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Towards vision-based manipulation of plastic materials

Andrea Cherubini*, Jiirgen Leitner!, Valerio Ortenzi' and Peter Corke’

Abstract— This paper represents a step towards vision-based
manipulation of plastic materials. Manipulating deformable
objects is made challenging by: 1) the absence of a model for the
object deformation, 2) the inherent difficulty of visual tracking
of deformable objects, 3) the difficulty in defining a visual error
and 4) the difficulty in generating control inputs to minimise
the visual error. We propose a novel representation of the task
of manipulating deformable objects. In this preliminary case
study, the shaping of kinetic sand, we assume a finite set of
actions: pushing, tapping and incising. We consider that these
action types affect only a subset of the state, i.e., their effect does
not affect the entire state of the system (specialized actions). We
report the results of a user study to validate these hypotheses
and release the recorded dataset. The actions (pushing, tapping
and incising) are clearly adopted during the task, although
it is clear that 1) participants use also mixed actions and 2)
actions’ effects can marginally affect the entire state, requesting
a relaxation of our specialized actions hypothesis. Moreover, we
compute task errors and corresponding control inputs (in the
image space) using image processing. Finally, we show how
machine learning can be applied to infer the mapping from
error to action on the data extracted from the user study.

Index Terms— Manipulation, visual servoing, human studies,
learning.

I. INTRODUCTION

Robots have been manipulating a vast variety of objects in
manufacturing environments for years. This relies on simple
pre-programmed actions, on exactly known objects (whose
physical model is known) and controlled environments. How-
ever, in most of cases, rigid objects are being manipulated.
Nonetheless, the manipulation of soft materials is present in
many everyday tasks: in domestic environments, like making
a dough or folding clothes; in industrial environments, like
fixing cables; and in medical environments, e.g., for surgery
or physiotherapy.

Many difficulties arise when manipulating soft materials.
Firstly, the object deformation model (involving elasticity
or plasticity) should be known in order to derive the robot
control inputs needed to change its shape. Ideally, this model
should be derived online, while manipulating the object,
with a simultaneous estimation and control approach, as
commonly done in active perception. Hence the robot senses,
and particularly vision, will be indispensable. This leads to
a second major difficulty: visual tracking of deformable ob-
jects. In fact, most current visual object tracking algorithms
rely on rigidity, an assumption that is not valid here. Only
very few approaches take into account either plasticity or
elasticity, thus performing well only on rigid objects. A third
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Fig. 1. Kinetic sand represents a good example of plastic material whose
dynamic model is unknown. The four pictures show different shapes formed
by the participants of our user study.

challenge consists in generating control inputs that servo the
deformable material to the desired shape.

In this work, we focus on defining the control problem
of manipulating a deformable object whose physical model
is unknown. Specifically on molding plastic materials, i.e.,
materials that undergo non-reversible shape changes in re-
sponse to force application. We assume that a finite set of
action types is available, such that each action affects only
a subset of the system state (specialized actions).

We carry out a study, where participants are asked to mold
kinetic sand' into desired shapes (see Fig. 1), while being
recorded on video. The main contributions herein are:

o A framework for the manipulation of plastic objects,
including a preliminary task modeling step, followed
by a sequencing algorithm. We believe that both steps
can be generalized to many other applications where
tasks are complex and possibly coupled.

o Results of a “sand manipulation user study” where the
analysis of the participants’ actions suggests that 1) a
finite set of action types is used for the task and 2)
these actions are marginally coupled, so the assumption
of specialized actions has to be relaxed.

e A dataset to enable comparative investigations and
benchmarking.

e We show how learning can be used to bridge the gap
represented by the lack of a model to choose the action
that reduces the visual task error. In particular, we
propose to use neural networks and show the results
on our dataset.

