lies in the finite symmetric group SN of all permutations of EN . More
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precisely, assume that we have a finite setX = {x1, · · · , xN} and we have to order
the elements of X . A ranking on X is a statement of the form

xi1 � xi2 � · · · � xiN , (1)

where all the ij , j = 1 · · · , N are different. We can associate to this ranking
the permutation σ defined by σ(ik) = k. Reversely, to a permutation σ, we can
associate the following ranking

xσ−1(1) � xσ−1(2) � · · · � xσ−1(N). (2)

Our aim is to predict outputs corresponding to permutations inputs. For in-
stance, the permutation input can correspond to an ordering of tasks, in applica-
tions. In a workflow management system, there may be a large number of tasks that
may be done in different orders but are all necessary to achieve the goal. Workflow
prediction or optimization problems currently occur in fields such as grid comput-
ing [31], and logistics [7].

Another example of application is given by the maintenance of machines in
a supply line. Machines in a supply line need to be tuned or monitored in order
to optimize the production of a good. The machines can be tuned in different or-
ders, each corresponding to a permutation and these choices have an impact on the
quality of the production of the goods, measured by a quantitative variable Y , for
instance the amount of defects in the produced goods. Hence, the objective of the
model will thus be to forecast the outcome of a specific order for the maintenance
of the machines in order to optimize the production.

Another interesting case of output corresponding to a permutation input is of
the form maxx∈X f(σ, x), where f is a function both acting on the permutation
σ and some external variable x. This output corresponds to a worst case for the
performance or the cost given by the permutation σ. Classical examples of this
kind of output are the max distance criterion for Latin Hypercube Designs [26, 29]
and the robust deviation for a tour in the robust traveling salesman problem [28].
In Section 3.3, we discuss and address the example of the max distance criterion.

In this paper, we will be in the framework of Gaussian processes indexed by
SN . Actually, Gaussian process models rely on the definition of a covariance func-
tion that characterizes the correlations between values of the process at different
observation points. As the notion of similarity between data points is crucial, i.e.
close location inputs are likely to have similar target values, covariance functions
(symmetric positive kernel), are the key ingredient in using Gaussian processes for
prediction. Indeed, the covariance operator contains nearness or similarity infor-
mations. In order to obtain a satisfying model one needs to choose a covariance
function (i.e. a symmetric positive kernel) that respects the structure of the index
space of the dataset.

A large number of applications gave rise to recent researches on ranking includ-
ing ranking aggregation [21], clustering rankings (see [8]) or kernels on rankings
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for supervised learning. Constructing kernels over the set of permutations has been
studied following several different ways. In [19], Kondor provides results about
kernels in non-commutative finite groups and constructs diffusion kernels (which
are positive definite) on SN . These diffusion kernels are based on a discrete notion
of neighborliness. Notice that the kernels considered therein are quite different
from those considered in this paper. Furthermore, the diffusion kernels are not in
general covariance functions because of their tricky dependency on permutations.
Recently, [17] proves that the Kendall and Mallow’s kernels are positive definite.
Further, [24] extends this study characterizing both the feature spaces and the spec-
tral properties associated with these two kernels. A real data set [9] on rankings
is studied in [24]. The authors used a kernel regression to predict the age of a
participant with his/her order of preference of six sources of news regarding sci-
entific developments: TV, radio, newspapers and magazines, scientific magazines,
the internet, school/university.

There are applications where not all of the items in (1) are ranked. Rather, a
partial ranking is given (see for example the "sushi" dataset available at
http://www.kamishima.net or movie datasets). The papers [20] and [17]
provide kernels on partial rankings and deal with the complexity reduction of their
computation.

The goal in this paper is threefold: first we define Gaussian processes indexed
by SN by providing a wide class of covariance kernels. We generalize previous
results on the Mallow’s kernel (see [17]). Second, we consider the Kriging models
(see for instance [30]) that consist in inferring the values of a Gaussian random
field given observations at a finite set of observation points. Here, the observa-
tions points are permutations. We study the asymptotic properties of the maximum
likelihood estimator of the parameters of the covariance function. We also prove
the asymptotic accuracy of the Kriging prediction under the estimated covariance
parameters. Further, we provide simulations that illustrate the very good perfor-
mances of the proposed kernels. Finally, we provide an application to Gaussian
process based optimization of Latin Hypercube Designs. Last, we show that the
Gaussian process framework may be adapted to the cases of learning with partially
observed rankings. We define a class of covariance kernels on partial rankings,
for which we show how to reduce the computation complexity. In simulations, we
show that our suggested kernels yield more efficient Gaussian process predictions
than the kernels given in [17].

The paper falls into the following parts. In Section 2, we recall some facts on
SN and provide some covariance kernels on this set. Asymptotic results on the
estimation of the covariance function are presented in Section 3. Section 3 also
contains an application to the optimization of Latin Hypercube Designs. Section
4 provides new covariance kernels for partial rankings with a comparison with the
ones given in [17] in a numerical experiment. Section 5 concludes the paper. The
proofs are all postponed to the appendix.
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2 Covariance model for rankings

Recall that we define SN as the set of all permutations on EN := {1, . . . , N}. We
aim at constructing kernels, or covariance functions, on SN . We will base these
kernels on the three following distances on SN (see [13]). For any permutations π
and σ of SN let

• The Kendall’s tau distance be defined by

dτ (π, σ) :=
∑

i,j=1,...,N
i<j

(
1σ(i)>σ(j), π(i)<π(j) + 1σ(i)<σ(j), π(i)>π(j)

)
. (3)

This distance counts the number of pairs on which the permutations disagree
in ranking.

• The Hamming distance be defined by

dH(π, σ) :=
N∑
i=1

1π(i) 6=σ(i). (4)

• The Spearman’s footrule distance be defined by

dS(π, σ) :=
N∑
i=1

|π(i)− σ(i)|. (5)

These three distances are right-invariant. That is, for all π, σ, τ ∈ SN , d(π, σ) =
d(πτ, στ). Other right-invariant distances are discussed in [13].

We aim at defining a Gaussian process indexed by permutations. Notice that,
generally speaking, using the abstract Kolmogorov construction (see for example
[12] Chapter 0), the law of a Gaussian random process (Yx)x∈E indexed by an
abstract set E is entirely characterized by its mean and covariance functions

M : x 7→ E(Yx)

and
K : (x, y) 7→ Cov(Yx, Yy).

Of course, here the frame is much simpler as SN is finite (|SN | = N !), and the
Gaussian distribution is obviously completely determined by its mean and covari-
ance matrix. Hence, if we assume that the process is centered, we only have to
build a covariance function on SN . First, we recall the definition of a positive
definite kernel on an abstract space E. A symmetric map K : E × E → R is
called a positive definite kernel if for all n ∈ N and for all (x1, · · · , xn) ∈ En,
the matrix (K(xi, xj))i,j is positive semi-definite. In this paper, we say that K is
a strictly positive definite kernel if K is symmetric and, for all n ∈ N and for all
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(x1, · · · , xn) ∈ En such that xi 6= xj if i 6= j, the matrix (K(xi, xj))i,j is positive
definite.

These notions are particularly interesting for SN (and any finite set). Indeed,
if K is a strictly positive definite kernel, then for any function f : SN → R, there
exists (aσ)σ∈SN such that

f =
∑
σ∈SN

aσK(., σ), (6)

and K is of course an universal kernel (see [27]).

We now provide two different parametric families of covariance kernels. The
members of these families have the general form

Kθ1,θ2(σ, σ′) := θ2 exp
(
−θ1d(σ, σ′)

)
, (θ1, θ2 > 0), (7)

and

Kθ1,θ2,θ3(σ, σ′) := θ2 exp
(
−θ1d(σ, σ′)θ3

)
, (θ1, θ2 > 0, θ3 ∈ [0, 1]). (8)

Here, d is one of the three distances defined in (3), (4) and (5). More precisely, for
the Kendall’s (resp. Hamming’s and Spearman’s footrule) distance let Kτ

θ1,θ2(,θ3)

(resp. KH
θ1,θ2(,θ3), K

S
θ1,θ2(,θ3)) be the corresponding covariance function. For con-

cision, sometimes we will write Kθ1,θ2(,θ3) (resp. d) for one of these three kernels
(resp. distances).

We show in the next proposition that Kθ1,θ2 is strictly positive definite.

Proposition 1. For all θ1 > 0 and θ2 > 0, Kτ
θ1,θ2

, KH
θ1,θ2

, KS
θ1,θ2

are strictly
positive definite kernels on SN .

Remark 1. In [24], the strictly positive definiteness of the Mallow’s kernel, corre-
sponding to Kτ

θ1,θ2
, is also shown. Our proof of Proposition 1 seems more direct

than the one given in [24].

We also have a similar result for Kθ1,θ2,θ3 .

Proposition 2. For all θ1 > 0, θ2 ≥ 0 and θ3 ∈ [0, 1], the maps Kτ
θ1,θ2,θ3

,
KH
θ1,θ2,θ3

, KS
θ1,θ2,θ3

are positive definite kernel on SN .

Propositions 1 and 2 enable to define Gaussian processes indexed by permuta-
tions.

3 Gaussian fields on the symmetric group

3.1 Asymptotic results

Let us consider a Gaussian process Y indexed by σ ∈ SN , with zero mean and
covariance function K∗. In a parametric setting, a classical assumption is that the
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covariance function K∗ belongs to some parametric set of the form

{Kθ; θ ∈ Θ}, (9)

where Θ ⊂ Rp is given and for all θ ∈ Θ, Kθ is a covariance function. The
hyperparameter θ is generally called the covariance parameter. In this framework,
K∗ = Kθ∗ for some parameter θ∗ ∈ Θ.

