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Finding a solution to a Constraint Satisfaction Problem (CSP) is known to be an NP-complete task. This has motivated
the multitude of works that have been devoted to developing techniques that simplify CSP instances before or during
their resolution.

The present work proposes rigidly enforced schemes for simplifying binary CSPs that allow the narrowing of value
domains, either via value merging or via value suppression. The proposed schemes can be viewed as parametrized
generalizations of two widely studied CSP simplification techniques, namely, value merging and neighbourhood
substitutability. Besides, both schemes may be strengthened in order to allow variable elimination, which may result
in more significant simplifications. This work contributes also to the theory of tractable CSPs by identifying a new
tractable class of binary CSP.

1 Introduction
Constraint Satisfaction Problem (CSP) is a generic problem which is well suited to the encoding of many
difficult combinatorial problems [12, 23, 24]. A CSP is defined by a finite set of variables and a finite
set of constraints over these variables. Every variable is associated with a finite domain containing the
values that may be assigned to that variable. The role of the constraints is to specify the permissible
combinations of values, i.e., those that can be simultaneously assigned to subsets of the variables. In the
specific case where every constraint involves, at most, two variables, we obtain a binary CSP. A solution
is an assignment of a value to every variable that satisfies all the constraints. Finding a solution to a CSP
instance or proving that none exist is known to be an NP-complete task. So, in absence of a polynomial
solution algorithm, CSP solvers are usually enhanced by polynomial-time filtering algorithms. These
algorithms may introduce significant simplifications on the problems to be solved without changing their
solution sets, and then are often viewed as part of the solution process. Filtering algorithms proceed by
establishing a limited form of (local) consistency that may, in some cases, guarantee the consistency of
the whole problem. Problems that can be solved by establishing limited local consistencies are thereby
solvable by polynomial algorithms. If, in addition, these problems are recognizable in polynomial time
then they are said to be tractable.

Tractable problems may be arranged in tractable classes based on the specific features that make them
tractable. Thus, there are two main types of problem tractability: structural tractability and relational
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tractability. Structural tractability is obtained by restricting the constraint hyper-graph, whose vertices
are the problem variables and hyper-edges are the constraint scopes, to have some specific feature. The
class of problems whose underlying hyper-graphs have a bounded hyper-tree width is one of the best
known structural tractable class [15]. In turn, relational tractability is obtained by restricting the allowable
constraint relations. The class of CSP limited to max-closed relations is one of the already identified
relational tractable classes [19]. More recent works studied a new kind of tractability, called hybrid
tractability [9, 11, 14, 21, 25, 27, 28]. The properties used in expressing hybrid tractability are neither
purely structural nor purely relational. This allowed to derive new tractable problems whose specificity
cannot be captured by exclusively structural of relational properties.

Among the multitude of works on hybrid tractability, the one presented in [9] has initiated a lot of
efforts and developments, all aiming to simplify CSPs. The idea is centred on a specific pattern called
broken triangle, which when forbidden from appearing in the deep structure of a binary CSP instance
makes it solvable in polynomial time. The set of all binary CSP instances not allowing a broken triangle
as substructure were gathered in a binary CSP class called BTP. Furthermore, the recognition of a BTP
instance can also be done in polynomial time, which completes the proof that BTP is a tractable binary
CSP class. Even more practical, it has been shown in [5] that binary CSP instances that are not in the
BTP class may nevertheless be simplified via the elimination of variables that are not involved in broken
triangles.

Soon many other works followed in an attempt to extend the BTP class. k-BTP, a parametrized version
of BTP [10] and Extendable-Triple Property (ETP), which is based on a pattern that generalizes the
broken triangle [20], are two extensions of BTP. Both are less restrictive than BTP but, in compensation,
they require a higher level of local consistency to guarantee tractability. Unfortunately, enforcing the
required level of local consistency on a given binary CSP instance that satisfies the k-BTP or the ETP
may lead to the loss of these properties. For example, the tractability of a binary CSP that satisfies the
3-BTP or ETP requires a local consistency level, called strong path consistency, from the outset. This
combined condition could be as restrictive as the condition underlying the BTP class. In [21], the author
introduced the notion of CSP with bounded (directional) rank, which has proven to have a link to BTP.
Indeed, it has been shown in [10] that the notion of directional rank k − 1 strictly generalizes k-BTP. Yet
another super-class of BTP is the variant called weak BTP (WBTP) [22]. Contrary to k-BTP and ETP,
WBTP requires no pre-established local consistency. In turn, WBTP inspired the work presented in [8] in
which the authors proposed a parametrized version of WBTP referred to as m-wBTP.

A huge advance was made with BTP when the authors of [7] discovered that this property can be used
as a condition to enable the merging of values inside the domains of variables. The advantage of merging
values is obvious since the resulting CSP instances may only have smaller value domains. Moreover, the
opportunities of value merging based on BTP are rather frequent as it has been experimentally shown in
[8]. Since then, CSP reduction based on forbidding patterns has continued to be developed and many
patterns, other than the broken triangle, were discovered and used, especially for variable elimination
[6, 4, 13].

CSP simplification may also be achieved via removing values, or combinations of values, which could
eliminate some, but not all, solutions. Value removal was explored in many works, giving rise to notions
like neighbourhood value interchangeability and substitutability [16], conditional interchangeability and
substitutability [26], and value removability [3]. These notions have resulted in as many filtering algo-
rithms, which were applied as preprocessing steps or integrated into CSP solvers in order to accelerate
CSP solving.
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The present paper proposes two schemes designed to make simplifications on binary CSP. The first
scheme can be seen as an enhanced value merging scheme that generalizes the one based on the BTP [7].
The goal is always to narrow the domains of variables. From this contribution, we derived a strength-
ened condition that turned the value merging scheme into a mean to eliminate variables. We rigorously
specify this condition and propose an algorithm that identify all variables that can be eliminated from any
binary CSP instance. Furthermore, the resulting variable elimination scheme allowed the discovery of a
new hybrid tractable class of binary CSP. Our second contribution consists in a powerful value removal
scheme that can be viewed as a parametrized version of neighbourhood substitutability, a widely studied
CSP reduction technique that was proposed in [16].

The paper is organized as follows: the next section recalls some definitions and notation of constraint
satisfaction problems. Section 3 describes the first CSP simplification scheme, in which we proceed by
value merging. In Section 4, we show that value merging may lead to variable elimination and even to a
polynomial solution process, in favourable cases. Next, a new value removal scheme is detailed in Section
5. Finally, Section 6 is a brief conclusion.

2 Preliminaires
Let us begin by a formal definition of the constraint satisfaction problem:

Definition 1 A constraint satisfaction problem (CSP) is defined by an ordered pair (X,C) where:

• X is a finite set of variables.

