
HAL Id: hal-01731114
https://hal.science/hal-01731114v1

Preprint submitted on 13 Mar 2018 (v1), last revised 26 Jul 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plastic flow and localization in an amorphous material:
what do experiments tell us ?

David Houdoux, Thai Binh Nguyen, Axelle Amon, Jérôme Crassous

To cite this version:
David Houdoux, Thai Binh Nguyen, Axelle Amon, Jérôme Crassous. Plastic flow and localization in
an amorphous material: what do experiments tell us ?. 2018. �hal-01731114v1�

https://hal.science/hal-01731114v1
https://hal.archives-ouvertes.fr


Plastic flow and localization in an amorphous material: what do experiments tell us ?

David Houdoux, Thai Binh Nguyen, Axelle Amon,∗ and Jérôme Crassous
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France

(Dated: March 13, 2018)

We present a thorough study of the plastic response of a granular material progressively loaded.
We study experimentally the evolution of the plastic field from a homogeneous one to an heteroge-
neous one and its fluctuations in term of incremental strain. We show that the plastic field can be
decompose in two components evolving on two decoupled strain increment scales. We argue that the
slowly varying part of the field can be identified to the so-called fluidity field introduced in recently
to interpret the rheological behavior of amorphous materials.

PACS numbers: 83.50.-v, 83.80.Fg, 62.20.F-

I. INTRODUCTION

A physical description of the elementary mechanisms
underlying the plasticity of amorphous materials has
emerged in the past few years based on experimental evi-
dences and numerical investigations [1]. One of the basic
ingredient is the fact that at an elementary level, plastic-
ity occurs through local plastic events implying only a few
number of constituents [2, 3], typically a few tens [4–6].
Such events are schematically represented in Figure 1(a).
When such events occur, they redistribute stress [7–9].
This redistribution can trigger other rearrangements gen-
erating avalanches of events. An important point of this
description is its universality as the stress redistribution
is independent of the local interaction between the con-
stituents. The mechanical properties that intervene in
this description are the elastic properties which charac-
terize the amorphous material on a large scale as an ef-
fective medium. The rearrangement can be treated theo-
retically as a small inclusion in an elastic matrix and the
stress redistributed can be computed as shown by J. D.
Eshelby [10]. The coupling between the plastic events is
then quadrupolar.

While there is now an agreement about the validity of
this picture in the community, the question of how this
microscopic picture builds up in a macroscopic flow is
still open.

For athermal materials, an important point is to model
how the flow can be self-sustained. A possible approach
is at a coarse-grained level. In order to describe rheology
of yield stress material, Hebraud and Lequeux [11] intro-
duced a local internal variable which represents the spa-
tial and temporal density of plastic events occurring at a
given time and at a given position. At a given point, this
quantity evolves due to some stress relaxation, macro-
scopic loading and a background of mechanical noise due
to plastic events occurring everywhere in this sample.
The use of this internal variable, usually called fluid-
ity, have been very fruitful to explain the rheology of
yield-stress fluid. However, numerous studies evidence
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FIG. 1. Schematic pictures of a plastic flow in athermal mate-
rials. (a) At a microscopic scale, a small goup of elements re-
organizes and redistributes mechanical stress in the material.
This initial event can trigger a cascade of other rearrange-
ments represented schematically with other colors to indicate
their order of occurence. (b) At a macrocsopic scale, the flow
concentrates into a narrow zone of the material such as a shear
band.

that local constitutive equations for the rheology are not
compatible with the observations [12]. A plastic flow in
a point of a material has an effect on the response of
the material at some distance. A new class of nonlocal
constitutive models have then been introduced [12, 13].
The length characterizing the range of this interaction
between events is called the cooperativity length and is
supposed to depend on the distance of the local stress
to the yield stress. Such a model has been adapted to
granular materials and describes the stationary response
of granular materials in numerous configurations [14, 15].