Thttps://en.wikipedia.org/wiki/Kinetic_Sand
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II. RELATED WORK

One of the first works on deformable object manipulation
(specifically, assembly) addresses insertion of a beam into
a hole [1], by properly designing the robot tool motion
trajectory. Planning is also used in [2], to compute paths
among minimal energy configurations, for deforming flexible
wires, subject to manipulation constraints. More recently [3]
targeted the assembly of an o-ring into a cylinder, using a
heuristic approach to compute key postures of the robot arms.
Dynamic Movement Primitives are used in [4] for clothing
assistance, while a control of both motion and deformation
of soft objects is proposed in [5]. A PID control law with
and without the deformable object model is presented in
[6]; differently, planning and control are both used in the
approach described in [7]. Diminishing rigidity is used in
[8] to quickly compute an approximation of the Jacobian of
the deformable object. Excessive stretching is also avoided.

While the cited works rely on motion planning, other
researchers propose to rely more on sensor feedback to
manipulate deformable objects, as we do here. In [9],
stereovision was exploited, to insert a flexible wire into a
hole. Vision is also used in [10] for assembling a rubber
belt and fixed pulleys. In [11], [12], compliant objects are
actively deformed using a novel visual servoing scheme that
explicitly deals with elastic deformations, by adapting online
the interaction matrix relating tool velocities and optical
flow. The controller is model-free, but focuses mainly on
shape control, i.e., on manipulating the object to a desired
configuration, without dealing with its global deformation
over a long time window. Dissimilarly, force control is used
to design a strategy for dual manipulation of a flexible metal
sheet in [13]. Another approach for modeling the dynamics
of two manipulators handling deformable objects is proposed
in [14] by dividing the closed chain into two subsystems,
one flexible for the object, the other rigid for the manipu-
lators. Tactile servoing is used for in-hand manipulation of
deformable objects in [15], [16].

Here, we use monocular vision alone, but in contrast
with [11], [12]: we consider applications where different
actions can affect different characteristics of the material,
and we propose to learn such actions by observing humans.

III. METHOD
A. Problem statement

Let us define a discrete-time system with x; € IR" the
state of the plastic material at time k& € IN. We assume
that xy, is time-invariant, and depends only on the state at
the previous iteration x;_; and on the external action uj
applied to the material at time k:

Xp = f (Xp—1, Up) - (H

We also assume that x; can be measured visually at each
iteration, from image Zj. Vectors x and x* can embed
heterogeneous features of the current and desired shape,
provided these are observable in the images. Action u can
also vary in nature and dimension at each iteration, provided

it is feasible by the robotic system. Examples of visual
features and actions will be given in Subsect. III-C.

We define the global task as that of servoing x to a desired
state x* (e.g., one of the shapes in Fig. 1). This is equivalent
to regulating the error e to zero within a finite number of
iterations K

e =X — X = f(Xp—1, W) — X" =€ (Xp—1,uz) . (2)

Eq. (2) is a discrete non-linear system with unknown (and
hardly derivable) dynamic model. Furthermore, the interde-
pendencies between the components of x are also unknown,
and coupling in the dynamics of such features might occur
(e.g, different features may be affected by the same action).
For this reason, we make two hypotheses in this work.
Hypothesis 1: finite set of action types There exists a fi-

nite set of action types U = {ul, .. .,uN}, such that the
task can be successfully completed by using only actions
within the set: uy € U, Vk = 1,..., K. Furthermore, each

action type ¢ can be parameterised by a vector p, which can
vary, while staying within that action type parameter set P°:
u’ =u’(p), p € P

Hypothesis 2: specialized actions Each action type u’,
i = 1,...,N regulates only a subset of error e, that
we denote €', without modifying the rest (i.e., the other
components of e, e’).

B. Proposed Approach

We start by breaking x into N substates, each being
a vector X', i = 1,...,N with only some appropriately
chosen components of x. The substates should be chosen
so that each X' can be controlled by a specialized action
u’. Each X' is obtained by orthogonal projection of x using
a constant diagonal binary square matrix of size n, P;.
We also associate X' to its complementary, x’, and to the
corresponding task error, €'

ii = PiX,
x' = (L, - Py)x, | (3)
éz — il _ iz* — sz (Xk—h uk) _ EZ*.
Having defined all substates and corresponding actions, at
each iteration k£ where the goal is to regulate €, we apply:

ul = argmin €k (xk—1, 1, (p))]] (42)
pEP?

subject to ||§f€ —Xi_, H <€, (4b)

with € > 0. Note that (4a) aims at finding the optimal
(minimizing €) parameters p for action type u’, given the
current state xj;_1. This is done while bounding, via (4b),
the action side effects on the complementary substate x'.
Practically, action type u’ is determined by substate X', and
constraint (4b) is always verified under Hypothesis 2.