• C is a finite set of constraints. Every constraint is a pair (σ,R), where

– σ is a sequence of variables providing the scope of the constraint and

– R is a |σ|-ary relation containing the |σ|-tuples allowed by the constraint.

The arity of a constraint is the size of its scope. The arity of a problem is the maximum arity over its
constraints. A binary CSP is a CSP having arity two. We assume that there is, at most, one constraint,
for a fixed scope. A constraint (σ,R) could therefore be indexed by its own scope and written as Rσ , for
conciseness. A variable x must be assigned a value from its domain, which is the unary relation defining
the unique unary constraint whose scope is limited to x, that is Rx. A sub-domain of a variable x is
any subset of Rx. If a pair of variables x and y are not connected by a binary constraint in a binary
CSP instance, one may assume that they are connected by the appropriate universal binary constraint,
that is, the one defined by the complete binary relation Rx × Ry . A unary assignment is an ordered pair
(x, v) suggesting that variable x is assigned value v. A partial assignment, or simply assignment, is a
set of unary assignments that cannot contain two unary assignments of the same variable. A complete
assignment is a |X|-set of unary assignments, which assigns a value to every variable. An assignment A
satisfies a unary constraint Rx if and only if v is in Rx whenever (x, v) is in A. Similarly, an assignment
A satisfies a binary constraint Rx,y if and only if (v, w) is in Rx,y whenever both (x, v) and (y, w) are in
A. An assignment A is consistent if and only if it satisfies all the constraints. A solution is a complete and
consistent assignment. If a problem has, at least, one solution then it is said to be consistent otherwise
it is inconsistent. In its most general version, the CSP is NP-complete, which means that there is no
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polynomial-time solution algorithm for general CSPs, unless P=NP. Nonetheless, CSP solving can be
made faster by removing some value combinations whose removal has no effect on the solution set. Such
removals achieve a limited form of consistency, called local consistency, which allows an easy calculation
of consistent assignments of small sizes.

The focus of this paper is to contribute to the improvement of binary CSP solving via new simplification
schemes, which will be detailed, in turn, in the following sections.

In the rest of the paper and for conciseness of notation, a union of the form S ∪ {e} will be often
abbreviated to S ∪ e.

3 Sub-domain merging
The first of the simplification schemes that we propose for binary CSP is based on value merging. The
motivation is to reduce the size of value domains by replacing certain sub-domains by single values. The
proposed value merging scheme is based on the following two definitions:

Definition 2 Let Dx be a sub-domain of a variable x and let A be an assignment that does not affect
a value to x. We say that Dx supports A if, for every (y, w) ∈ A, there exists v ∈ Dx such that
{(x, v), (y, w)} is consistent.

In words, a sub-domain Dx supports an assignment A if and only if every unary assignment of A can be
consistently extended to x via a value of Dx.

Definition 3 Let P be a binary CSP instance on variable set X and let x be in X . A sub-domain Dx

is m-mergeable, for some integer m, |Dx| ≤ m < |X|, if and only if, whenever Dx supports a m-sized
consistent assignment A, there exists v ∈ Dx such that A ∪ (x, v) is consistent.

In words, a sub-domain Dx is m-mergeable, for some integer m, |Dx| ≤ m < |X|, if and only if every
m-sized consistent assignment supported by Dx can be consistently extended to x via a value of Dx.
The integer m in the above definition will be referred to as the merging parameter. Note that every one-
element sub-domain is trivially m-mergeable, for all 1 ≤ m < |X|. Conversely, for a fixed m, every
sub-domain containing more than m values is not m-mergeable. Note also that 2-mergeable sub-domains
correspond exactly to the value pairs that can be merged by means of the BTP [7].

EXAMPLE 1. In the graph depicted in Figure 1, the vertices represent some values of a binary CSP
instance. The dashed ellipses are used to diagram sub-domains. We assume that u, u′, v, v′ and w belong
all to domains of distinct variables. A pair of vertices are connected by an edge if and only if the associated
values are consistent. Dx supports the 3-sized consistent assignment that uses values u, v andw since each
of these values is consistent with a value of Dx. Similarly, D′x supports the 2-sized consistent assignment
that uses values u and u′ since each of these values is consistent with a value of D′x. In accordance
with Definition 3, both Dx and D′x are 3-mergeable. In contrast, D′x is not 2-mergeable because of the
consistent assignment using u and u′. Finally, Dx is trivially not 2-mergeable because of its size.

Proposition 1 In a binary CSP instance with variable set X , if a sub-domain is m-mergeable, for some
integer m then it is m′-mergeable, for every m′, m ≤ m′ < |X|.

Proof: Suppose, for a sake of contradiction, that a sub-domain, say Dx, is m-mergeable but not m′-
mergeable, for some m′, m < m′ < |X|. This implies that Dx supports a m′-sized consistent assignment
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Fig. 1: Sub-domains Dx and D′
x are 3-mergeable, but neither Dx nor D′

x is 2-mergeable.

A but A cannot be consistently extended to x by any value of Dx. Since A is consistent, we deduce that,
for every v ∈ Dx, there exists (y, v̄) ∈ A such that (v, v̄) /∈ Rx,y . Consider, therefore, Ā the subset of
A composed by the (y, v̄)’s that satisfy this latter assertion, for the various values of Dx. Observe that
|Ā| ≤ |Dx| ≤ m < m′ = |A|. It follows that Ā ⊂ A and then Ā can be completed by some unary
assignments from A to obtain a m-sized consistent assignment Ām ⊂ A. Note that Dx supports Ām
since Dx supports A and Ām ⊂ A. Moreover, Ām cannot be consistently extended to x by some value of
Dx because Ām includes Ā. This means that Dx is not m-mergeble and contradicts the hypothesis. 2

The above proposition states that it is more appropriate to give priority to small values of m while
searching for m-mergeable sub-domains. On the other hand, for a fixed m, an m-mergeable sub-domain
may admit non m-mergeable sub-domains as proper subsets. Conversely, a sub-domain can be non m-
mergeable while all its proper subsets arem-mergeable. This latter situations is illustrated in the following
example.

EXAMPLE 2. The sub-domain of Figure 2-left, Dx, is not 2-mergeable because it supports the 2-sized
consistent assignment that can be formed by u and u′ but this latter assignment cannot be consistently
extended by a value of Dx. Dx is, however, 3-mergeable since the only 3-sized consistent assignment,
i.e. the one that can be formed from values v, v′, u′, is not supported by Dx. In the graph depicted in the
middle of Figure 2, sub-domain D′x and all its 2-sized subsets are neither 3-mergeable nor 2-mergeable.
Finally, in Figure 2-right, D′′x is not 3-mergeable but all its proper subsets are 3-mergeable.