An important feature usually observed in amorphous
materials is the fact that strain localization are observed
at a large scale [16]. When a yield stress material is
sheared homogeneously the deformation is not homoge-
neously allocated in the sample but is concentrated in
thin parts, called shear bands, in which the strain rate
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is large while the other parts of the material experience
small strain rate (Fig. 1(b)). A description of how those
stationary shear bands emerge from microscopic elemen-
tary plastic events or from an homogeneous fluidity field
is still missing. At a macroscopic point of view, to de-
scribe shear bands is to consider a stress-based failure
criterion. When the local stress is larger than a thresh-
old, called the yield stress, the material flows. In the
particular case of granular materials, the failure crite-
rion is given by the Coulomb threshold: failure occurs
when the ratio of the local shear stress to the pressure is
larger than tanφ where φ is the angle of internal friction.
Experimentally the internal friction angle is defined from
the value of the yield stress. It may also been determined
from the angle between the failure plane and the princi-
pal stress direction using a Mohr-Coulomb construction.
Such a description of plasticity of shear bands has several
limitations and in particular the fact that no lengthscale
is introduced in the failure criterion so that the width of
the shear band cannot be predicted.

In summary, the picture emerging from the litterature
is the following. At a microscopic scale the particles
move. At a mesoscopic scale, individual plastic events
may be defined, and such events are coupled by elastic-
ity. At a macroscopic scale, the rate of such events may
be theoretically represented by a variable called fluidity,
which varies at the scale of the flow. Finally, macroscopic
experimental observations show that strain localization
occurs. Experiments or numerical simulations showing
simultaneously those different behaviors are missing. We
propose in this study an experiment that evidences many
features of those plastic flow behaviors. For this we per-
formed experiments on a shear flows of athermal spheres.
Using an interferometric technique, we are able to fol-
low the fluctuations of plasticity. Those fluctuations ev-
idence some features of individual plastic events, such
as the coupling of events by elasticity. If those fluctua-
tions are averaged, a slowly varying field of deformation
emerges, that may be identified with the fluidity field de-
fined theoretically. Depending of the temporal scales at
which the plasticity field is observed, different behaviors
at mesoscopic and macroscopic scales may be evidenced
simultaneously.

The manuscript is organized in the following way. In
section II we present the experimental setup. In sec-
tion III, the behavior of the correlation functions of the
plasticity field is investigated. Those correlations func-
tions can be separated into a slow and a fast component
as shown in section IV. Finally, in section V, we discuss
the identification of the slow component of the plastic
flow to the fluidity field.

II. EXPERIMENTAL SET-UP

The experimental setup consists of a biaxial compres-
sive test in plane strain conditions already described
extensively in [17]. The granular material (dry glass

beads of diameter d = 70− 110 µm, initial volume frac-
tion ≈ 0.60) is placed between a preformed latex mem-
brane (85× 55× 25 mm3) and a glass plate. A pump
produces a partial vacuum inside the membrane, creat-
ing a confining stress −σxx ' 30 kPa (see Fig. 2). The
sample is placed in the biaxial apparatus where displace-
ment normal to the xy plane is prevented by the front
glass plate and a back metallic one, ensuring plane-strain
conditions. At the bottom the sample is blocked by an-
other metallic plate, while an upper plate is displaced
vertically by a stepper motor. The stress applied at the
top of the sample is then −σyy = −σxx + F/S, where
F is the force measured by a sensor fixed to the upper
plate, and S the section of the sample. The velocity of
the motor is 1 µm · s−1, leading to a deformation rate
ε̇ = 1.2× 10−5 s−1 (where the deformation is defined as
ε = −εyy = δ/L - see inset Fig. 3). The corresponding
loading curve is presented in Fig. 3(b). We work in the
quasistatic regime. Note that the stress gradient due to
gravity is negligible, and the value of the confining stress
is too low to expect a crushing of particule. To break the
symmetry when failure occurs, for instance, to study the
behavior of the shear band (see [18]), the metallic plate
at the bottom of the sample can freely translate in the
x-direction thanks to a roller bearing. In the following,
experiments that are presented are made in this latter
configuration.

Deformations are observed through the front glass
plate using a Diffusing Wave Spectroscopy (DWS)
method already described before in [19, 20]. A laser
beam at 532 nm is expanded to illuminate the entire
sample. The light undergoes multiple scattering inside
the granular material and we collect the backscattered
rays. The latter interfere and form a speckle pattern.
The image of the front side of the sample is recorded by
a 7360 × 4912 pixels camera. Speckle images are subdi-
vised in square zones of size 16×16 pixels and compared
using a correlation method explained elsewhere [19, 21].
For each zone the correlation between two successive im-
ages 1 and 2 is computed as follows:

g
(1,2)
I =

〈I1I2〉 − 〈I1〉〈I2〉√
〈I21 〉 − 〈I1〉2

√
〈I22 〉 − 〈I2〉2

(1)