To regulate the global task error e, we propose the method
shown in Algorithm 1.

A qualitative discussion of the convergence of this algo-
rithm follows this line of reasoning: assuming that ui veri-
fying (4) exists for all %, the error norm will monotonously
decrease, since u} = argmin ||é}€|| Although this will not



Algorithm 1: Robotic plastic material molding

Input: Desired material state x*, image Z at each iteration.
Output: Material state x such that ||x — x*|| <e.

1: Initialize: i =1, k=1

2: Measure xg from Z

3: e + xp — X*

4: while ||e;_1|| > € do

5. while |[e]_,| > € do

6: uj, < argmin ||é}c|| such that ||§}€ — K%q” <¢€
7: Apply uj, to control the robot motion
8: k+—k+1

9: Measure x;_1 from Z_1

10: € 1 ¢ Xp_1 —X*

11:  end while

12:  if i < N then

13: t—i+1

14:  else

15: 1+ 1

16:  end if

17: end while
18: return xjp 1

necessarily nullify the error, it will make it converge to a
bounded value after K iterations. The same reasoning can be
applied to the other substates (and suberrors). Interestingly,
due to Hypothesis 2, ||x} — xi_,|| = 0, therefore the order
of execution of the actions is irrelevant, since the new actions
do not change the state already regulated by the former ones.

In practice though, Hypothesis 2 might have to be relaxed
to admit side effects on the other substates. In this case, the
actions may have to be sequenced in an appropriate order
to fasten (or at least attempt to guarantee) convergence of
the global task error (2) to zero. Also, since an undesired
change in complementary substates, whilst bounded by ¢,
is inevitable, it can be necessary to iterate the sequence of
actions u’ (restart from u' after u”: lines 14 to 16).

At each iteration of Algorithm 1, the action ul to be
applied is obtained by solving optimization (4a) on line 6.
This is a difficult problem, since we have no analytic form
of f (xk—1,u}), hence no analytic form of

é;.c =P;f (xk,l,u};) - X" (®)]

In such cases, since gradient-based optimization is not ap-
plicable, we propose to acquire this knowledge by looking
at how humans perform the task. Then, we will rely on
machine learning to infer the mapping from error é,'c to the
best possible corresponding action u};, and particularly to
its parameters p. More specifically, we learn directly the
mapping g from (Xj,_;,X"*) to uj. In these cases (i.e., when
an analytical expression of f is not available) we replace line
6 of Algorithm 1 with the following:

u, + g (X1, X"). (6)
In the following section, we clarify the definition of u’ and
X', by referring to the case study of Fig. 2.

Fig. 2. Visual features that characterize the desired shape: external contours
(red), surface texture (green) and internal incisions (blue).

C. Case study

The case study shown in Fig. 2 consists in molding kinetic
sand from the initial state (left) to the desired one (right). To
create this shape three action types are considered (N = 3):

o push: to modify the external contours of the sand pile,
e tap: to homogenise the texture of the surface and
e incise: to draw the S shape on the sand.