We now focus on how to benefit from m-mergeable sub-domains to simply CSPs. We first define a m-
unmergeable binary CSP instance as being a binary CSP instance in which all sub-domains having size
two or more are not m-mergeable. Clearly, in a m-unmergeable CSP instance, no sub-domains can be
reduced in size by m-merging. On the other hand, any binary CSP instance can be transformed into a m-
unmergeable CSP instance whose consistency is closely related to the consistency of the original instance.
Such a m-unmergeable instance can be obtained by applying merging operations on m-mergeable sub-
domains, until no non-singleton m-mergeable sub-domains are left. The advantage of the resulting m-
unmergeable instance is that it would have smaller value domains than those of the original instance. In
addition, we prove that every solution of the reduced instance can be transformed into a solution of the
initial instance and vice versa. To show this, we begin by formally defining the CSP that results from a
single merging operation.
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Fig. 2: Sub-domain Dx is 3-mergeable but not 2-mergeable. D′
x, as well as all its 2-sized subsets are 3-unmergeable.

D′′
x is 3-unmergeable but all its 2-sized subsets are 3-mergeable.

Definition 4 Let P be a binary CSP instance and let Dx be a sub-domain of a variable x. The merging
of Dx results in the CSP instance P ′ obtained from P by only modifying the constraints containing x in
their scopes as follows:

• R′x = (Rx\Dx) ∪ {v}

• R′x,y = Rx,y ∪ {(v, w) : ∃v ∈ Dx, (v, w) ∈ Rx,y}

where v is a new value.

A binary CSP instance P differs very little from its one-step merging reductions. Indeed, assume that
the merging is performed on a sub-domain of a variable x. Then the constraints of P not having x in
their scopes are identical to the corresponding constraints in any one-step merging reductions of P . More
importantly, we show that if the merging operation described by Definition 4 is applied on a m-mergeable
sub-domain then the consistency of the resulting CSP instance is closely related to that of the original
instance.

Theorem 2 Let P be a binary CSP instance and let P ′ be a CSP instance obtained from P by merging a
m-mergeable sub-domain. Then P is consistent if and only if P ′ is consistent.

Proof: Assume that the merging operation that allowed the transition from P to P ′ is a m-merging oper-
ation that was performed on a sub-domain of variable x. Thus, Dx will denote the sub-domain of x that
contains the merged values and v will denote the value introduced in P ′ as suggested by Definition 4.
Recall also that P and P ′ differ only with regard to the constraints having x in their scopes. As a conse-
quence, any partial assignment, that does not affect a value to x, is consistent w.r.t. the constraints of P if
and only if it is consistent w.r.t. the constraints of P ′. This latter equivalence will be intensively used in
the remainder of the proof.

⇒ Assume that A ∪ (x, v) is a solution of P and proceed to deduce a solution for P ′. Since A is a
partial solution of P not assigning a value to x, it is also a partial solution of P ′. To show that A
can be consistently extended to form a solution of P ′, we distinguish two cases:

– v /∈ Dx: According to Definition 4, this implies that v ∈ R′x, which means thatA∪(x, v) satisfies
the unique unary constraint of P ′ that has x as scope. So, let us turn to binary constraints. Unary
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assignment (x, v) is consistent, w.r.t. the constraints of P , with every unary assignment (y, w) ∈ A
because A ∪ (x, v) is a solution of P . It follows that (v, w) ∈ Rx,y , for all (y, w) ∈ A, and since
v /∈ Dx, we obtain, by Definition 4, that (v, w) ∈ R′x,y , for all (y, w) ∈ A. This means that (x, v)
is consistent, w.r.t. the constraints of P ′, with all the elements of A. It follows that A ∪ (x, v) is
also a solution of P ′.

– v ∈ Dx: which means that v is one of the merged values. Let A′ = A ∪ (x,v), where v is the
new value introduced in P ′. We prove that A′ is a solution of P ′. Note that A′ trivially satisfies
the unique unary constraint of P ′ on variable x because, according to Definition 4, v is in R′x.
Moreover, other than the value assigned to x, A′ and A are the same and A is a partial solution of
P ′. It follows that A′ satisfies all the binary constraints of P ′ not involving x. Consider therefore
any binary constraint, R′x,y , of P ′ that has x in its scope and show that A′ satisfies such a constraint
as well. Let w be the value assigned by A to y. We have therefore (y, w) ∈ A. Note that (y, w)
is also in A′. Since A ∪ (x, v) is a solution of P , we must have (v, w) ∈ Rx,y . It follows from
Definition 4 and v ∈ Dx that (v, w) ∈ R′x,y , which implies thatA′ satisfies all the binary constraints
of P ′ having x in their scopes. This completes the proof that A′ satisfies all the constraints of P ′,
which means that A′ is a solution of P ′.

⇐ Assume that A′ ∪ (x, v′) is a solution of P ′ and proceed to deduce a solution for P . We distinguish
two cases:

– v′ = v: we prove that there exists v ∈ Dx such that A = A′ ∪ (x, v) is a solution of P . Note
that A′ is already a partial solution of P since P and P ′ are identical with regard to the constraints
not involving x in their scopes. For the sake of contradiction, suppose that there is no v ∈ Dx such
that A = A′ ∪ (x, v) is a solution of P . This implies that A violates a binary constraint involving
x whatever the choice of v ∈ Dx. So, for every v ∈ Dx, there must exist (y, w) ∈ A′ such that
(v, w) /∈ Rx,y . Let us denote by S′ a minimal subset of A′ such that, for every v ∈ Dx, there exists
(y, w) ∈ S′ and (v, w) /∈ Rx,y . Note that S′ is inconsistent with every value of Dx. Moreover,
we have |S′| ≤ |Dx| ≤ m. On the other hand, A′ ∪ (x,v) is a solution of P ′, which implies that
(v, w) ∈ R′x,y , for all (y, w) ∈ A′. By Definition 4, we deduce that, for every (y, w) ∈ A′, there
exists v ∈ Dx such that (v, w) ∈ Rx,y . This means that Dx supports A′ in P . Moreover, we
have m ≤ |X| − 1 = |A′|. It follows that Dx supports every m-subset M ′ of A′. All these M ′’s
are consistent with regard to the constraints of P since A′ is a partial solution of P . According to
Definition 3, for every M ′, there must exist v ∈ Dx such that M ′ ∪ (x, v) is consistent with regard
to the constraints of P . But among these M ′’s, there is necessarily one, say M̄ ′, which includes S′.
This is because the M ′’s are all the m-sized subsets of A′ and S′ is a subset of A′ with m elements
or less. The contradiction follows from the fact that M̄ ′ is consistent with a value of Dx and, at the
same time, it includes a subset, S′, which is inconsistent with all the values of Dx.