The parameter θ∗ is estimated from noisy observations of the values of the
Gaussian process on several inputs. Namely (Y (σi) + εi, σi) for i = 1, . . . , n,
where (εi)i is an independent Gaussian white noise. Let us consider a sample of
random permutations Σ = (σ1, σ2, · · · , σn) ∈ SN . Assume that we observe Σ and
a random vector y = (y1, y2, · · · , yn)T defined by, for i ≤ N ,

yi = Y (σi) + εi. (10)

Here, Y is Gaussian process indexed by SN and independent of Σ. We assume
that Y is centered with covariance function Kθ∗1 ,θ

∗
2

(see (7) in Section 2) and that
(εi)i≤n ∼ N (0, θ∗3In). Y is the unknown process to predict and ε is an additive
white noise. Notice that θ3 denotes here the variance of the nugget effect while it is
a power in Section 2. We keep the same name in order to use the compact notation
θ for the hyperparameter of the model. The Gaussian process Y is stationary in
the sense that for all σ1, · · · , σn ∈ SN and for all τ ∈ SN , the finite-dimensional
distribution of Y at σ1, · · · , σn is the same as the finite-dimensional distribution at
σ1τ, · · · , σnτ .

Several techniques have been proposed for constructing an estimator
θ̂ = θ̂(σ1, y1, · · · , σn, yn) of θ∗ := (θ∗1, θ

∗
2, θ
∗
3). Here, we shall focus on the max-

imum likelihood method. It is widely used in practice and has received a lot of
theoretical attention. The maximum likelihood estimator is defined as

θ̂ML = θ̂n ∈ arg min
θ∈Θ

Lθ (11)

with
Lθ :=

1

n
ln(detRθ) +

1

n
ytR−1

θ y, (12)

where Rθ = [Kθ1,θ2(σi, σj) + θ31i=j ]1≤i,j≤n is invertible since θ3 > 0. We
assume that Θ ⊂

∏3
i=1[θi,min, θi,max] for some given 0 < θi,min ≤ θi,max < ∞

(i = 1, 2, 3).
When considering the asymptotic behaviour of the maximum likelihood es-

timator, two different frameworks can be studied: fixed domain and increasing
domain asymptotic [30]. Under increasing-domain asymptotics, as n → ∞, the
observation points σ1, · · · , σn are such that mini 6=j d(σi, σj) is lower bounded
and d(σi, σj) becomes large with |i − j|, (thus we need N → +∞). Under
fixed-domain asymptotics, the sequence (or triangular array) of observation points
(σ1, · · · , σn, · · · ) is dense in a fixed bounded subset. For a Gaussian field on Rd,
under increasing-domain asymptotics, the true covariance parameter θ∗ can be esti-
mated consistently by maximum likelihood. Furthermore, the maximum likelihood
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estimator is asymptotically normal [25, 10, 11, 2]. Moreover, prediction performed
using the estimated covariance parameter θ̂n is asymptotically as good as the one
computed with θ∗ as pointed out in [2]. Finally, note that in the symmetric group,
the fixed-domain framework can not be considered (contrary to the input space Rd)
since SN is a finite space.

We will consider hereafter the increasing-domain framework. We thus con-
sider a sequence of Gaussian processes Yn on SNn , with Nn −→

n→+∞
+∞ and with

(σ
(n)
i )i≤n ⊂ SNn are the observation points. However, for the sake of simplicity,

we only write Y and (σi)i≤n and the dependency on n is implicit. We observe
values of the Gaussian process on the permutations Σ = (σ1, · · · , σn), that are
assumed to fulfill the following assumptions

1. Condition 1: There exists β > 0 such that ∀i, j, d(σi, σj) ≥ |i− j|β .

2. Condition 2: There exists c > 0 such that ∀i, d(σi, σi+1) ≤ c.

Notice that β and c are assumed to be independent on n.
These conditions are natural under increasing-domain asymptotics. Indeed,

Condition 1 provides asymptotic independence for pairs of observations with asymp-
totically distant indices. It allows to show that the variance of Lθ and of its gradient
converges to 0. Condition 2 ensures the asymptotic discrimination of the covari-
ance parameters (see Lemma 4 in the appendix). These conditions can be ensured
with particular choices of sampling schemes for (σ1, · · · , σn) (using the distances
previously discussed).

As an example consider the following setting. We fix k ∈ N. For n ∈ N, i ∈
[1 : n], we choose σ(n)

i = σi = τici ∈ Sk+n (we have Nn = k + n) with
τi ∈ Sk × id[k+1:n+k] := {σ ∈ Sn+k| σ|[k+1:n+k] = id} a random permutation
such that (τi)i are independent (we do not make further assumptions on the law of
τi). Let ci = (i + k i + k − 1 · · · 1) the cycle defined by ci(1) = i + k,
ci(j) = j − 1 if 1 < j ≤ i + k and ci(j) = j if j > i + k. Then, σi is
a permutation such that σi(1) = i + k, σi(j) is a random variable in [2 : k] if
1 < j ≤ k + 1, σi(j) = j − 1 if k + 1 < j ≤ i+ k and σi(j) = j if j > i+ k. A
straightforward computation shows that the Conditions 1 and 2 are satisfied with
β = 1 and c = 1 + k(k − 1)/2 for the Kendall’s tau distance, c = 2 + k for the
Hamming distance, c = 2+2k(k+1) for the Spearman’s footrule distance. Indeed,
the three distances in Sk are upper-bounded by k(k − 1)/2, k and k2 respectively.

The following theorems give both the consistency and the asymptotic normality
of the estimator when the number of observations increases.

Theorem 1. Let θ̂ML be defined as in (11). Assume that Conditions 1 and 2 hold.
Then,

θ̂ML
P−→

n→+∞
θ∗. (13)
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Theorem 2. Under the assumptions of Theorem 1, let MML be the 3 × 3 matrix
defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj

)
. (14)

Then √
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (15)

Furthermore,

0 < lim inf
n→∞

λmin(MML) ≤ lim sup
n→∞

λmax(MML) < +∞, (16)

where λmin(MML) (resp. λmax(MML)) is the smallest (resp. largest) eigenvalue
of MML.

Given the maximum likelihood estimator θ̂n = θ̂ML, the value Y (σn), for
any input σn ∈ SNn , can be forecasted by plugging the estimated parameter in
the conditional expectation (or posterior mean) expression for Gaussian processes.
Hence Y (σn) is predicted by

Ŷ
θ̂n

(σn) = rt
θ̂n

(σn)R−1

θ̂n
y (17)

with

r
θ̂n

(σn) =

 K
θ̂n

(σn, σ1)
...

K
θ̂n

(σn, σn)

 .
We point out that Ŷ

θ̂n
(σn) is the conditional expectation of Y (σn) given y1, · · · , yn,

when assuming that Y is a centered Gaussian process with covariance function
K
θ̂n

.
The following theorem shows that the forecast with the estimated parameter

behaves as if the true covariance parameter were known.

Theorem 3. For any sequence (σn)n∈N, with σn ∈ SNn for n ∈ N, we have∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ = oP(1). (18)

The proofs of Theorems 1, 2 and 3 are given in the appendix. In [2] and [3],
similar results for maximum likelihood are given for Gaussian fields indexed on
Rd and on the set of all probability measures on R (see also [4]). In the appendix,
we also discuss the similarities and differences between the proofs of Theorems 1,
2 and 3 and these given in [2] and [3].
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Figure 1: Monte Carlo estimates of P(‖θ̂n − θ∗‖ > 0.5) for different values of n,
the number of observations, with θ∗ = (0.1, 0.8, 0.3) and Kendall’s tau distance,
the Hamming distance and the Spearman’s footrule distance from left to right.

3.2 Numerical experiments

As an illustration of Theorem 1, we provide a numerical illustration showing that
the maximum likelihood is consistent. We generated the observations as discussed
in Section 3 with k = 3. We recall that Nn = k + n and σi = τi(i + k i + k −
1 · · · 1) ∈ Sk+n where τi ∈ Sk × id[k+1:k+n] is a random permutation.

For each value of n, we estimate the probability P(‖θ̂n − θ∗‖ > ε) using a
Monte-Carlo method and a sample of 1000 values of 1‖θ̂n−θ∗‖>ε. Figure 1 depicts
these estimates for ε = 0.5, θ∗ = (0.1, 0.8, 0.3) and Θ = [0.02, 2] × [0.3, 2] ×
[0.1, 1].

In Figure 2, we display the density of the coordinates of the maximum likeli-
hood estimator for different values of n ranging from 20, 60 to 150. These densities
have been estimated with a sample of 1000 values of the maximum likelihood esti-
mator. We observe that the densities can be far from the true parameter for n = 20
or n = 60 but are quite close to it for n = 150. Further, we see that for n = 150,
the Kendall’s tau distance seems to give better estimates for θ∗3. However, the com-
putation time of the distance matrix is much longer with the Kendall’s tau distance
than with the other distances.

In Figure 3, for a given σn, we display estimates of the probability that the
deviation between the prediction of Y (σn) given in (17) with the parameter θ̂n and
the prediction of Y (σn) with the parameter θ∗ exceeds 0.3. Indeed, Theorem 3
ensures us that this probability converges to 0 as n→ +∞.