We divide the state x into the 3 substates, consequent to
the 3 types of actions: external contours, internal texture,
and internal incisions (respectively red, green and blue in
Fig. 2). These are defined by, respectively: a series of contour
points coordinates (Xi,Y:,...,X,,,Y,,), a set of pixel
luminosity values (I1,...,I,,) and the parametric scalar
values characterizing the incision geometry (pi,...,Pny)-
The actions u', u? and u® represent respectively pushing,
tapping and incising. Action formalization is omitted here,
as it depends on the robot platform and tool (spatula, robotic
hand, etc.). The state representation in this example is:

Xl I 12n 0
Yi P, = 01 0
X,
};“ [0 0 O
x=1 P,=|{0 I, O )
: (0 0 0O
I,
P1
L Pns | ns

IV. USER STUDY AND DATASET ACQUISITION

To provide a robot with the knowledge needed for plastic
manipulation, we ran a pilot user study, with 9 healthy volun-
teers (age range: 20-40; 6 male, 3 female). Each participant
was asked to form a shape with the kinetic sand in a sandbox,
while being recorded with a fixed RGB-D camera (Intel
RealSense, resolution 640 x 480). The camera was pointing
at the sandbox from above, with optical axis perpendicular
to it, as shown in Fig. 3.

After being given time to familiarise and train
manipulating the sand, each participant was requested
to produce a shape of their choice three times: a) using both
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Fig. 3. Experimental setup: a sandbox is placed under an RGB-D camera
(RealSense) while participants are asked to mold the sand into a shape. First
with one, then with two hands and third, using one of two provided tools.

hands, b) using only one hand and finally c¢) using one of two
provided tools (Fig. 3). The shape contours could touch the
sandbox but this was not solicited. Four examples of shapes
formed by the participants are shown in Fig. 1. Less than
30 minutes were necessary for each participant to complete
the full trial. We report that all participants have given their
consent to be recorded and the dataset is publicly available:
https://cloudstor.aarnet.edu.au/plus/s/Vii90T72WFM8Qwp
(password: sandman). Afterwards a questionnaire was
filled in by the partakers, to help inferring the adopted
strategy while manipulating the sand. In particular, we
were interested in verifying our hypothesis that people use
only a limited set of action types. None of the participants
had previous direct experience with sculpting, although 5
declared to have had experience in manipulating deformable
objects such as bread, dough, and air drying clay. Only
one person perceived fatigue while performing the task
with one hand, whilst 4 participants perceived some fatigue
when using the tool, albeit minimally. No such issues were
reported when using both hands.

The information extracted from the questionnaires can be
summarised as follows: 66.7% of the participants stated that
they had realised a clear sequence of different actions while
using their hands, while the percentage raised to 88.9% when
using the tool. This information leads us to believe that our
hypothesis 1, the use of a set of action types, holds. In
particular, the participants identified pushing as an action
type. In our opinion, this is due to the fact that pushing has
a very clear outcome (the sand moving and consequently
the change of the contours of the sand shape). The other
two action types we introduced in Sect. III-C, tapping and
incising, were also identified. An analysis of the recordings
leads us to introduce also mixed action types, i.e., very
often an action was performed which was a combination
of pushing and tapping simultaneously (especially when the
pushing action was performed on the sand and not at the
contour, having the effect of also smoothing the surface of
the sand).

All of the participants, whether using the hands or using
the tool, reported either having relied on vision “very much”
or “much”. Haptic feedback was only partially important
during the trials (77.7% and 66.6% of the participants
reported either having relied on haptic feedback “little” or
“neutral” respectively when using their hands and the tool).
We believe that although the kinetic sand offers some force
resistance while sculpting, this is not as valuable a feedback
as vision. In our opinion, it is more natural to rely on visual
feedback as a measure of how distant the current shape is
from the imagined/desired shape. Haptic feedback is more
valuable in understanding the force required to overcome the
sand resistance, but offers little information on which action
to perform next to get to the desired shape. The importance of
visual feedback endorses our design choice of using cameras.

We manually labeled the images from the recorded videos
(available in the dataset). Only the images where the three
action types (pushing, tapping and incising) were clearly
identifiable were labeled. Specifically, 13.34% of the images
were labeled as “pushing”, 9.31% as “tapping” and 8.68%
as “incising”. Analysing the videos, we noticed that the
participants often performed mixed actions, as is clearly
shown in 27.12% of the images, where the participants
performed a pushing-tapping action (described earlier). The
rest of the images were left unlabeled (41.55%). Unused
images contain: unclear actions, i.e., actions that it was not
possible to categorize into any of the three labels; retreating
actions and transitions between actions; and occlusions, i.e.,
the tool was not visible, or the effects of the current action
were not visible or were only visible after a few images.
The analysis of the videos leads us to infer that a bigger set
of action types should be taken into consideration and that
Hypothesis 2 should be relaxed: i.e., € > 0 in (4b).