– v′ 6= v: this implies that v′ ∈ Rx, which means that A′ ∪ (x, v′) satisfies all the unary constraints
of P . On the other hand, A′ ∪ (x, v′) satisfies all the binary constraints of P not involving x in their
scopes. It remains to show that A′ ∪ (x, v′) satisfies also all the constraint of P that have x in their
scopes. This amount to showing that (v′, w′) ∈ Rx,y , for all (y, w′) ∈ A′. We start from the fact
thatA′∪(x, v′) is a solution of P ′, from which we deduce that (v′, w′) ∈ R′x,y , for all (y, w′) ∈ A′.
Then we use the second point of Definition 4, with v′ 6= v, to deduce that (v′, w′) ∈ Rx,y , for all
(y, w′) ∈ A′. Thus, A′ ∪ (x, v′) satisfies all the constraints of P , which means that it is a solution
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of P .

2

Theorem 2 expresses a tight consistency relationship between a binary CSP instance and its merging-
based reductions. This relationship holds true regardless of the merging parameter value and the size of
merged sub-domains. In fact, even by fixing the merging parameter to a specific value, merging operations
can be attempted on sub-domains having various sizes. The choice of sub-domains that we would attempt
to merge is a crucial issue for obtaining significant domain reductions. The authors of [7], who proposed a
merging scheme which corresponds to the specific case m = 2, showed that distinct 2-merging sequences
may result in different reduced problems. Indeed, the order following which sub-domains are merged is
deterministic for the problem that will be obtained at the end of the merging process.

A natural way to get around the choice of the sub-domains that we would attempt to merge could
be achieved by limiting the merging parameter to small values. As a consequence and by referring to
Definition 3, we deduce that only sub-domains whose size does not exceed the merging parameter could
be merged. This limitation is motivated by the fact that the merging parameter has a huge influence on the
computational complexity of the merging algorithm. Indeed, by referring to Definition 3, one can easily
see that the time complexity of any optimal merging algorithm is bounded below by Ω(nmdm), where
n is the number of variables, d is the size of the largest value domain and m is the merging parameter.
Another issue that shall be considered concerns the merging strategy that will be followed in case where
there are many mergeable sub-domains within the same domain. Such sub-domains may have different
sizes and, most crucially, may overlap. This can complicate the merging process because it is not always
possible to simultaneously merge all mergeable sub-domains.

We propose to apply merging operations by fixing the merging parameter, m, to a specific value, then
the sub-domains are merged by increasing sizes. So, the size, s, of the sub-domains that the algorithm
would attempt to merge is varied from 2 to m. All s-sized and m-mergeable sub-domains are, therefore,
identified, in turn, in every domain. Among these sub-domains, the merging algorithm selects a large
subset whose members are pairwise disjoint. This large subset of disjoint sub-domains can be obtained,
respectively approximated, by standard maximum set packing algorithms, respectively, maximum set
packing heuristics. Note that all disjoint sub-domains can be merged simultaneously. The merging of the
selected sub-domains can, therefore, take place in accordance with Definition 4.

The steps of the proposed sub-domain merging algorithm are detailed in Algorithm 1. The algorithm
calls Boolean function Mergeable (see Algorithm 2), which determines whether a given sub-domain is
m-mergeable or not. Looking at the pseudo-code of this function, we can see that its outer loop iterates
O(nmdm) times, which corresponds to the size of the m-sized consistent assignments set Am. The
support test can be performed in O(m2), because |A| = m and |Dx| ≤ m. For the same reason, the inner
loop also can be executed inO(m2) steps. So, the time complexity of function Mergeable isO(m2nmdm).

The outer loop of the main algorithm (see Line 4 of Algorithm 1) can be repeated up to O(nd) times,
because in order for this loop to keep iterating, at least, one bi-valued sub-domain must be merged. The
two nested for-loops can call function Mergeable up to O(n2dm+1) times. On the other hand, the main
algorithm needs to repeatedly calculate set packings (see Line 9). For m = 2, this can be achieved, in
polynomial time, by any efficient maximum matching algorithm [17]. In contrast, form ≥ 3, the problem
becomes NP-hard. An approximate solution can, however, be obtained in time linear in the input size by
the algorithm proposed in [18], therefore, in O(mdm). Since m ≤ n, we deduce that the overall time
complexity of the sub-domain merging algorithm is O(m2nm+2d2m+1).
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Algorithm 1: MergeCSP(m,X,C)

1 A← {(x, v) : x ∈ X ∧ v ∈ Rx}
2 Am ← {A ∈

(
A
m

)
: A is consistent}

3 mrg← true
4 while merged do
5 mrg← false
6 for s← 2 to m do
7 for x ∈ X do
8 Dx ← {Dx ∈

(
Rx

s

)
: Mergeable(x,Dx,Am, C)}

9 pck ←MaxSetPack(Dx)
10 for Dx ∈ pck do
11 Merge(Dx, C)
12 mrg← true

Algorithm 2: Mergeable(x,Dx,Am, C)

1 for A ∈ Am do
2 if Supports(Dx, A,C) then
3 mrg← false

4 for v ∈ Dx do
5 if IsConsistent(x, v,A,C) then
6 mrg← true

7 break

8 if not mrg then return false

9 return true



10 Wady Naanaa
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Fig. 3: A fragment of a binary CSP instance involving a 3-mergeable variable (x).

4 Variable elimination
In this section, we address the issue of simplifying binary CSP instances by eliminating variables. We
show that variables whose sub-domains of a fixed size are all mergeable can be eliminated with the guar-
antee that a solution of the initial instance can be polynomially deduced from any solution of the simplified
instance. However, prior to that, let us recall when could variables be eliminated as suggested in [5].

Definition 5 A variable x can be eliminated from a binary CSP instance P having variable set X if,
whenever there is a partial solution that assigns values to X\{x}, there is a solution for P .

In connection with the previous section and by an abuse of terminology, we define m-mergeable vari-
ables as follows:

Definition 6 We say that a variable x is m-mergeable, for some integer m, 1 ≤ m < |X|, if every
min(|Rx|,m)-sized sub-domain of x is m-mergeable.

Recall that the notion of m-mergeable sub-domain, to which it is referred in the above definition, is the
one introduced in Definition 3.

EXAMPLE 3. The graph depicted in Figure 3 illustrates a fragment of a binary CSP instance which
contains a 3-mergeable variable (x). To check this, we examine the four 3-sized sub-domain of x, in order
to verify that all of them are 3-mergeable. The four sub-domains must be checked against the two 3-sized
consistent assignments that can be respectively formed from u, u′, v′ and v, v′, u′. Note here that all these
values are assumed to belong to distinct domains. We see from Figure 3 that u, u′, v′, resp. v, v′, u′, can
be consistently extended to x using w, resp., w′. The domain of x, Rx, can, therefore, be reduced to a
singleton by means of a two-step merging. The first step merges the three left-most values of Rx, which
form a 3-mergeable sub-domain. The second step consists in merging the two-valued domain resulting
from the first merging. Note, however, that Rx contains non 2-mergeable sub-domains, which are {w, t}
and {w′, t′}.