3.3 Application to the optimization of Latin Hypercube Designs

We consider here an application of Proposition 2 to find the best Latin Hypercube
Design (LHD). A LHD is a design of experiments (Xj)j≤N ∈ [0, 1]d where, for
each component i ∈ [1 : d], the projections of X1, ..., XN on the component i are
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Figure 2: Density of the coordinates of θ̂n for the number of observations n = 20
(in red), n = 60 (in blue), n = 150 (in green) with θ∗ = (0.1, 0.8, 0.3) (represented
by the red vertical line). We used the Kendall’s tau distance, the Hamming distance
and the Spearman’s footrule distance from left to right.
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(∣∣∣Ŷθ̂n(σn)− Ŷθ∗(σn)
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equispaced in [0, 1] (see [26]). We will consider that each component of one Xj is
equal to k/(N − 1) for some k ∈ [0 : N − 1]. So, for each LHD (Xj)j≤N , there
exist σ2, ..., σd ∈ SN such that for all j ∈ [1 : N ], we have

Xj =

(
j − 1

N − 1
,
σ2(j)− 1

N − 1
, ...,

σd(j)− 1

N − 1

)
.

Hence, there is a bijection between the set of LHD with N points and the set Sd−1
N .

Now, if (Xj)j≤N is a LHD, we can define its measure of space filling quality
as

f((Xj)j≤N ) = sup
x∈[0,1]d

min
j∈[1:N ]

‖x−Xj‖,

that is the largest distance of a point of [0, 1]d to (Xj)j≤N . We remark that
LHD minimizing f are called minimax [29]. Our aim is to find a minimax LHD
(X∗j )j≤N . However, given a LHD (Xj)j≤N , its quality f((Xj)j≤N ) is not an
obvious quantity and its computation is expensive.

To estimate this quantity, we suggest to generateNtot random points (xl)l≤Ntot
uniformly on [0, 1]d, to compute their distance to the LHD an to take the maximum
value. This estimation is costly (because of the large number Ntot) and noisy (be-
cause of the randomness of the points (xl)l≤Ntot). Thus, we suggest to model f
by a Gaussian process realization and to apply the Expected Improvement (EI)
strategy [18].

We thus assume that the unknown function f to minimize is a realization of a
Gaussian process. We have to find a positive definite kernel on Sd−1

N . Thanks to
Proposition 2, we have three positive definite kernels on SN , thus on Sd−1

N (taking
the tensor product of these kernels). Thus, we apply the EI strategy with these three
kernels to find the best LHD with Nmax calls to the function f . The Nmax/2 first
LHDs are generated uniformly on Sd−1

N and the other ones are generated sequen-
tially by following the EI strategy. The parameters of the covariance functions are
estimated by maximum likelihood at each step. We refer to [18] for more details
on EI.

In this experiment, to compare performances, we apply 5 methods:

• Random sampling, to generate Nmax LHDs of the form {(X(i)
j )j≤N ; i ≤

Nmax} by generating σ2, ..., σd uniformly and independently;

• Simulated annealing, choosing that two LHDs (σj)2≤j≤d and (σ′j)2≤j≤d are
neighbours if there exist transpositions τ2, ..., τd such that for all j ∈ [2 : d],
we have σ′j = σjτj ;

• EI with Kendall distance;

• EI with Hamming distance;

11
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Figure 4: Minimal quality of LHD found by the five methods.

• EI with Spearman distance.

For each method, the performance indicator is mini=1,...,Nmax f((X
(i)
j )j≤N ). Here,

we take d = 3, N = 15, Nmax = 200 and Ntot = 27× 106.
We can see in Figure 4 that the best LHDs are found by EI. The simulated

annealing is slightly better than random sampling.
We display in Figure 5 the distributions of the qualities {f((X

(i)
j )j≤N ); i ≤

Nmax} for the five methods. We can notice that the simulated annealing does not
explore the set of all the LHDs and does not find the best minimum. EI performs
minimisation and exploration to find better minima. We can then provide the best
LHD of EI. For example, the best LHD found by EI with the Kendall distance is
the LHD given by the permutations

σ2 = (1, 4, 2, 14, 3, 13, 6, 7, 9, 12, 10, 5, 8, 11, 15),

σ3 = (4, 5, 13, 10, 11, 3, 6, 1, 8, 9, 7, 2, 14, 15, 12).

To conclude, the kernels on permutations provided in Section 2 enable us to
use EI that gives much better results than simulated annealing or random sampling
to find the best LHD.

4 Covariance model for partial ranking

4.1 A new kernel on partial rankings

In application, it can happen that partial rankings rather than complete rankings are
observed. A partial ranking aims at giving an order of preference between different

12
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Figure 5: Distributions of the quality of LHDs for the five methods.

elements of X without comparing all the pairs in X . Hence, a partial ranking R is
a statement of the form

X1 � X2 � · · · � Xm, (19)

where m < N , and X1, · · · , Xm are disjoint sets of X = {x1, x2, · · · , xN}. The
partial ranking means that any element of Xj is preferred to any element of Xj+1

but the elements of Xj cannot be ordered. Given a partial ranking R, we consider
the following subset of SN

ER := {σ ∈ SN : σ(i1) < σ(i2) < · · · < σ(im)

for any choice of (xi1 , · · · , xim) ∈ X1 × · · · ×Xm } . (20)

In the statistical literature, there is a natural way to extend a positive definite kernel
K on SN to the set of partial rankings (see [20], [17]). To do so, one considers for
R and R′ two partial rankings the following averaged kernel

K(R,R′) :=
1

|ER||ER′ |
∑
σ∈ER

∑
σ′∈ER′

K(σ, σ′). (21)

Here, |ER| denotes the cardinal of the setER. Notice that, ifK is a positive definite
kernel on permutations, then K is also a positive definite kernel [16]. Indeed, if
R1, · · · , Rn are partial rankings and if (a1, · · · , an) 6= 0, then

n∑
i,j=1

aiajK(Ri, Rj) =
∑

σ,σ′∈SN

bσbσ′K(σ, σ′), (22)

13



where we set
bσ :=

∑
i, σ∈Ri

ai
|ERi |

. (23)

Observe that the computation of K is very costly. Indeed, we have to sum over
|ER||ER′ | permutations. Several works aim to reduce the computation cost of this
kernel (see [20, 22, 23]). However, its efficient computation remains an issue.

In the following, we provide another way to extend the kernels Kθ1,θ2,θ3 to
partial rankings. We will provide computational simplifications for this extension.
First, define the measure of dissimilarity davg on partial rankings as the mean of
distances d(σ, σ′) (σ ∈ ER, σ′ ∈ ER′). That is

davg(R,R′) :=
1

|ER||ER′ |
∑
σ∈ER

∑
σ∈ER′

d(σ, σ′). (24)

Since davg(R,R) 6= 0 in general, we need to define dpartial as follows

dpartial(R,R
′) := davg(R,R′)− 1

2
davg(R,R)− 1

2
davg(R′, R′). (25)

Proposition 3. d
1
2

partial is a pseudometric on partial rankings (i.e. it satisfies the
positivity, the symmetry, the triangular inequality and is equal to 0 on the diagonal
{(R,R), R is a partial ranking}).

We further define

Kθ1,θ2,θ3(R,R′) := θ2 exp(−θ1dpartial(R,R
′)θ3). (26)

The next proposition warrants that this last function is in fact a covariance kernel,
which will later enable to define Gaussian processes on partial rankings.

Proposition 4. Kθ1,θ2,θ3 is a positive definite kernel for the Kendall’s tau distance,
the Hamming distance and the Spearman’s footrule distance.

4.2 Kernel computation in partial ranking

At a first glance, the computation of the kernel Kθ1,θ2,θ3(R,R′) on partial rankings
may still appear very costly dur to the evaluation of dpartial. Indeed, we have
to sum |ER||ER′ | elements for davg(R,R′), |ER|2 elements for davg(R,R) and
|ER′ |2 elements for davg(R′, R′). However, this computation problem can be quite
simplified. As we will show in this subsection, the mean of the distances is much
easier to compute than the mean of exponential of distances. We write dτ,avg
(resp. dH,avg and dS,avg) for the average distance in (24) when the distance on the
permutations is dτ (resp. dH and dS).
To begin with, let us consider the case of top-k partial rankings. A top-k partial
ranking (or a top-k list) is a partial ranking of the form

xi1 � xi2 � · · · � xik � Xrest, (27)

14



where Xrest := X \ {xi1 , · · · , xik}. It can be seen as the "highest rankings". In
order to alleviate the notations, let just write I = (i1, · · · , ik) for this top-k partial
ranking. The following proposition shows that the computation cost to evaluate
davg (and so the kernel values) might be reduced when the partial rankings are in
fact top-k partial rankings. Before stating this proposition let us define some more
mathematical objects. Let I := (i1, · · · , ik) and I ′ := (i′1, · · · , i′k) be two top-k
partial ranking. Let

{j1, · · · , jp} := {i1, · · · , ik} ∩ {i′1, · · · , i′k}

where j1 < j2 < · · · < jp and p is an integer not greater than k. Let, for l =
1, · · · p, cjl (resp. c′jl) denotes the rank of jl in I (resp. in I ′). Further, let r := k−p
and define Ĩ (resp. Ĩ ′) as the complementary set of {j1, · · · , jp} in {i1, · · · , ik}
(resp. in {i′1, · · · , i′k}). Writing these two sets in ascending order, we may finally
define for j = 1, · · · , r, uj (resp. u′j) as the rank in I (resp I ′) of the j-th element
of Ĩ (resp. Ĩ ′).

Example 1. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). We
have (j1, j2, j3, j4) = (1, 2, 3, 5) (the items ranked by I and I ′, in inceasing order).
Thus, cj1 = 3, cj2 = 2, cj3 = 1, cj4 = 5 and c′j1 = 3, c′j2 = 5, c′j3 = 1, c′j4 =
2. Further, u1 = 4 and u′1 = 4.