V. TRANSFERRING PLASTIC MANIPULATION
CAPABILITIES FROM HUMANS TO ROBOTS

In Sect. III, we explained that when the state dynamics
f are unknown, standard optimization is hardly applicable.
However, machine learning can provide an alternative solu-
tion, mapping the current error (in the perceived features)
to the best possible action to reduce it. We train a neural
network to learn this mapping using the data acquired during
the user study presented above. This enables us to verify
whether the dataset can be effectively exploited to transfer
plastic manipulation capabilities from humans to robots.

Instead of deploying the complete Robotic plastic material
molding algorithm presented in Sect. III-B, we validate our
approach on a single pair of action type and corresponding
subtask (N = 1): u, X. Specifically, we focus only on
pushing with a tool. In future work, we plan to exploit
the whole dataset to learn multiple actions, also with other
means (e.g., one or two hands) and extract features through
convolutional layers.

The pushing task is characterised by current and desired
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Fig. 4. The image processing pipeline. Left to right: sequence of valid “pushing” images, tool detection, tool position and velocity processing for reducing
and breaking the sequence in smaller sets with similar velocity direction, contour detection, image pairing and using the data to train a neural network.

points along the external sand contour (m samples):
Xp-1 = [X Vi X7 Y

8
i* — [Xl* Yl* L X meE Ym*]T . ( )

Since the pushing action u can be seen as a translation of
the tool in the sandbox plane — parallel to the image plane —
we parameterise it using the current and desired tool image
coordinates:

* 1T
w (p) = [Xpy Vi, X" V] ©)

Here, X** and Y** are the tool coordinates when the user
has obtained the desired contour X*.

With this representation, a mapping ¢ (in (6)) can be
learned from a large set of observed triplets {ug,Xr—1,X"}.
Obtaining many values of uy and Xj_; is straightforward.
(6753 annotated pushing images have been annotated within
our dataset) Defining X* as the final shape molded by each
user would yield an insufficient training dataset (only 9
samples, one per user). Furthermore, the state error would be
very large, potentially jeopardising convergence. To address
this, we use all the sand contours in the dataset that have been
obtained after a “sufficiently large” change in both contour
and tool positions, as X*. More formally, we take all X* = X;
such that:

j>k—1
VXX 4 (v - s
X — X1l > 7,

(10)

with 7, and 77 constant, hand-tuned thresholds. This repre-
sentation differs slightly from the one presented in the case
study of Sect. III-C and Fig. 2, it is though still covered in the
general formalism of Sect. III-B. Indeed, it will be sufficient
to label each of these “local” contours on the “global” shape
as a different substate ¢, to be regulated sequentially.

A. Extraction of visual features

Although the RealSense camera provides also a depth
image, we decided to use only the RGB images. We apply

HSV space segmentation, since the tool tip is colored in blue,
and the users wear black gloves and black long sleeved shirts,
for the sand (light brown) and sandbox (black). However,
when the user pushes the sand and partially occludes it
with their hand, our algorithm cannot distinguish contours
between sand and sandbox from contours between sand and
gloves. This reduces the usable images from the original
6917 (from 8 users) annotated in the database as “pushing” to
4248 images of 3 users in which no sand occlusions occurred.

The pipeline, shown in Fig. 4, is as follows (left to right):

1) All 4248 valid “pushing” images are loaded sequen-
tially and split into sets for each of the 3 users.

2) On each image Z, we perform a tool detection, yielding
a tool position as the centroid of a blue blob, seg-
mented in the HSV space. We discard images where
the tool is not detected, and output tool coordinates
Xt, Yt for all other images.

3) After processing all images, the tool positions are low-
pass filtered and derived to obtain the fool velocities
per image Z: X*, Y.