We now focus on how to benefit from m-mergeable variables to simply CSPs. As a first step, we show
that applying a single merging operation (see Definition 4) into the domain of a m-mergeable variable
results in a CSP instance in which the processed variable remains m-mergeable.

Lemma 3 Let x be am-mergeable variable in a binary CSP instance. The merging of any min(|Rx|,m)-
sized sub-domain of x results in a CSP instance in which x remains m-mergeable.
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Proof: Let P be a binary CSP instance et let x be am-mergeable variable of P . Denote by P ′ the instance
resulting from the merging of a min(|Rx|,m)-sized sub-domain of x, say Dx, and by v the value added
to R′x, the domain of x in P ′, as specified in Definition 4.

Suppose, for a sake of a contradiction, that x is not m-mergeable in P ′. According to Definition 5,
this implies that the domain of x in P ′, R′x, contains a min(|R′x|,m)-sized sub-domain, say D′x, chich is
not m-mergeable. According to Definition 3, D′x must support a m-sized consistent assignment A′ of P ′

while A′ cannot be consistently extended to x by any value of D′x. Thus, for every v′ ∈ D′x, there must
exist (y, v̄′) ∈ A′ such that (v′, v̄′) /∈ R′x,y . At this stage, we distinguish two cases, depending on the
membership of v to D′x:

• v ∈ D′x: in which case there must exist (y, v̄) ∈ A′ such that (v, v̄) /∈ R′x,y . From Definition 4,
we deduce that (v, v̄) /∈ Rx,y , for all v ∈ Dx. Let D = Dx ∪ D′x\{v}. Observe that D ⊆ Rx,
which means that D is a sub-domain of x in P . We also deduce that A′ cannot be consistently
extended to x, by any of the values ofD, to form a consistent assignment of P . Moreover, sinceD′x
supports A′, any subset of A′ which is not supported by D′x\{v} must be supported by {v}. From
Definition 4, we deduce that the subsets of A′ that are not supported by D′x\{v} must be supported
by Dx. It follows that D supports A′. On the other hand, we have min(|Rx|,m) ≤ |D| ≤ |Rx|
since Dx ⊆ D, |Dx| = min(|Rx|,m) and D ⊆ Rx. And, since D supports A′ and |A′| = m,
there must existsD′ ⊆ D, with |D′| = min(|Rx|,m) such thatD′ supportsA′. Moreover, D′ ⊆ D
implies thatA′ cannot be consistently extended to x, by any of the values ofD′, to form a consistent
assignment of P . Thus, D′ is not a m-mergeable min(|Rx|,m)-sized sub-domain of x in P , which
means that x is not m-mergeable in P and contradicts the hypothesis.

• v /∈ D′x: which implies that D′x ( R′x and then D′x is a m-sized sub-domain of x in P . On the
other hand,A′ is am-sized consistent assignment of P since P and P ′ differ only by the constraints
involving x. In addition, because D′x is a sub-domain of x in both P and P ′, the binary relations
involving x are the same in P and P ′ if we limit the domain of x to D′x. It follows that, D′x
supports A′ in P as soon as it supports A′ in P ′. Moreover, A′ cannot be consistently extended to
x in P by a value of D′x as soon as it cannot be consistently extended to x in P ′ by a value of D′x.
By Definition 3, this implies that D′x, which has size m, is not m-mergeable in P . According to
Definition 6, this means that x is not m-mergeable in P , which contradicts the hypothesis.

2

It is clear that applying a merging operation on a sub-domain having size two or more narrows the
domain of the processed variable. Moreover, according to Lemma 3, sub-domain merging can be applied
many times inside the domain of a same variable when it comes to a m-mergeable variable. This would
result in a variable with a one-element domain. Such a variable could be easily eliminated from the
problem at hand. To show this, we begin by formally defining the CSP that results from the elimination
of a single variable.

Definition 7 Let P=(X,C) be a binary CSP instance and let x be in X . The elimination of x from P
results in the CSP instance denoted by P\x=(X\x, C\x) and obtained from P as follows:

• X\x = X\{x}

• C\x = {Sσ : ∃Rσ ∈ C ∧ x /∈ σ}, with
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Rx

Ry Rz

P

Ry Rz

P\x

Fig. 4: A binary CSP instance whose variables are all 2-mergeable (Left). The CSP instance resulting from elimi-
nating variable x (Right).

(i) Sy = {w ∈ Ry : ∃v ∈ Rx, (v, w) ∈ Rx,y}, for all Sy ∈ C\x.

(ii) Sy,z = Ry,z, for all Sy,z ∈ C\x.

EXAMPLE 2. Figure 4 depicts a small binary CSP instance in which all the variables are 2-mergeable.
It is therefore possible to remove any of the three variables. In the resulting 2-variable CSP, there is no
2-mergeable variables because of the condition imposing that the merging parameter must be smaller than
the size of the variable set.

Any single-variable elimination results in an instance that may differ from the original one at unary
constraints level, as it can be seen from point (i) of Definition 7. In contrast, the binary constraints re-
maining after a single-variable elimination are unchanged, as it can be seen from point (ii) of Definition 7.
More importantly, if a single-variable elimination is applied on a m-mergeable variable, for some integer
m ≥ 2, then the consistency of the resulting instance is closely related to that of the original instance.
To show this, we proceed in two steps. First, we prove that sub-domain merging does not affect single
variable elimination in the sense suggested by the following lemma.

Lemma 4 Let P be a binary CSP instance and let P ′ be an instance obtained from P by merging a
sub-domain of a variable x. Then, we have P\x = P ′\x.

Proof: Assume that the merging operation that allowed the transition from P=(X,C) to P ′=(X,C ′) was
performed on a sub-domain Dx of variable x. Denote by v the value introduced in P ′ as suggested by
Definition 3. Recall also that P and P ′ differ only with regard to the constraints having x in their scopes.

According to Definition 7, P\x and P ′\x have the same variable set, that is X\{x}. Again, according
to Definition 7, the binary constraints of Px̄ and those of P ′\x are the same. It remains to check that the
unary constraints, i.e. the domains, of P\x and P ′\x are the same.

In what follows, we use Rσ and R′σ to denote the constraints of P and P ′ respectively and we use Sσ
and S′σ to denote the constraints of P\x and P ′\x respectively.

Suppose that Sy 6= S′y , for some y ∈ X\{x}, and proceed to get a contradiction. Sy 6= S′y implies that
either Sy\S′y 6= ∅ or S′y\Sy 6= ∅. It Sy\S′y 6= ∅ then there exits w ∈ Sy\S′y . From Definition 7, we
deduce the followings:
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On the one hand, w ∈ Sy implies that

∃v ∈ Rx, (v, w) ∈ Rx,y (1)

On the other hand w /∈ S′y implies that

∀v′ ∈ R′x, (v′, w) /∈ R′x,y (2)

From Definition 3 and (2), we obtain

(∀v ∈ Rx\Dx, (v, w) /∈ R′x,y) ∧ (v, w) /∈ R′x,y

Again according to Definition 3, this implies that

(∀v ∈ Rx\Dx, (v, w) /∈ Rx,y) ∧ (∀v ∈ Dx, (v, w) /∈ Rx,y)

This is equivalent to
∀v ∈ Rx, (v, w) /∈ Rx,y

which is in contradiction with (1).