Proposition 5. Let I and I ′ be two top k-partial rankings. Set N ′ := N − k − 1
and m := N − |I ∪ I ′|. Then,

dτ,avg(I, I ′) =
∑

1≤l<l′≤p
1(cjl<cjl′

,c′jl
>c′jl′

) or (cjl>cjl′
,c′jl

<c′jl′
) + r(2k + 1− r)

−
r∑
j=1

(uj + u′j) + r2 +

(
N − k

2

)
− 1

2

(
m
2

)
,

dH,avg(I, I ′) =

p∑
l=1

1cjl 6=c
′
jl

+m
N − k − 1

N − k
+ 2r,

dS,avg(I, I ′) =

p∑
l=1

|cjl − c
′
jl
|+ r(N + k + 1)−

r∑
j=1

(uj + u′j)

+mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

Notice that the sequences (cjl), (c′jl) and (uj), (u′j) are easily computable and
so davg(I, I ′) too. Let us discuss an easy example to handle the computation of
the previous sequences.

Example 2. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). Propo-
sition 5 leads to

dτ,avg(I, I ′) = 6, dS,avg(I, I ′) = 4.5, dS,avg(I, I ′) = 11.5.
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To compute the pseudometric dpartial defined in (25), we also need to compute
dτ,avg on the diagonal {(I, I)| I is a top-k partial ranking}. The following corol-
lary gives these computations.

Corollary 1. Let I be a top-k partial ranking. Then,

dτ,avg(I, I) =
1

2

(
N − k

2

)
,

dH,avg(I, I) = N − k − 1,

dS,avg(I, I) = (N − k)(N − k − 1) +
(N − k − 1)(2N − 2k − 1)

3
.

In the case of the Hamming distance, we may step ahead and provide a simpler
computational formula for the average distance between two partial rankings when-
ever their associated partitions share the same number of members (see Proposition
6 below). More precisely let R1 and R2 be two partial rankings such that

Ri = Xi
1 � · · · � Xi

k, i = 1, 2, (28)

assume also that for j = 1, · · · , k, |X1
j | = |X2

j | and let denote by γj this integer.
Obviously, N =

∑k
j=1 γj so that γ := (γj)j is an integer partition of n. Further,

when 1 = γ1 = γ2 = · · · = γk−1 and γk = N − k + 1 one is in the top-(k − 1)
partial ranking case. For j = 1, · · · , k, let Γj be the set of all integers lying in[∑j−1

l=1 γl + 1,
∑j

l=1 γl

]
. Set further,

Sγ := SΓ1 × SΓ2 × · · · × SΓk ,

where SΓi is the set of permutations on Γi. Notice that Sγ is nothing more than the
subgroup of Sn letting invariant the sets Γj (j = 1, · · · , k). So that, for i = 1, 2,
we can write ERi as a right coset Ri = Sγπi for some πi ∈ ERi . With these extra
notations and definitions, we are now able to compute dH,avg(R1, R2).

Proposition 6. In the previous setting, we have

dH,avg(R1, R2) = |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
k∑
j=1

γj
N

(γj − 1), (29)

where, for 1 ≤ l ≤ N , Γ(l) is the integer j such that l ∈ Γj .

Note that in (29), the term |{i, Γ(π1(i)) 6= Γ(π2(i))}| counts the number of
item i ∈ [1 : N ] that are ranked differently in R1 and R2.

4.3 Numerical experiments

We have proposed in Section 4.1 a new kernel Kθ1,θ2,θ3 defined by (26) on partial
rankings. We show in Section 4.2 that in several cases (for example with top-k
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kernel Kτθ1,θ2,θ3 KHθ1,θ2,θ3 KSθ1,θ2,θ3 Kθ1
rate 0.902 0.904 0.912 0.928
R2 0.887 0.996 0.996 0.070

Table 1: Rate of test points that are in the 90% confidence interval and coefficient
of determination for the four kernels.

partial rankings), we can reduce drastically the computation of this kernel. Another
direction is given in [17] by considering the averaged Kendall kernel and reducing
the computation of this kernel on top-k partial rankings. This kernel is available
on the R package kernrank. We write K the averaged Kendall kernel, and we
define Kθ1 := θ1K.

In this section, we compare our new kernelKθ1,θ2,θ3 with the averaged Kendall
kernel Kθ1 in a numerical experiment where an objective function indexed by top-
k partial rankings is predicted, by Kriging. We take N = 10 and for simplicity,
we take the same value k = 4 for all the top-k partial rankings. For a top-k
partial ranking I = (i1, i2, i3, i4), the objective function to predict is f(I) :=
2i1 +i2−i3−2i4. We make 500 noisy observations (yi)i≤500 with yi = f(Ii)+εi,
where (Ii)i≤500 are i.i.d. uniformly distributed top-k partial rankings and (εi)i≤500

are i.i.d. N (0, λ2), with λ = 1
2 . As in Section 3, we estimate (θ, λ) by maximum

likelihood. Then, we compute the predictions (ŷ′i)i≤500 of y′ = (y′i)i≤500, with
y′ the observations corresponding to 500 other test points (I ′i)i≤500, that are i.i.d.
uniform top-k partial rankings.

For the four kernels (our kernel Kθ1,θ2,θ3 with the 3 distances and the averaged
Kendall kernel Kθ1), we provide the rate of test points that are in the 90% confi-
dence interval together with the coefficient of determination R2 of the predictions
of the test points. Recall that

R2 := 1−
1

500

∑500
i=1 (y′i − ŷ′i)

2

1
500

∑500
i=1

(
y′i − y′

)2 ,
where y′ is the average of y′. The results are provided in Table 1.

The rate of test points that are in the 90% confidence interval is close to 90%
for the four kernels. We can deduce that the parameters (θ, λ) are well estimated
by maximum likelihood, even for the averaged Kendall kernel Kθ1 .

However, we can see that the coefficient of determination of the averaged
Kendall kernel Kθ1 is close to 0. The predictions given by the averaged Kendall
kernel Kθ1 are nearly as bad as predicting with the empirical mean. In the op-
posite way the coefficient of determination of our kernels is larger than 0.9 for the
Kendall distance, and larger than 0.99 for the Hamming distance and the Spearman
distance. That means that the prediction given by our kernels are much better than
the empirical mean.

To conclude, we provide a class of positive definite kernels Kθ1,θ2,θ3 which
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seems to be significantly more efficient than the averaged Kendall kernel Kθ1 , in
the case of Gaussian process models on partial rankings.

5 Conclusion

In this paper, we provide a Gaussian process model for permutations. Following the
recent works of [17] and [24], we propose kernels to model the covariance of such
processes and show the relevance of such choices. Based on the three distances on
the set of permutations, Kendall’s tau, Hamming distance and Spearman’s footrule
distance, we obtain parametric families of relevant covariance models. To show the
practical efficiency of these parametric families, we apply them to the optimization
of Latin Hypercube Designs. In this framework, we prove under some assump-
tions on the set of observations, that the parameters of the model can be estimated
and the process can be forecast using linear combinations of the observations, with
asymptotic efficiency. Such results enable to extend the well-known properties of
Kriging methods to the case where the process is indexed by ranks and tackle a
large variety of problems. We remark that our asymptotic setting corresponds to
the increasing domain asymptotic framework for Gaussian processes on the Eu-
clidean space. It would be interesting to extend our results to more general sets of
permutations under designs that do not necessarily satisfy Conditions 1 and 2.

We also show that the Gaussian process framework can be extended to the case
of partially observed ranks. This corresponds to many practical use cases. We pro-
vide new kernels on partial rankings, together with results that significantly sim-
plify their computation. We show the efficiency of these kernels in simulations. We
leave a specific asymptotic study of Gaussian processes indexed by partial rankings
open for further research.
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A Proofs for Sections 2 and 4

Proof of Proposition 1

Proof. We show that Kθ1,θ2 is a strictly positive definite kernel on Sn. It suffices
to prove that, if ν > 0, the map K defined by

K(σ, σ′) := e−νd(σ,σ′) (30)

is a strictly positive definite kernel.

Case of the Kendall’s tau distance. It has been shown in Theorem 5 of [24]
that K is a strictly positive definite kernel on Sn for the Kendall’s tau distance.
Nevertheless, we provide here an other shorter and easier proof. Let

Φ : SN −→ {0, 1}
N(N−1)

2

σ 7−→ (1σ(i)<σ(j))1≤i<j≤N .

Further, define

M :
{0, 1}

N(N−1)
2 × {0, 1}

N(N−1)
2 −→ R

((ai,j)i,j , (bi,j)i,j) 7−→ exp
(
−ν
∑

i<j |ai,j − bi,j |
)
.

As Φ is an injective map, it suffices to show that M is a strictly positive definite
kernel. For all k ∈ N∗, we index the elements of {0, 1}k using the following
bijective map

Nk :
{0, 1}k −→ [1 : 2k]

(ai)i≤k 7−→ 1 +
∑k

i=1 ai2
i−1.

With this indexation, we let M̃ be the square matrix of size 2
N(N−1)

2 defined by

M̃i,j := M(N−1
N(N−1)

2

(i), N−1
N(N−1)

2

(j)).

By induction on k, we show that the 2k × 2k matrix M (k) defined by

M
(k)
i,j := exp

(
−ν

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)
, (i, j ∈ [1 : 2k]).

is the Kronecker product of k matrices Aν defined by

Aν :=

(
1 e−ν

e−ν 1

)
, (ν > 0).
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It is obvious for k = 1. Assume that it is true for some k. Thus, for all i ≤ 2k and
j ≤ 2k, we have

(Aν ⊗M (k))i,j = 1M
(k)
i,j

= exp

(
−ν

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)

= exp

(
−ν

k+1∑
l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)
= M

(k+1)
i,j .

With the same computation, we have

(Aν ⊗M (k))i+2k,j+2k = M
(k+1)

i+2k,j+2k
.