where I1 and I2 are intensities of the pixels of two succes-
sive images and the averages 〈.〉 are done over the 16×16
pixels of a zone. We obtain correlation maps where each
pixel is calculated from eq. (1) and corresponds to a vol-
ume of area in the front plane 4d × 4d and depth of a
few d. Examples of such maps of correlation are given in
Fig. 3(a). The normalisation used in (1) leads to values
for gI in the interval [0, 1] (see the colorscale). The decor-
relation of the backscattered light (i.e. low value of gI)
comes from relative beads motions as, for example, com-
binations of affine and nonaffine bead deplacements or
rotation of nonspherical beads. In the following, maps of
correlation are calculated between two successive images
with a fixed axial deformation increment δε = 3.5×10−5.
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FIG. 2. Schematic representation of a biaxial setup. The
granular material is enclosed between a latex membrane and
a glass plate (not represented here). A partial vacuum inside
the sample creates a confining stress −σxx = 30 kPa. At
the top, a moving plate exerts a compression of the sample
at fixed velocity along the y-axis. The back plate as well as
the front glass one forbid displacement along the z-direction
ensuring plane-strain conditions.

III. SPATIO-TEMPORAL CORRELATION
FUNCTIONS

Observations made on the correlation maps during
the loading are the same as those already presented in
[17, 18, 22]. In the sample, deformations are distributed
inhomogeneously (see Fig. 3(a)). At the beginning of
the loading, plastics events are randomly distributed
throughout the sample. After a deformation of a few
percent (ε ' 3 %) these plastic activities are organized
along intermittent micro-bands until one or two perma-
nent shear bands are established. We relate the former
to avalanches of local rearrangements predicted in the
microscopic descriptions of the plasticity of amorphous
materials. The latter are in agreement with the Mohr-
Coulomb model. In the following, we present a method
to isolate each of these contributions to plasticity.

A. Spatio-temporal correlation function

First, we introduce a new parameter a(r, ε) = 1−g(1.2)I

where g
(1.2)
I (see (1)) is calculated on a square area of

(4d× 4d) at position r. I1 and I2 are intensities of pixel

FIG. 3. (a) Correlation maps gI for three different values of ε
(2.80 %; 5.95 % and 8.75 %). The region of interest used for
image analysis is shown in dashed line. (b) Loading curve.
Dots symbolize the positions of the three correlation maps.
Inset : notations.

images taken respectively at ε1 = ε and ε2 = ε + δε.
Thus a(r, ε) represents the activity at position r around
the deformation ε.

We define also a spatio-temporal correlation function
as follow :

C(ε, dε, dr) = 〈a(r′, ε′) · a(r′ + dr, ε′ + dε)〉
− 〈a(r′, ε′)〉〈a(r′ + dr, ε′ + dε)〉 (2)

where r′ and r′ + dr have to be in the region of inter-
est (ROI, see Fig. 3(a)) and the deformation ε′ in the
interval [ε; ε + ∆ε]. Averages are made over all pairs of
pixels for which r′ and r′ + dr are in the ROI and over
a deformation span ∆ε. In the following, the value of
∆ε is fixed at ∆ε = 0.35 %. This value is large enough
to have good averages but remains small compare to the
total deformation applied. Note that in all the following
the deformation plays the role of time. Our experiments
are in quasi-static conditions. A process which can be
observed only for small deformation increments will be
called a fast process in the following while a feature that
lasts for large strain increments will be called a slow pro-
cess.

B. Temporal scale of fluctuations

Throughout the loading, we can observe on the cor-
relation maps that micro-bands are fluctuating rapidly
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while shear bands evolves slowly. To quantify the tem-
poral scale of the fluctuating part, we compute temporal
correlations as follow:

CT (ε, dε) = C(ε, dε, dr = 0) (3)

where CT can be interpreted as a spatial autocorrelation
function giving only the temporal information.

FIG. 4. (a) Temporal correlation function as a function of dε
at the beginning (ε = 2.80%) and at the end (ε = 8.75%) of
the loading. (b) Rescaled correlation functions showing the
initial drop over a characteristic gap dεc ≈ 0.01 %.

Fig. 4 shows CT (ε, dε) as a function of dε at two points
in the loading ε = 2.80 % and ε = 8.75 %. A rapid decor-
relation for a gap dε∗ ≈ 0.01 % is initially observed, fol-
lowed by a second smoother decay which tends to a non-
zero finite value because of the heterogeneity of the mean
field. The scale in deformation increment over which the
initial drop takes place, dε∗ ≈ 0.01 %, gives us an esti-
mation of the temporal scale of the fluctuating part.