Suppose now that there exits w′ ∈ S′y\Sy . From Definition 7, we deduce the followings:
On the one hand, w′ ∈ S′y implies that

∃v′ ∈ R′x, (v′, w′) ∈ R′x,y (3)

On the other hand w′ /∈ Sy implies that

∀v ∈ Rx, (v, w′) /∈ Rx,y (4)

From Definition 3 and (3), we obtain

(∃v ∈ Rx\Dx, (v, w′) ∈ R′x,y) ∨ (v, w′) ∈ R′x,y

Again according to Definition 3, this implies that

(∃v ∈ Rx\Dx, (v, w′) ∈ Rx,y) ∨ (∃v ∈ Dx, (v, w′) ∈ Rx,y)

This is equivalent to
∃v ∈ Rx, (v, w′) ∈ Rx,y

which is in contradiction with (4).
We conclude that both Sy\S′y and S′y\Sy are empty, for all y ∈ X\{x}, which means that Sy = S′y ,

for all y ∈ X\{x}. 2

Next, we show that a variable with one-element domain can be eliminated in the sense of Definition 5.

Lemma 5 Let P be a binary CSP instance and let x be a variable whose domain is a singleton. Then P
is consistent if and only if P\x is consistent.
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Proof: We prove the two senses in turn.
⇒ Assume that A ∪ {(x, v)} is a solution of P and show that A is a solution of Px̄. First, observe that
A satisfies all the binary constraints of P\x, since these constraints are not changed while transforming P
into Px̄. It remains to check A against the unary constraints of Px̄. Since A ∪ {(x, v)} is a solution of P ,
we have (v, w) ∈ Rx,y , for all (y, w) ∈ A, where Rx,y denotes a binary constraint of P . According to
Definition 7-(i), this implies that w ∈ Sy , for every y ∈ X\x, where Sy denotes the domain of y in Px̄.
This means that A satisfies all the unary constraints of P\x, and then A is a solution of P\x.
⇐ Let A be a solution of P\x. Let us show that A can be extended by a value of Rx, the domain of x in
P , to form a solution of P . Since A is a solution of P\x, for every (y, w) ∈ A, we have w ∈ Sy , where Sy
denotes the domain of y in P\x. According to Definition 7, this implies that, for every (y, w) ∈ A, there
exits v ∈ Ry , such that (v, w) ∈ Rx,y , where Ry and Rx,y denote constraints of P . But the domain of x
in P is a singleton. It follows that, for all (y, w) ∈ A, we have (v, w) ∈ Rx,y , where v is the unique value
of x. This implies that A ∪ {(x, v)} is a solution of P . 2

Theorem 6 Let P be a binary CSP instance and let x be a m-mergeable variable of P , for some m ≥ 2.
Then P is consistent if and only if P\x is consistent.

Proof: If the domain of x is empty then P is inconsistent. Moreover, in accordance with Definition 7, all
the domains of P\x will be empty, which means that P\x is inconsistent.

Otherwise, according to Lemma 3, any min(|Rx|,m)-sized sub-domain of x can be merged to obtain
a reduced CSP instance in which x remains m-mergeable. Moreover, since m ≥ 2, the merged domain
will have a strictly smaller size than its initial size, unless the domain of x is already a singleton. Merging
operations can be repeated until the domain of x becomes a singleton. Denote by P ′ the resulting instance.
By Theorem 2, P is consistent if and only if P ′ is consistent. Consider therefore P ′\x, the instance obtained
from P ′ by eliminating variable x in accordance with Definition 7. According to Lemma 5, P is consistent
if and only if P ′\x is consistent. On the other hand, by Lemma 4, we have P ′\x = P\x. It follows that P is
consistent if and only if P\x. 2

The practical interest of Theorem 6 is reflected in a variable elimination algorithm (see Algorithm 3),
which identifies and eliminates m-mergeable variables. The algorithm begins by computing the set of
unary assignment, A, and then, the set of m-sized consistent assignments, Am. As mentioned in the
previous section, these two sets can respectively be computed in O(nd) and O(nmdm) steps. The core of
the variable elimination algorithm is a Boolean function called Eliminable, which determines if a variable
x is m-mergeable or not by simply testing the m-mergeability of all its min(|Rx|,m)-sized sub-domains.
By observing that variable suppression can only occur O(n) times, we deduce that the call to function
Eliminable can be performed O(n2) times. In turn, function Eliminable can perform O(dm) calls to
function Mergeable (see Algorithm 2). The worst-case time complexity of this latter function has already
been bounded by O(m2nmdm) in Section 3. It follows that the overall time complexity of the variable
elimination algorithm is O(m2nm+2d2m).

Next, we show that the property of being anm-mergeable variable is preserved by variable elimination,
however under certain conditions related to domain size. To begin with, we prove that variable elimination
preserves m-mergeable sub-domains.
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Algorithm 3: ElimVariable(m,X,C)

1 A← {(x, v) : x ∈ X ∧ v ∈ Rx}
2 Am ← {A ∈

(
A
m

)
: A is consistent}

3 elim← true

55 while elim and m < |X| do
6 elim← false

7 for x ∈ X do
8 if Eliminable(x,m,Am, X,C) then
9 X ← X\{x}

10 C ← {Rσ ∈ C : x /∈ σ}
11 for y ∈ X do
12 Ry ← {w ∈ Ry : ∃v ∈ Rx, (v, w) ∈ Rx,y}
13 if EmptyDomain(C) then
14 elim← false

15 break
// suppressing the m-assignments that use removed values

16 for A ∈ Am do
17 for (x, v) ∈ A do
18 if v /∈ Rx then
19 Am ← Am\{A}
20 break

21 elim← true

Algorithm 4: Eliminable(x,m,Am, C)

1 if |Rx| ≤ m then
2 return Mergeable(x,Rx,Am, C)
3 else
4 for Dx ∈

(
Rx

m

)
do

5 if not Mergeable(x,Dx,Am, C) then
6 return false

7 return true
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Lemma 7 Let P be a binary CSP instance containing a variable x. Then any sub-domain of P\x is
m-mergeable whenever it is m-mergeable in P .