We also have

(Aν ⊗M (k))i+2k,j = e−νM
(k)
i,j

= exp

(
−ν

[
1 +

k∑
l=1

|N−1
k (i)l −N

(−1)
k (j)l|

])

= exp

(
−ν

k+1∑
l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)
= M

(k+1)

i+2k,j
,

and with the same computation,

(Aν ⊗M (k))i,j+2k = M
(k+1)

i,j+2k
.

So that we conclude the induction. Using this result with k = N(N−1)
2 , we have

that the matrix M̃ is the Kronecker product of positive definite matrices, thus is
positive definite and so, M is a strictly positive definite kernel.

Case of the other distances. For the Hamming distance and the Spearman’s
footrule distance, we show that the kernel K is strictly positive definite on the
set F of the functions from [1 : N ] to [1 : N ]. We index these function using the
following bijective map

JN :
F −→ [1 : NN ]

f 7−→ 1 +
∑N

i=1N
f(i)−1.

Thus, it suffices to show that the NN ×NN matrices M̃ defined by

M̃i,j := K
(
J−1
N (i), J−1

N (j)
)
,
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are positive definite matrices for these three distances. Straightforward computa-
tions show that

• For the Hamming distance, M̃ is the Kronecker product of N matrices
(exp(−ν1i 6=j))i,j∈[1:N ].

• For the Spearman Footrule distance, M̃ is the Kronecker product of n matri-
ces (exp(−ν|i− j|))i,j∈[1:N ].

In all cases, M̃ is a Kronecker product of positive definite matrices thus is also a
positive definite matrix.

Lemma 1. For all the three distances, there exist a constants dN ∈ N∗, CN ∈ R
and a function Φ : SN → RdN such that d(σ, σ′) = CN − 〈Φ(σ),Φ(σ′)〉. Here
〈·, ·〉 denotes the standard scalar product on RdN .

Proof. • N(N−1)
4 −dτ (σ, σ′) = 1

2

∑
i<j 1σ(i)<σ(j), σ′(i)<σ′(j)+1σ(i)>σ(j), σ′(i)>σ′(j)−

1
2

∑
i<j 1σ(i)<σ(j), σ′(i)>σ′(j)+1σ(i)>σ(j), σ′(i)<σ′(j) = 〈Φ(σ),Φ(σ′)〉where

Φ(σ) ∈ R
N(N−1)

2 is defined by Φ(σ)i,j := 1√
2
(1σ(i)>σ(j) − 1σ(i)<σ(j)), for

all 1 ≤ i < j ≤ N .

• N−dH(σ, σ′) =
∑N

i=1 1σ(i)=σ(j) = 〈Φ(σ),Φ(σ′)〉 where Φ(σ) ∈MN (R)
is defined by Φ(σ) := (1σ(i)=j)i,j ,

• N2−dS(σ, σ′) =
∑N

i=1 min(σ(i), σ′(i))+N−max(σ(i), σ′(i)) = 〈Φ(σ),Φ(σ′)〉
where Φ(σ) ∈MN (R)2 is defined by

Φ(σ)i,j,1 :=

{
1 if j ≤ σ(i)
0 otherwise,

Φ(σ)i,j,2 :=

{
0 if j < σ(i)
1 otherwise.

Proof of Proposition 2

Proof. Let us prove that d is a definite negative kernel, i.e. for all c1, ..., ck ∈ R
such that

∑k
i=1 ci = 0, we have

∑k
i,j=1 cicjd(σi, σj) ≤ 0. Let c1, ..., ck ∈ R such

that
∑k

i=1 ci = 0 and let σ1, ..., σk ∈ SN .

k∑
i,j=1

cicjd(σi, σj) = CN

k∑
i,j=1

cicj −
k∑

i,j=1

cicj〈Φ(σi),Φ(σj)〉 ≤ 0.

So, d is a negative definite kernel. Hence dθ3 is a definite negative kernel for
all θ3 ∈ [0, 1]. The function F : t 7→ θ2 exp(−θ1t) is completely monotone,
thus, using Schoenberg’s theorem (see [5] for the definitions of these notions and
Schoenberg’s theorem), Kθ1,θ2,θ3 is a definite positive kernel.
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Proof of Proposition 3

Proof. Let us write

Φavg : R 7−→ 1

|ER|
∑
σ∈ER

Φ(σ). (31)

Then,

CN − davg(R,R′) = CN −
1

|E||E′|
∑
σ∈ER

∑
σ∈ER′

d(σ, σ′)

=
1

|ER||ER′ |
∑
σ∈ER

∑
σ∈ER′

CN − d(σ, σ′)

=
1

|ER||ER′ |
∑
σ∈ER

∑
σ∈ER′

〈Φ(σ),Φ(σ′)〉

= 〈Φavg(R),Φavg(R′)〉.

Thus,

dpartial(R,R
′) = davg(R,R′)− 1

2
davg(R,R)− 1

2
davg(R′, R′)

=
1

2

[(
CN − davg(R,R)

)
+
(
CN − davg(R′, R′)

)
− 2

(
CN − davg(R,R′)

)]
=

1

2

(
‖Φavg(R)‖2 + ‖Φavg(R′)‖2 − 2〈Φavg(R),Φavg(R′)〉

)
= ‖Φavg(R)− Φavg(R′)‖2.

Proof of Proposition 4

Proof. Let us prove that dpartial is a definite negative kernel. We define

Davg(R,R′) := Φavg(R)TΦavg(R′). (32)
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Let (c1, ..., ck) ∈ Rk such that
∑k

i=1 ci = 0. We have

k∑
i,j=1

cicjdpartial(Ri, Rj) =
k∑

i,j=1

cicj

[
davg(Ri, Rj)−

1

2
davg(Ri, Ri)−

1

2
davg(Rj , Rj)

]

=
k∑

i,j=1

cicjdavg(Ri, Rj)−
1

2

k∑
i=1

cidavg(Ri, Ri)
k∑
j=1

cj

−1

2

k∑
j=1

cjdavg(Rj , Rj)
k∑
i=1

ci

=
k∑

i,j=1

cicjdavg(Ri, Rj)

=

k∑
i,j=1

cicj
[
CN −Davg(Ri, Rj)

]
= −

k∑
i,j=1

cicjDavg(Ri, Rj)

≤ 0.

So, dpartial is a definite negative kernel, and we may conclude as in the proof of
Proposition 2.

Proof of Proposition 5

Proof. Assume that σ (resp. σ′) is a uniform random variable of EI (resp. EI′).
We have to compute E(d(σ, σ′)) = davg(I, I ′) for the three distances: Kendall’s
tau, Hamming and Spearman’s footrule.

First, we compute E(dτ (σ, σ′)). Following the proof of Lemma 3.1 of [14], we
have

E(dτ (σ, σ′)) =
∑
a<b

E(Ka,b(σ, σ
′)),

with
Ka,b(σ, σ

′) = 1(σ(a)<σ(b),σ′(a)>σ′(b)) or (σ(a)>σ(b),σ′(a)<σ′(b)).

We now compute E(Ka,b(σ, σ
′)) for (a, b) in different cases. Let us write J :=

{j1, · · · , jp} and we keep the notation I (resp. I ′) for the set {i1, ..., ik} (resp.
{i′1, ..., i′k}). In this way, we have I = J t Ĩ and I ′ = J t Ĩ ′.

1. a and b are in J . There exists l and l′ ∈ [1 : p] such that a = jl and b = jl′ .
Then

Ka,b(σ, σ
′) = 1(cjl<cjl′

,c′jl
>c′jl′

) or (cjl>cjl′
,c′jl

<c′jl′
).
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Thus, the total contribution of the pairs in this case is∑
1≤l<l′≤p

1(cjl<cjl′
,c′jl

>c′jl′
) or (cjl>cjl′

,c′jl
<c′jl′

).

2. a and b both appear in one top-k partial ranking (say I) and exactly one of i
or j, say i appear in the other top-k partial ranking. Let us call P2 the set of
(a, b) such that a < b and (a, b) is in this case. We have∑

(a,b)∈P2

Ka,b(σ, σ
′) =

∑
a∈J,
b∈Ĩ

Ka,b(σ, σ
′) +

∑
a∈J,
b∈Ĩ′

Ka,b(σ, σ
′)

Let us compute the first sum. Recall that Ĩ = {iu1 , ..., iur}.∑
a∈J,
b∈Ĩ

Ka,b(σ, σ
′) =

∑
b∈Ĩ

∑
a∈J

Ka,b(σ, σ
′)

=
∑
b∈Ĩ

#{a ∈ J, σ(a) > σ(b)}

=

r∑
l=1

#{a ∈ J, σ(a) > σ(iul)}

We order u1, · · · , ur such that u1 < · · · < ur. Let l ∈ [1 : r]. Remark
that σ(iul) = ul. We have #{a ∈ I, σ(a) > ul} = k − ul and #{a ∈
Ĩ , σ(a) > ul} = r− l, thus #{a ∈ J, σ(a) > ul} = k− ul − r+ l. Then,

∑
a∈J,
b∈Ĩ

Ka,b(σ, σ
′) = r

(
k +

1− r
2

)
−

r∑
l=1

ul.

Likewise, we have

∑
a∈J,
b∈Ĩ′

Ka,b(σ, σ
′) = r

(
k +

1− r
2

)
−

r∑
l=1

u′l. (33)

Finally, the total contribution of the pairs in this case is

r(2k + 1− r)−
r∑
j=1

(uj + u′j).

3. a, but not b, appears in one top-k partial ranking (say I), and b, but not a,
appears in the other top-k partial ranking (I ′). Then Ka,b(σ, σ

′) = 1 and the
total contribution of these pairs is r2.
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4. a and b do not appear in the same top-k partial ranking (say I). It is the only
case where Ka,b(σ, σ

′) is a non constant random variable. First, we show
that in this case, E(Ka,b(σ, σ

′)) = 1/2. Assume for example that I does not
contain a and b. Let (a b) be the transposition which exchanges a and b and
does not change the other elements. We have

{π ∈ EI , π(a) < π(b)} = (a b){π ∈ EI , π(a) > π(b)}.