C. Separation method

The aim is to separate the two plastic phenomena
throughout the loading. Our method is based on their
different temporal properties. As discussed in sec-
tion III B, the fluctuating part is no longer correlated
for a gap of deformation larger than dε∗. In the case
when dε� dε∗, the spatio-temporal correlation function
C(ε, dε, dr) corresponds only to the slow part. In the
following, we define the correlation function for the slow
part by taking arbitrary dε = ∆ε/2 = 0.175 %� dεc for
the spatio-temporal correlation function:

Cslow(ε, dr) = C

(
ε,

∆ε

2
, dr

)
(4)

In the same way, for dε � dεc the spatio-temporal
correlation function C(ε, dε, dr) contains all the fluctua-
tions. Thus, we define the total correlation function by
taking dε = 0 as follows:

Ctot(ε, dr) = C(ε, 0, dr) (5)

Finally, the correlation function describing the fluctu-
ating part is obtained as follows:

Cfast(ε, dr) = Ctot(ε, dr)− Cslow(ε, dr) (6)

FIG. 5. Spatial representation of the different parts of the
correlation function for different values of the loading. All
maps are centered at dr = 0. The spatial scale, in unit of
beads diameter, is represented in (b1). Top row ((a1), (a2)
and (a3)): total correlation function Ctot; Middle row ((b1),
(b2) and (b3)): slow part Cslow of the correlation function;
Bottom row ((c1), (c2) and (c3)): fast part Cfast of the cor-
relation function. Left column, the system is well before fail-
ure, ε = 2.80 %; Middle column, it is close to the failure
ε = 5.95 %; Right column, after failure ε = 8.75 %.

Fig. 5 shows the correlations functions Ctot, Cslow

and Cfast defined previously. Those correlations func-
tions are computed at different macroscopic deformation
ε = 2.80 % (well before failure), ε = 5.95 % (close to
failure), and ε = 8.75 % (post-failure).

IV. EXPERIMENTAL RESULTS

A. Behavior of the slow and fast parts

In this subsection, we discuss the results obtained by
the calculation of the slow and fast parts of the corre-
lation functions, and we evidence the differences of be-
havior between the long and the short time correlation
functions.

We first discuss the correlation function near failure
(middle column in Fig. 5) where the characteristic be-
havior is clearly visible. The total correlation function
Ctot (see Fig. 5(a2)) displays two different spatial fea-
tures. Near dr = 0, we observe a high correlation along



5

two directions, forming a small cross at the center of the
figure. At large distance, the correlation prevails along
a large inclined band spanning the full image. The fast
part and the slow part of the total correlation function
displays each only one of those two spatial behaviors.
The fast part displays only the small cross near dr = 0
(Fig. 5(c2)), whereas the large inclined band belongs to
the slow part (Fig. 5(b2)).

In the pre-failure stage, Fig. 5(c1) shows a fluctuat-
ing contribution at short distances, but the slow part
of the correlation function (Fig. 5(b1)) remains spread
on the full image and displays no structure. After fail-
ure, the slow part of the correlation function appears
clearly correlated along two bands (Fig. 5(b3)), whereas
the quadrupolar structure of the fluctuating part near
the origin is no longer visible.

B. Geometrical characterisation of the correlations.

Fig. 5 evinces that the fast and slow components of
the correlation functions are both anisotropic, but with
slightly different directions. We now use this observation
to quantify the duality of the correlation functions with
the time-scale.

For this, we need to determine the angles at which
the correlation enhancement occurs. We use a projection
method inspired by what has been done previously [18].
As the correlation maps are centered (see Fig. 5), we
compute the mean value of the pixels intersected by a line
passing through the center and with an angle θ with the
x-axis. Next we plot these mean values as a function of
the angle θ between −π/2 and +π/2. Fig. 6(a) shows the
result of such projection of the fast part of the correlation
Cfast for an axial deformation ε = 5.95 %. Fig. 6(b) shows
the projection of the slow part of the correlation Cslow

for ε = 8.75 %. From a projection profile as the ones
obtained in Fig. 6, we determine the angle characterizing
a response as the mean of the absolute values of the angles
at which occur the maxima of the curve. Error bars are
determined as the difference between the angles at which
the maxima occur and the ones obtained from gaussian
interpolations of the projection profile on each halves of
the [−π/2, π/2] interval.