Proof: We prove the contrapositive. Suppose that Dy is a sub-domain of P\x which is not m-mergeable
and show thatDy is notm-mergeable in P . By Definition 3,Dy notm-mergeable in P\x implies that there
exists a m-sized consistent assignment A of P\x such that Dy supports A but A cannot be extended by a
value of Dy to form a consistent assignment of P\x. On the other hand, by Definition 7, every constraint
of Px̄ is a subset of the constraint having the same scope in P . It follows that Dy is a sub-domain of P ,
A is a m-sized consistent assignment of P and Dy supports A in P . Again, by Definition 7, every binary
constraint of Px̄ is identical to the corresponding binary constraint in P . This implies that A cannot be
extended by a value of Dy to form a consistent assignment of P . We deduce that Dy is not m-mergeable
in P , which proves the lemma. 2

Theorem 8 Let P be a binary CSP instance on variable set X and let x be a m-mergeable variable of
P , with m ≤ |X| − 2. Then any other m-mergeable variable of P is either m-mergeable in P\x or its
domain, in P\x, is reduced to less than m values.

Proof: In the whole proof, the constraints of P and P\x will be denoted by Rσ and Sσ , respectively.
Let y be m-mergeable variable of P other than x. We prove that y remains m-mergeable in P\x as long

as its domain contains m values or more, i.e. |Sy| ≥ m. First, observe that |Sy| ≥ m implies |Ry| ≥ m.
In accordance with Definition 6, we have to prove that every m-sized sub-domain of y is m-mergeable in
P\x. We know that y is m-mergeable in P then, by Lemma 7, we deduce that every min(|Ry|,m)-sized
sub-domain of y is m-mergeable in P\x. It follows from |Ry| ≥ m that every m-sized sub-domain of
y is m-mergeable in P\x. Moreover, we have m ≤ |X| − 2 and then m ≤ |X\x| − 1. According to
Definition 6, this means that y is m-mergeable in P\x. 2

We conclude this section by a corollary that identifies a new tractable binary CSP class based on 3-
mergeable variables.

Corollary 9 A binary CSP instance in which all the variables are 3-mergeable can be solved inO(n2d2+
max(d3, n3)), where n is the number of variables and d is the size of the largest value domain.

Proof: Let P be a binary CSP instance in which all the variables are 3-mergeable. According to Defi-
nition 6, P must contain more than three variables. Consider, therefore, the sequence of CSP instances
defined as follows: Initially, we take P (0) = P . The subsequent elements of the sequence are obtained
by first checking whether P (k) admits a 3-mergeable variables or not. If yes, then a 3-mergeable variable,
say xk, is eliminated to obtain P (k+1) = P

(k)
\xk

. According to Theorem 6, P (k) is consistent if and only
if P (k+1) is consistent. Otherwise, according to Theorem 8, we have two cases: either P (k) contains no
more than three variables, or the variables of P (k) are all bi-valued(i). In both cases, the variable elimi-
nation process ends with a residual instance which is easy to solve, as it will be explained below. Once
we have obtained a solution for the residual instance, it is possible to deduce a solution for the original
instance as suggested by Theorems 6.

(i) A bi-valued variable is a variable with no more than two possible values.
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We now turn to the time complexity of the overall solution process. This amounts to bounding the
time cost of the following three stages: (1) The construction of the problem sequence described above,
(2) Solving the residual instance, (3) Deducing a solution for the original instance. Constructing the
problem sequence amounts to performingO(n) single-variable eliminations. This can be done inO(n2d2)
steps, if we assume that the unmodified constraints are not duplicated when performing a single-variable
elimination. If the residual instance is composed of no more than three variables then a solution can
be obtained, by executing an exhaustive search, in O(d3) steps. Otherwise, the variables of the residual
instance are all bi-valued, and then the instance can be solved, by establishing strong path consistency,
in O(n3) steps [12]. Finally, extending a solution of the residual instance to a solution for the original
instance can be done in O(n2d) steps. It follows that the overall time complexity of solving binary CSP
with 3-mergeable variables only is O(n2d2 + max(d3, n3)). 2

Corollary 9 suggests that CSPs instances with 3-mergeable variables only can be solved in polynomial
time. Moreover, such instances can be recognized in O(n4d6) by checking every variable against the
3-mergeable property. Thus, binary CSPs with 3-mergeable variables is a tractable class of binary CSPs.
This is a hybrid class, because the conditions that characterize 3-mergeable variables are neither purely
structural nor purely relational.

5 Value removal
Another contribution of this paper consists in a powerful value removal scheme that can be viewed as
a generalization of neighbourhood substitutability [16]. As for existing filtering schemes, the goal is to
narrow the domains of the variables by suppressing values whose removal does not affect the consistency
of the problem at hand.

Given a CSP instance P , let us first characterize the values whose removal preserves the consistency of
P . To this end, we use the notation P |x 6=v to designate the instance obtained from P by removing value
v from the domain of variable x. First, recall the sufficient and necessary condition for removing values
[2]:

Definition 8 We say that a value v can be removed from the domain of a variable x in a binary CSP
instance P if, whenever there is a solution for P , there is a solution for P |x 6=v.

Given a binary CSP instance P with variable set X , let us denote by A the set of all unary assignments
that can be formed from the variables of P and their respective domains. We have therefore:

A = {(x, v) : x ∈ X ∧ v ∈ Rx} (5)

For any integer r, 1 ≤ r < |X|, denote by Ar(x, v) the set of all r-sized consistent assignments of P that
can be consistently extended to x with v ∈ Rx, that is

Ar(x, v) = {A ∈
(
A

r

)
: A ∪ (x, v) is consistent}

Note that, to be in Ar(x, v), an r-sized consistent assignment must not assign a value to x.

Definition 9 Consider a binary CSP instance with variable set X and let x be in X . A value v in Rx is
r-removable, for some integer r, 1 ≤ r < |X|, if there exists a sub-domainDx ⊆ Rx\{v}, with |Dx| ≤ r,
such that Ar(x, v) ⊆

⋃
w∈Dx

Ar(x,w).
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The integer r intervening in the above definition will be referred to as the removing parameter. We can
easily verify that 1-removable values correspond to neighbourhood substitutable values [16]. Indeed, if
we adapt the definition of neighbourhood substitutability to our notation, we get the following: a value v
of a variable x is neighbourhood substitutable to another valuew of x if and only ifA1(x, v) ⊆ A1(x,w).

The following theorem provides the main result of this section. It relates the notion of r-removable
values introduced in Definition 9 to the values that can be removed from the domains of a binary CSP in
accordance with Definition 8.

Theorem 10 Let v be a value in the domain of a variable x in a binary CSP instance. If v is r-removable,
for some integer r, then v can be removed from the domain of x.

Proof: Assume that v is an r-removable value of variable x, which means that there exists a sub-domain
Dx ⊆ Rx\{v}, with |Dx| ≤ r such that

Ar(x, v) ⊆
⋃

w∈Dx

Ar(x,w) (6)

Then, let us show that P is consistent if and only if P |x 6=v is consistent.