Thus, there are as many π ∈ EI such that π(a) < π(b) as there are π ∈ EI
such that π(a) > π(b). That proves that E(Ka,b(σ, σ

′)) = 1/2.

Then, the total distribution of the pairs in this case is

1

2

[(
|Ic|
2

)
+

(
|I ′c|

2

)
−
(
|Ic ∩ I ′c|

2

)]
=

(
N − k

2

)
− 1

2

(
m
2

)
That concludes the computation for the Kendall’s tau distance.

To compute E(dH(σ, σ′)), it suffices to see that

E(dH(σ, σ′)) = E

(
n∑
i=1

1σ(i) 6=σ′(i)

)

=

p∑
l=1

1cjl 6=c
′
jl

+ E

 ∑
i 6=I∪I′

1σ(i)6=σ′(i)


+E

 r∑
j=1

1uj 6=σ′(iuj )

+ E

 r∑
j=1

1σ(iu′
j
)6=u′j


=

p∑
l=1

1cjl 6=c
′
jl

+m
N − k − 1

N − k
+ 2r.

Finally, let compute E(dS(σ, σ′)). First, we define

• Ac :=
∑p

j=1 |cj − c′j |

• Au(σ′) :=
∑r

j=1 |uj − σ′(iuj )|

• Au′(σ) :=
∑r

j=1 |σ(i′u′j
)− u′j |

• R(σ, σ′) :=
∑

i 6=I∪I′ |σ(i)− σ′(i)|.

E(dS(σ, σ′)) = E(Ac) + E(Au(σ′)) + E(Au′(σ)) + E(R(σ, σ′)).

It remains to compute all the expectations appearing here.
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1. E(Ac) = Ac.

2. E(Au(σ′)) =
∑r

j=1 E(|uj − σ′(iuj )|). If σ′ is uniform on EI′ , then σ′(iuj )
is uniform on [k + 1 : N ] so:

E(|uj − σ′(iuj )|) = E(σ′(iuj )− uj) =
N + k + 1

2
− uj .

Finally,

E(Au(σ′)) = r
N + k + 1

2
−

r∑
j=1

uj . (34)

3. E(Au′(σ)) = rN+k+1
2 −

∑r
j=1 u

′
j .

4. E(R(σ, σ′)) =
∑

i 6=I∪I′ E(|σ(i) − σ′(i)|). σ(i) and σ′(i) are independent
uniform random variables on [k + 1 : N ].

E(|σ(i)− σ′(i)|) =
N−k−1∑
j=1

jP(|σ(i)− σ′(i)| = j)

=
N−k−1∑
j=1

j2
N − k − j
(N − k)2

.

Then

E(R(σ, σ′)) =
2m

(N ′ + 1)2

N ′∑
j=1

j(N ′ + 1− j)

=
2m

(N ′ + 1)2

(
N ′(N ′ + 1)2

2
− N ′(N ′ + 1)(2N ′ + 1)

6

)
= mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

That concludes the proof of Proposition 5.

Proof of Proposition 6

Proof. We define

aγj (σ, σ′) := |{i ∈ [1 : N ], σ(i) ∈ Γj , σ
′(i) ∈ Γj , σ(i) 6= σ′(i)}|

bγj,l(σ, σ
′) := |{i ∈ [1 : N ], σ(i) ∈ Γj , σ

′(i) ∈ Γl, j 6= l}|
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Now, assume that σ, σ′ ∼ U(Sγ) and σj , σ′j ∼ U(Sγj ).

E
(
dH(σ, σ′)

)
= E

 k∑
j,l=1

bγj,l(σπ1, σ
′π2) +

k∑
j=1

aγj (σπ1, σ
′π2)


=

k∑
j,l=1

bγj,l(π1, π2) +
k∑
j=1

|{i, π1(i), π2(i) ∈ Γj}|
γj − 1

γj

= |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
k∑
j=1

γj
n

(γj − 1)

B Proofs for Section 3

In the following, let us write ‖.‖ = ‖.‖2 for the operator norm (for a linear mapping
of Rn with the Euclidean norm) of a squared matrix of size n, ‖.‖F for its Frobenius
norm and if M ∈Mn(R), let us define |M |2 := 1

n‖M‖
2
F .

The proofs of the three theorems of Section 3 are based on Lemmas 2 to 5. The
proofs of these lemmas are new. Then, having at hand the lemmas, the proof of the
theorems follows [3]. We write all the proofs to be self-contained.

B.1 Lemmas

The following Lemmas are useful for the proofs of Theorems 1, 2 and 3.

Lemma 2. The eigenvalues of Rθ are lower-bounded by θ3,min > 0 uniformly in
n, θ and Σ.

Lemma 3. For all α = (α1, α2, α3) ∈ N3, with |α| = α1 + α2 + α3 and with
∂θα = ∂θα1

1 ∂θα2
2 ∂θα3

3 , the eigenvalues of ∂
|α|Rθ
∂θα are upper-bounded uniformly in

n, θ and Σ.

Lemma 4. Uniformly in Σ,

∀α > 0, lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2 > 0. (35)

Lemma 5. ∀(λ1, λ2, λ3) 6= (0, 0, 0), uniformly in σ,

lim inf
n→+∞

1

n

n∑
i,j=1

(
3∑

k=1

λi
∂

∂θk
Rθ∗,i,j

)2

> 0. (36)

With these lemmata we are ready to prove the main asymptotic results.
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B.2 Proof of Theorem 1

Proof. Step 1: It suffices to prove that

P
(

sup
θ
|(Lθ − Lθ∗)− (E(Lθ|Σ)− E(Lθ∗ |Σ))| ≥ ε

∣∣∣∣Σ)→n→∞ 0, (37)

and for a fixed a > 0,

E(Lθ|Σ)− E(Lθ∗ |Σ) ≥ a 1

n

n∑
i,j=1

(Kθ(σi, σj)−Kθ∗(σi, σj))
2. (38)

Indeed, by contradiction, assume that we have (37), (38) but not the consistency of
the maximum likelihood estimator. Then, writing the dependency of θ̂ and L(θ)
with n,

∃ε > 0, ∃α > 0, ∀n ∈ N, ∃Nn ≥ n, P(|θ̂Nn − θ∗| ≥ ε) ≥ α. (39)

Thus, with probability at least α, we have, for all n:
|θ̂Nn − θ∗| ≥ ε thus inf |θ−θ∗|≥ε LNn(θ) ≤ LNn(θ̂Nn).
However, by definition of θ̂Nn , we have LNn(θ̂Nn) ≤ LNn(θ∗).
Thus: inf |θ−θ∗|≥ε LNn(θ) ≤ LNn(θ∗).
Finally, with probability at least α:

0 ≥ inf
‖θ−θ∗‖≥ε

(LNn(θ)− LNn(θ∗))

≥ inf
‖θ−θ∗‖≥ε

E (LNn(θ)− LNn(θ∗))− sup
‖θ−θ∗‖≥ε

|(Lθ − Lθ∗)− (E(Lθ)− E(Lθ∗))|

≥ inf
‖θ−θ∗‖≥ε

E (LNn(θ)− LNn(θ∗)) + oP(1)

≥ a|Rθ −Rθ∗ |2 + oP(1) using (37),

which is contradicted using (38). It remains to prove (37) and (38).

Step 2: We prove (37).
For all σ ∈ Sn,

V(Lθ|Σ = σ) = V
(

1

n
det(Rθ) +

1

n
yTR−1

θ y|Σ = σ

)
=

2

n2
Tr(Rθ∗R−1

θ Rθ∗R
−1
θ )

=
2

n2
‖Rθ∗R−1

θ ‖
2
F

≤ 2

n
‖Rθ∗‖2‖R−1

θ ‖2

≤ C

n
,
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Thus, for all σ,

V(Lθ|Σ = σ) = E
(
(Lθ − E(Lθ|Σ = σ))2|Σ = σ

)
≤ C

n
,

so
E
(
(Lθ − E(Lθ|Σ = σ))2

)
≤ C

n
,

thus Lθ − E(Lθ|Σ) = oP(1). Let us write z := R
− 1

2
θ y.

sup
θ

∣∣∣∣∂Lθ∂θ

∣∣∣∣ = sup
θ

1

n

(
Tr
(
R−1
θ

∂Rθ
∂θ

)
+ ztR

1
2
θ∗R

−1
θ

∂Rθ
∂θ

R−1
θ R

1
2
θ∗z

)
≤ sup

θ

(
max

(
‖R−1

θ ‖
∥∥∥∥∂Rθ∂θ

∥∥∥∥ , ‖Rθ∗‖‖R−2
θ ‖

∥∥∥∥∂Rθ∂θ

∥∥∥∥))(1 +
1

n
|z|2
)

and so is bounded in probability conditionally to Σ = σ, uniformly in σ. Indeed
z ∼ N (0, In) thus 1/n ‖z‖2 is bounded in probability.

Then supk∈[1:p],θ

∣∣∣∂Lθ∂θk

∣∣∣ is bounded in probability.
Thanks to the pointwise convergence and the boundness of its derivatives, we have

sup
θ
‖Lθ − E(Lθ)‖ = oP(1) (40)

Now, let us write Dθ,θ∗ := E(Lθ|Σ)− E(Lθ∗ |Σ). Thanks to (40),

sup
θ
|Lθ − Lθ∗ −Dθ| ≤ sup

θ
|Lθ − E(Lθ)|+ |Lθ∗ − E(Lθ∗)| = oP(1). (41)

Step 3: We prove (38).
We have

E(yTRθy|Σ) = E(Tr(yTRθy)|Σ) = E(Tr(RθyyT )|Σ)) = Tr(RθE(yT y)).