4) The original image sequence is reduced and broken
into smaller sequences. This is done by detecting
images where the tool has either stopped (null ve-
locities) or changed direction (negative scalar product
between consecutive velocities). We remove images
where the tool is not detected, and split the sequence
into smaller sets, with breakpoints corresponding to
velocity changes. Within each of these new sets, the
tool velocity does not change direction.

5) Each image set is processed by a contour detection
algorithm. Subtracting final Z¢;,, from initial image Z;,,
in each set, a ROI (Region of Interest) is found wherein
the sand configuration has changed the most. Within
this ROI, the sand contour is detected on each image of
the set, using the OpenCV findContours function.
The sand contour is sampled with constant m (here,
10), to obtain x. We discard images where the contour
is not detected.



TABLE I
TRAINED NEURAL NETWORK ERROR FOR TOOL POSITIONS (IN PIXELS).

component mean error o of the error
X,tc_1 3.1 4.0
t
Yi 3.6 7.8
Xt* 2.3 3.1
yt* 2.8 5.0

6) At this stage, we have obtained 1858 samples each
containing, for a given image Z: tool position (X' Y*)
(step 2) and contour samples X (step 5). For our
supervised learning approach, we require triplets of
the form {uy,X;p_1,X"}, with X* = X; designed
according to (10). Each set is now explored to find
pairs of images Ty, I; with sufficient contour and
tool change, i.e, pairs that comply with Eq. (10) (we
use 7, = 5 and 7z = 3 pixels). This operation
augments the data to 7565 sample triplets employed
to train a neural network to approximate g in Eq. (6).

B. Machine learning

Learning the mapping function (6) is a fitting problem, for
which we decided to us a neural network to approximate the
mapping function. The network consists of 40 input neurons
(sum of the sizes of X;_1 and X* with m = 10 contour
samples) and 4 outputs (size of ug).

We design a simple multi-layer perceptron with one hid-
den layer, containing 100 neurons with sigmoidal activation
function. As we have a supervised learning setup, backprop-
agation of errors is used to train the network (specifically the
Levenberg-Marquardt Matlab implementation). We split the
dataset of 7565 samples into training (70%), test (15%) and
validation (15%) sets.

The network converges to a mean error of less than 4
pixels (mean and standard deviation o of the error — both
in pixels — are shown in Table I) after approximately 30

Fig. 5. Estimated (by the neural network) position of the tool in two pairs
of images Ty, (left), Z; (right). On each image, we show: the ROI (red),
sand contour (dark blue), ground truth (yellow) and estimated (green) tool
positions.

iterations, requiring slightly less than an hour on a Mac Book
Pro 2013,

This is very promising, particularly when considering
the tool size in the image (approximately 20 x 40 pixels)
and the size of the area covered by a pixel in our setup
(approximately 0.65 x 0.65 mm). To further illustrate these
results, we compare the image processing (yellow circle) and
network output (green circle) tool positions on two image
pairs (Fig. 5). More and more varied data will yield better
estimates. By releasing our user study images, we hope to
encourage others to provide similar datasets, that will enable
learning of better, more robust models.

VI. CONCLUSIONS AND PERSPECTIVES

This paper presents a step towards robotic manipulation of
plastic material, herein molding kinetic sand. Our framework
relies on the hypotheses that 1) the task is achievable using
a finite set of action types and 2) those action types can
regulate “mainly” a part of the task, without excessively
disturbing the rest of it. We conduct a user study to verify
the two hypotheses. The study shows that the participants use
a finite set of action types, confirming our first hypothesis.
The second hypothesis is only partially verified, as some
undesired side effects of the actions are present.

The user study generated a dataset of images, which we
publish alongside this paper. A pipeline consisting of image
processing and machine learning is presented, which can
provide the tool positions required to push the sand from
a current to a desired configuration.

The accuracy obtained by our pipeline encourages us to
pursue this line of research, and to deploy these results on
an autonomous robot molding sand using visual feedback.
Herein we proposed a formulation of this as a visual servoing
task (Eq. 9). In the future, we will collect richer datasets and
learn other action types such as tapping and incising.
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