⇒ Let A ∪ (x, u) be a solution of P . It is clear that, if u 6= v then A ∪ (x, u) is also a solution
of P |x 6=v. So, assume henceforth that u = v, which implies that A ∪ (x, u) is not a solution of
P |x 6=v. Let us show that A can be consistently extended to x by a value of Dx to form a solution
of P |x 6=v. Suppose, for the sake of contradiction, that the converse is true. This implies that
A∪(x,w) is inconsistent, for everyw ∈ Dx. ButA is consistent, as well as every unary assignment
(x,w), w ∈ Dx. It follows that, for every w ∈ Dx, there exists (y, w̄) ∈ A which is not consistent
with (x,w). Consider, therefore, Ā the subset of A that uses the values w̄’s that satisfy the latter
assertion. Observe that |Ā| ≤ |Dx| ≤ r. In addition, since Ā ⊆ A and r ≤ |A| = |X| − 1, we
deduce that Ā can be completed by some elements of A to obtain a r-sized consistent assignment
Ār ⊆ A. Observe that

Ār /∈
⋃

w∈Dx

Ar(x,w) (7)

because Ār includes Ā and Ā is inconsistent with (x,w), for every w ∈ Dx. On the other hand,
Ār ⊆ A and A ∪ (x, v) is consistent. This implies that Ār ∪ (x, v) is consistent, and then Ār ∈
Ar(x, v). This is in contradiction with (6) and (7).

⇐ From the definition of P |x 6=v, one can easily deduce that every solution of P |x 6=v is also a solution
of P .

2

Based on the notion of r-removable values, we designed an algorithm that removes all the value that can
be removed from the domains of binary CSP instances without affecting problem consistency. The steps
of proposed algorithm are detailed in Algorithm 5. This latter can be viewed as a r-parametrized version
of the algorithm proposed in [1], which can only eliminate 1-removable values. Our algorithm is based on
the separability relationship, which was originally defined between pairs of simple values. In our case, the
separability relationship need to be adapted in order to allow identifying r-removable values. Henceforth,
the goal is to separate a single value from a r-sized sub-domain coming from the same domain.
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Definition 10 An assignment A separates a value v ∈ Rx from a sub-domain Dx ⊆ Rx\{v} if A∪ (x, v)
is consistent but not A ∪ (x,w), for all w ∈ Dx.

Bearing in mind Definition 9, it can be deduced from Definition 10 that if a value v ∈ Rx, does
not admit a r-sized consistent assignment that separates it from an r-sized sub-domain of x then v is
r-removable.

We propose a filtering algorithm whose worst case time complexity is O(nr+1d2r+1). To prove this
complexity, we begin with a description of the data structures that we have used.

• A is an array containing all unary assignments that can be obtained from the variables and their
respective domains as indicated in (5). Clearly, this array has a O(nd) space complexity.

• Ar is the set of all r-sized consistent assignments that can be formed from the elements of A. Ar
can be implemented as a linked list whose space complexity is O(nrdr).

• assgLst[x, v] (for assignment list) is a linked list dedicated to the storage of every r-sized assign-
ment A ∈ Ar such that (x, v) ∈ A. We need O(nd) assignment lists, one for every (x, v) ∈ A,
each of which may contain up to O(nr−1dr−1) elements. Thus, the overall space complexity of the
assignment lists is O(nrdr).

• rmvLst is a linked list dedicated to the storage of the variable-value pairs that have been identified
as r-removable. In the worst case, rmvLst may contain all variable-value pairs of the instance, that
is, O(nd) pairs.

• sepLst[A]: (for separation list) is a linked list that stores triples of the form (x, v,Dx), with x ∈ X ,
v ∈ Rx andDx ⊆ Rx\{v}, such thatA is the first element in listAr that separates v fromDx. Note
that there are O(ndr+1) distinct triples. We need as many separation lists as there are elements in
Ar, that is, O(nrdr). A crucial property of these lists is that they are pairwise disjoint. This implies
that the total storage space required for all separation lists is O(nrdr + ndr+1).

These data structures are used by Algorithm 5 as follows: Whenever a value v is removed from the
domain of a variable x, the pair (x, v) is inserted in the removed value list, rmvList, in order to propagate
the effect of this removal. Whenever a pair (x, v) is eliminated, every assignment containing that pair
becomes inconsistent. The propagation begins, therefore, by checking whether the values separated by
r-assignments containing (x, v) still have other separators. Observe that such values may become r-
removable in cases where there is no r-assignment left that separates them from some r-sized sub-domains
of the same variable. So, the nested loops beginning at Line 21 are executed in order to determine which
values had actually become r-removable. If any, these values are removed from the domains to which
they belong and are inserted in, turn, in the removed value list.

To prove the time-complexity mentioned above, we proceed to a careful examination of the steps of
Algorithm 5. First of all, we assume that the removing parameter, that is, r is O(1). Array A can be built
in O(nd) and list Ar in O(nrdr). The first for loop of the algorithm can iterate O(nd) times in order to
initialize nd empty assignment lists. The nested loops beginning at line 5 repeat the list insertion which
is inside the two loops O(nrdr) times, because |A| = r and r is O(1).

In order to evaluate the time complexity of the block composed by the three nested loops beginning
at Line 11, we first calculate the time complexity of function GetSeparator (see Algorithm 6). Taking
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into account the size of Ar and the fact that |Dx| = r = O(1), we deduce that GetSeparator runs in
O(nrdr) steps. Looking at the conditions of the three nested loops, we deduce that the whole block runs
in O(nr+1d2r+1).

The time-complexity of the last block of Algorithm 5, that is the one beginning at Line 21, can be
evaluated by focusing on the call to function GetSeparator (see Line 29). The three first parameters of the
call are a variable x ∈ X , a value v ∈ Rx and a r-sized subset of Rx. Note that, for these parameters,
there are O(ndr+1) different triples. The fourth parameter, A, is the address of the cell of list Ar from
which the current call to GetSeparator will start the search for a new separator. The use of cell addresses
ensures that, for every triple (x, v,Dx), the cells of list Ar can only be examined once. Taking into
account the size of Ar, which is O(nrdr), we deduce that O(nr+1d2r+1) steps are needed to process all
the triples. By comparing the time complexity of the three blocks, we deduce that the overall algorithm
runs in O(nr+1d2r+1).

6 Conclusion
This paper presented new schemes whose aim is to simplify constraint satisfaction problems. The pro-
posed schemes proceed by merging many values at a time, i.e. sub-domains, or by suppressing values.
The proposed contributions are parametrized versions of the value merging technique and the neighbour-
hood substitutability technique respectively proposed in [7] and [16]. For this reason, our schemes can
be viewed as generalizations of the two mentioned above. Moreover, we showed that the proposed vari-
able elimination scheme allowed the identification of CSP instances than can be recognized and solved in
polynomial time, thus giving rise to a new hybrid tractable class of binary CSPs.
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