Thus

E(Lθ|Σ) =
1

n

n∑
i=1

ln(det(Rθ)) +
1

n
Tr(R−1

θ Rθ∗), (42)

Let us write φ1(M), · · · , φn(M) the eigenvalues of M . We have

Dθ,θ∗ =
1

n
ln(det(Rθ)) +

1

n
Tr(R−1

θ Rθ∗)−
1

n
ln(det(Rθ∗))− 1

=
1

n

(
− ln

(
(det(R−1

θ ) det(Rθ∗)
)

+ Tr(R−1
θ Rθ∗)− 1

)
=

1

n

(
− ln

(
(det(R

1
2
θ∗R

−1
θ R

1
2
θ∗)

)
+ Tr(R

1
2
θ∗R

−1
θ R

1
2
θ∗)− 1

)
=

1

n

n∑
i=1

(
− ln

[
φi

(
R

1
2
θ∗R

−1
θ R

1
2
θ∗

)]
+ φi

(
R

1
2
θ∗R

−1
θ R

1
2
θ∗

)
− 1

)
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Thanks to Lemmas 3 and 4, the eigenvalues of Rθ and R−1
θ are uniformly bounded

in θ and Σ. Thus, there exist a > 0 and b > 0 such that for all σ, n and θ, we have

∀i, a < φi

(
R

1
2
θ∗RθR

1
2
θ∗

)
< b.

Let us define f(t) := − ln(t) + t − 1. f is minimal in 1 and f ′(1) = 0 and
f ′′(1) = 1. So there exists A > 0 such that for all t ∈ [a, b], f(t) ≥ A(t − 1)2.
Finally:

Dθ,θ∗ ≥
A

n

n∑
i=1

(
1− φi(R

1
2
θ∗R

−1
θ R

1
2
θ∗)

)2

=
A

n
Tr

[(
1− φi(R

1
2
θ∗R

−1
θ R

1
2
θ∗)

)2
]

=
A

n
Tr

[(
R
− 1

2
θ (Rθ −Rθ∗)R

− 1
2

θ

)2
]

=
A

n

∥∥∥∥R− 1
2

θ (Rθ −Rθ∗)R
− 1

2
θ

∥∥∥∥2

F

≥ A

n
‖Rθ −Rθ∗‖2F

∥∥∥∥R 1
2
θ

∥∥∥∥−2

F

∥∥∥∥R 1
2
θ

∥∥∥∥−2

F

≥ a|Rθ −Rθ∗ |2.
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B.3 Proof of Theorem 2

Proof. First, we prove Equation (16). For all (λ1, λ2, λ3) ∈ R3 such that ‖(λ1, λ2, λ3)‖ =
1, we have

3∑
i,j=1

λiλj(MML)i,j =
1

2n
Tr

R−1
θ∗

(
3∑
i=1

λi
∂Rθ∗

∂θi

)
R−1
θ∗

 3∑
j=1

λj
∂Rθ∗

∂θj


=

1

2n
Tr

R− 1
2

θ∗

(
3∑
i=1

λi
∂Rθ∗

∂θi

)
R
− 1

2
θ∗ R

− 1
2

θ∗

 3∑
j=1

λj
∂Rθ∗

∂θj

R
− 1

2
θ∗


=

1

2n

∥∥∥∥∥R− 1
2

θ∗

(
3∑
i=1

λi
∂Rθ∗

∂θi

)
R
− 1

2
θ∗

∥∥∥∥∥
2

F

≥ 1

2n

∥∥∥∥R 1
2
θ∗

∥∥∥∥−2

F

∥∥∥∥∥
(

3∑
i=1

λi
∂Rθ∗

∂θi

)∥∥∥∥∥
2

F

∥∥∥∥R 1
2
θ∗

∥∥∥∥−2

F

≥ C
1

n

∥∥∥∥∂Rθ∗∂θ

∥∥∥∥2

F

= C

∣∣∣∣∣
(

3∑
i=1

λi
∂Rθ∗

∂θi

)∣∣∣∣∣
2

Hence, from Lemma 5, we obtain:

lim inf
n→∞

λmin(MML) ≥ Cmin > 0. (43)

Moreover, we have

|(MML)i,j | =

∣∣∣∣ 1

2n
Tr
(
R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj

)∣∣∣∣
≤ 1

2n

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
F

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
F

≤ 1

2

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
2

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
2

≤ Cmax.

Using Gershgorin circle theorem ([15]), we obtain

lim sup
n→∞

λmax(MML) < +∞, (44)

that concludes the proof of Equation (16).

By contradiction, let us now assume that

√
nM

1
2
ML

(
θ̂ML − θ∗

)
�

�
��L−→

n→+∞
N (0, I3). (45)
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Then, there exists a bounded measurable function g : R3 → R, ξ > 0 such that, up
to extracting a subsequence, we have:∣∣∣∣E [g(√nM 1

2
ML(θ̂ML − θ∗

)]
− E(g(U))

∣∣∣∣ ≥ ξ, (46)

with U ∼ N (0, I3). The rest of the proof consists in contradicting Equation (46).
As 0 < Cmin ≤ λmin(MML) ≤ λmax(MML) ≤ Cmax, up to extraction

another subsequence, we can assume that:

MML −→
n→∞

M∞, (47)

with λmin(M∞) > 0.

We have:

∂

∂θi
Lθ =

1

n

(
Tr
(
R−1
θ

∂Rθ
∂θi

)
− yTR−1

θ

∂Rθ
∂θi

R−1
θ y

)
. (48)

Let λ = (λ1, λ2, λ3) ∈ R3. For a fixed σ, denoting
∑3

k=1 λkR
− 1

2
θ∗

∂Rθ∗
∂θk

R
− 1

2
θ∗ =

P TDP with P TP = In and D diagonal, zσ = PR
− 1

2
θ∗ y (which is a vector of i.i.d.

standard Gaussian variables, conditionally to Σ = σ), we have

3∑
k=1

λk
√
n
∂

∂θk
Lθ∗ =

1√
n

[
Tr

(
3∑

k=1

λkR
−1
θ

∂Rθ
∂θk

)
−

n∑
i=1

φi

(
3∑

k=1

λkR
− 1

2
θ∗

∂Rθ∗

∂θk
R
− 1

2
θ∗

)
z2
σ,i

]

=
1√
n

[
n∑
i=1

φi

(
3∑

k=1

λkR
− 1

2
θ∗

∂Rθ∗

∂θk
R
− 1

2
θ∗

)
(1− z2

σ,i)

]

Hence, we have

V

(
3∑

k=1

λk
√
n
∂

∂θk
Lθ∗ |Σ

)
=

2

n

n∑
i=1

φ2
i

(
3∑

k=1

λkR
− 1

2
θ∗

∂Rθ∗

∂θk
R
− 1

2
θ∗

)

=
2

n

3∑
k,l=1

λkλlTr
(
∂Rθ∗

∂θk
R−1
θ∗
∂Rθ∗

∂θl
R−1
θ∗

)
= λT (4MML)λ −→

n→∞
λT (4M∞)λ.

Hence, for almost every σ, we can apply Lindeberg-Feller criterion to the variables
1√
n
φi

(∑3
k=1 λkR

− 1
2

θ∗
∂Rθ∗
∂θk

R
− 1

2
θ∗

)
(1− z2

σ,i) to show that, conditionally to Σ = σ,
√
n ∂
∂θLθ∗ converges in distribution to N (0, 4M∞).
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Then, using dominated convergence theorem on Σ, we show that:

E

(
exp

(
i

3∑
k=1

λk
√
n
∂

∂θk
Lθ∗

))
−→
n→∞

exp

(
−1

2
λT (4M∞)λ

)
. (49)

Finally,
√
n
∂

∂θ
Lθ∗

L−→
n→∞

N (0, 4M∞). (50)

Let us now compute

∂2

∂θi∂θj
Lθ∗ =

1

n
Tr
(
−R−1

θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj
+R−1

θ∗
∂2Rθ∗

∂θi∂θj

)
+

1

n
yT
(

2R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj
R−1
θ∗ −R

−1
θ∗
∂2Rθ∗

∂θi∂θj
R−1
θ∗

)
y.

Thus, we have, a.s.

E
(

∂2

∂θi∂θj
Lθ∗

)
−→

n→+∞
(2M∞)i,j , (51)

and, using Lemmas 2 and 3,

V

(
∂2

∂θi∂θj
Lθ∗ |Σ

)
−→

n→+∞
0. (52)

Hence, a.s.
∂2

∂θi∂θj
Lθ∗

P|Σ−→
n→+∞

2M∞. (53)

Moreover, ∂3

∂θi∂θj∂θk
Lθ can be written as

1

n
Tr(Aθ) +

1

n
yTBθy, (54)

where Aθ and Bθ are sums and products of the matrices R−1
θ or ∂|β|

∂θβ
with β ∈ [0 :

3]3. Hence, from Lemmas 2 and 3, we have

sup
θ∈Θ

∥∥∥∥ ∂3

∂θi∂θj∂θk
Lθ

∥∥∥∥ = OP|Σ(1). (55)

We know that, for k ∈ {1, 2, 3}

0 =
∂

∂θi
L
θ̂ML

=
∂

∂θk
Lθ∗ +

(
∂

∂θ

∂

∂θk
Lθ∗

)T
(θ̂ML − θ∗) + r

with some random r, such that

|r| ≤ sup
θ,i,j,k

∣∣∣∣ ∂3

∂θi∂θj∂θk

∣∣∣∣ |θ̂ML − θ|2.
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Hence, from Equation (55), r = oP|Σ(|θ̂ML − θ∗|). We then have

− ∂

∂θk
Lθ∗ =

[(
∂

∂θ

∂

∂θk
Lθ∗

)T
+ oP|Σ(1)

](
θ̂ML − θ∗

)
,

an so (
θ̂ML − θ∗

)
= −

[(
∂

∂θ

∂

∂θk
Lθ∗

)T
+ oP|Σ(1)

]−1
∂

∂θk
Lθ∗ . (56)

Hence, using Slutsky lemma, Equation 53 and Equation 50, a.s.

√
n
(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N
(
0, (2M∞)−1(4M∞)(2M∞)−1

)
= N

(
0,M−1

∞
)
.

(57)
Moreover, using Equation (47), we have

√
nM

1
2
ML

(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N (0, I3). (58)

Hence, using dominated convergence theorem on Σ, we have

√
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (59)

To conclude, we have found a subsequence such that, after extracting,∣∣∣∣E [g(√nM 1
2
ML(θ̂ML − θ∗

)]
− E(g(U))

∣∣∣∣ ≥ ξ, (60)

which is in contradiction with Equation (46).

B.4 Proof of Theorem 3

Proof. Let σn ∈ SNn . We have:∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ ∂∂θ Ŷθ(σn)

∣∣∣∣ ∣∣∣θ̂ML − θ∗
∣∣∣ (61)

From Theorem 1, it is enough to show that, for i ∈ {1, 2, 3}∣∣∣∣sup
θ∈Θ

∂

∂θi
Ŷθ(σn)

∣∣∣∣ = OP(1). (62)

From a version of Sobolev embedding theorem (W 1,4(Θ) ↪→ L∞(Θ), see Theo-
rem 4.12, part I, case A in [1]), there exists a finite constant AΘ depending only on
Θ such that

sup
θ∈Θ

∣∣∣∣ ∂∂θi Ŷθ(σn)

∣∣∣∣ ≤ Aθ

∫
Θ

∣∣∣∣ ∂∂θi Ŷθ(σn)

∣∣∣∣4 dθ +Aθ

3∑
j=1

∫
Θ

∣∣∣∣ ∂2

∂θjθi
Ŷθ(σn)

∣∣∣∣4 dθ.
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The rest of the proof consists in showing that these integrals are bounded in prob-
ability. We have to compute the derivatives of

Ŷθ(σn) = rTθ (σn)R−1
θ y

with respect to θ. Thus, we can write these fist and second derivatives as a sum of
wTθ (σn)Wθy where wθ(σn) is of the form rθ(σn) or ∂

∂θi
rθ(σn) of ∂2

∂θjθi
rθ(σn) and

Wθ is product of the matrices R−1
θ , ∂

∂θi
Rθ and ∂2

∂θjθi
Rθ. It is sufficient to show that∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ = OP(1). (63)

From Fubini-Tonelli Theorem (see [6]), we have

E
(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ) =

∫
Θ
E
(∣∣wTθ (σn)Wθy

∣∣4) dθ.
There exists a constant c so that for X a centred Gaussian random variable

E
(
|X|4

)
= cV(X)2,

hence

E
(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ|Σ) = C

∫
Θ
V
(
wTθ (σn)Wθy|Σ

)2
dθ

= c

∫
Θ

(
wTθ (σn)WθR

∗
θWθ(σn)wθ(σn)

)2
dθ.

From Lemma 3, there exists B <∞ such that, a.s.

sup
θ
‖WθRθ∗Wθ‖ < B.

Thus

E
(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ|Σ) ≤ B2c

∫
Θ
‖wTθ (σn)‖2dθ. (64)

Finally, for some α ∈ [0 : 2]3 such that |α| ≤ 2, we have

sup
θ∈Θ
‖wTθ (σn)‖2 = sup

θ

n∑
i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

.

Thus, it suffices to bound this term. Using the proof of Lemma 3, there exists
A > 0, a > 0 such that

sup
θ

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A exp (−ad(σn, σi)) .
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Yet, choosing i∗ ∈ [1 : n] such that d(σn, σi∗) ≤ d(σn, σi) for all i ∈ [1 : n], we
have

d(σn, σi) ≥
1

2
d(σi, σi∗).

Thus, we have

sup
θ

n∑
i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A

n∑
i=1

exp
(
−a

2
d(σi, σi∗)

)
≤ A

n∑
i=1

exp
(
−a

2
|i− i∗|β

)
≤ 2A

+∞∑
i=0

exp
(
−a

2
iβ
)

≤ C.

That concludes the proof.

B.5 Proofs of the lemmas

Proof of Lemma 2.

Proof. Rθ is the sum of a symmetric positive matrix and θ3In. Thus, the eigenval-
ues are lower-bounded by θ3,min.

Proof of Lemma 3.

Proof. It is easy to prove when α1 = α2 = 0. Indeed:

1. If α3 = 0, then λmax (Rθ) ≤ λmax ((Kθ1,θ2(σi, σj))i,j) + θ3,max and we
show that λmax (Kθ1,θ2(σi, σj)i,j) is uniformly bounded using Gershgorin
circle theorem ([15]).

2. If α3 = 1, then ∂|α|Rθ
∂θα = In.

3. If α3 > 1, then ∂|α|Rθ
∂θα = 0.

Then, we suppose that (α1, α2) 6= (0, 0). Thus,

∂|α|Rθ
∂θα

=
∂|α| (Kθ1,θ2(σi, σj)i,j)

∂θα
.

It does not depend on α3 so we can assume that α ∈ N2. We have∣∣∣∣∣∂|α|Kθ1,θ2(σ, σ′)

∂θα

∣∣∣∣∣ ≤ max(1, θ2,max)d(σ, σ′)α1e−θ1,mind(σ,σ′). (65)

We conclude using Gershgorin circle theorem ([15]).
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Proof of Lemma 4

Proof. Let N be the norm on R3 defined by

N(x) := max(4cθ2,max|x1|, 2|x2|, |x3|), (66)

with c as in Condition 2. Let α > 0. We want to find a positive lower-bound over
θ ∈ Θ \BN (θ∗, α) of

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2. (67)

Let θ ∈ Θ \BN (θ∗, α).

1. If |θ1 − θ∗1| ≥ α/(4cθ2,max). Let kα ∈ N be the first integer such that

kβα ≥ 4cθ2,max
2 + ln(θ2,max)− ln(θ2,min)

α
. (68)

Then, for all i ∈ N∗,∣∣∣∣(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ 1.

For all n ≥ kα,

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2

≥ 1

n

n−kα∑
i=1

(Rθ,i,i+kα0−Rθ∗,i,i+kα)2

≥ 1

n

n−kα∑
i=1

e−2θ1,maxckα+2 ln(θ2,min)4 sinh2

(
(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

)
≥ C1,α

n− kα
n

,

where we write C1,α = e−2θ1,maxckα+2 ln(θ2,min)4 sinh2(1).

2. If |θ1 − θ∗1| ≤ α/(4cθ2,max).

(a) If |θ2 − θ∗2| ≥ α/2, we have

|θ1 − θ∗1|
2

d(σi, σi+1) <
α

8θ2,max

=
α

4θ2,max
− α

8θ2,max

≤ | ln(θ∗2)− ln(θ2)|
2

− α

8θ2,max
.
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Thus, ∣∣∣∣(θ∗1 − θ1)d(σi, σi+1) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ α

8θ2,max
, (69)

and we have

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2

≥ 1

n

n−1∑
i=1

(Rθ,i,i+1 −Rθ∗,i,i+1)2

≥ 1

n

n−1∑
i=1

e−2θ1,maxc+2 ln(θ2,min)4 sinh2

(
α

8θ2,max

)
= C2,α

n− 1

n
,

where we write C2,α := e−2θ1,maxc+2 ln(θ2,min)4 sinh2
(

α
8θ2,max

)
.

(b) If |θ2 − θ∗2| < α/2, we have |θ3 − θ∗3| ≥ α. Thus,

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2

≥ 1

n

n∑
i=1

(Rθ,i,i −Rθ∗,i,i)2

=
1

n

n∑
i=1

(θ2 + θ3 − θ∗2 − θ∗3)2

≥ α2

4
.

Finally, if we write

Cα := min

(
C1,α, C2,α,

α2

2

)
, (70)

we have

inf
N(θ−θ∗)≥α

1

n

n∑
i,j=1

(Rθ,i,j −Rθ∗,i,j)2 ≥ n− kα
n

Cα. (71)

To conclude, there exists h > 0 such that ‖.‖2 ≤ hN(.) thus

lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(Rtheta,i,j −Rθ∗,i,j)2 ≥ Cα/h > 0. (72)
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Proof of Lemma 5

Proof. We have

∂

∂θ1
Rθ∗,i,j = −d(σi, σj)e

−θ∗1d(σi,σj),

∂

∂θ2
Rθ∗,i,j = e−θ

∗
1d(σi,σj),

∂

∂θ3
Rθ∗,i,j = 1i=j .

Let (λ1, λ2, λ3) 6= (0, 0, 0). We have

1

n

n∑
i,j=1

(
3∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

=
1

n

n∑
i 6=j=1

(
2∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

+ (λ2 + λ3)2

=
1

n

n∑
i 6=j=1

e−2θ∗1d(σi,σj) (λ2 − λ1d(σi, σj))
2 + (λ2 + λ3)2.

If λ1 6= 0, then for conditions 1 and 2, we can find ε > 0, τ > 0, k ∈ Z so that
for |i − j| = k, we have (λ2 − λ1d(σi, σj))

2 ≥ ε and e−2θ∗1d(σi,σj) ≥ τ . This
concludes the proof in the case λ1 6= 0. The proof in the case λ1 = 0 can then be
obtained by considering the pairs (j, j + 1) in the above display.
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