Fig. 7 shows the values of the angles at which the fast
and the slow part of the correlation function are respec-
tively maximals as a function of the macroscopic defor-
mation in the ε ∈ [2.45 %; 9.80 %] range. The failure
occurs for ε ' 6.65 %. We observe that angles at which
correlation occurs are clearly different for the fluctuat-
ing and the slow parts. For a deformation in the range
ε ∈ [5.60 %; 6.65 %] the coexistence of a fast and slow
correlation oriented at different angles is clearly visible.
Outside this range of deformation, we were not able to
define two different angles simultaneously in the correla-
tion functions.

FIG. 6. Angular projection of the spatial correlation func-
tions, i.e. mean value of the pixels intersected by a line pass-
ing through the center of a spatial correlation function and
making an angle θ with the x-axis as a function of θ for (a)
Cfast at ε = 5.95 % and (b) Cslow at ε = 8.75 %.

FIG. 7. Angles of the fast and the slow parts of the spatial
correlation function. A coexistence of two distinct directions
is observed just before the failure represented by the dashed
line.
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V. DISCUSSION

A. Interpretation of geometrical angles for slow
and fast correlation functions.

As it has been shown previously, we clearly observe
two different angles for the correlation function. The fast
part of the correlation function is quadrupolar, with an
average inclination θE ' 48◦. This orientation may be
directly linked to the direction of maximum stress redis-
tribution given by the Eshelby tensor. We can interpret
the fast correlation of the plastic events as small cas-
cades of events as represented schematically in Figure 8.
Such fluctuations has also been reported in few numerical
studies [7, 23].

(b)(a)

FIG. 8. Schematic representation of our interpretation of the
microbands as cascades of elementary events. (a) Local rear-
rangements coupled by elasticity. (b) Resulting deformation
integrated on a larger time-scale.

The slowly varying part of the correlation function is
oriented at an angle θMC ' 63◦. This orientation may
be related to the formation of a macroscopic shear band
into the material. The orientation of the shear band de-
pends on the value of internal friction ratio accordingly
to a Mohr-Coulomb construction. This slow variation
is related to large scale cooperative effects. It is impor-
tant to note that two scales, and the two orientations
coexist during the approach to failure (see Fig. 7): the
fluctuations of plasticity are oriented along θE whereas
the mean plasticity is oriented along θMC . The two an-
gles seem relatively constant during the loading process,
and no intermediate orientations are observed, even close
to failure.

B. Schematic interpretation of the experiment.

Figure 9 summarizes schematically our results. At the
microscopic level, some grains reorganize when the ap-
plied stress is increased: this is one ”elementary event”,
that is represented as a dot in Fig. 9(a1). This behavior
can be observed at the very beginning of the experiment.
On a larger time-scale, we observe correlated cascades of
events which fluctuate rapidly Fig. 9(b1). Those micro-
avalanches are inclined along a direction θE given by the

Eshelby stress tensor (see Fig. 8). Increasing further the
deformation field on a larger time scale, we observe a
continuous field of plasticity (see Fig. 9(a3)).

At the beginning of the loading, the events repartition
is roughly homogeneous at the sample scale (Fig. 9(a1))
and the corresponding mean plastic field is also homo-
geneous (Fig. 9(c1)). When the loading progresses, the
events mainly accumulate on an active zone (Fig. 9(a2)
and (a3)), and the plasticity field then becomes hetero-
geneous (Fig. 9(c2) and (c3)). This zone of activity is the
precursor zone of the final shear band, and is inclined at
an angle θMC . Finally, at failure (Fig. 9(c4)), all the ac-
tivity is concentrated on a narrow and stationary shear
band.

C. Fluidity as slow part of the plastic field.

The physical interpretation of what is called fluidity
is still a debated issue [24]. The litterature agrees on
the fact that it corresponds to a coarse-grained field di-
rectly linked to the local plastic activity. Among the
hypotheses underlying the Kinetic Elasto-Plastic model
of Bocquet et al. [13] an important point is a Boltzmann
Stosszahlansatz-like hypothesis of the decoupling of the
plastic-event dynamics. This means that the fluidity field
is defined on a time scale large enough for the memory
of the coupling between the underlying events to be lost.

We interpret the slow part of the plastic field
(Fig. 9(c1) to (c4)) as the field of the so-called fluidity.
Indeed, this field evolves smoothly spatially and has lost
the quadrupolar symetry of the underlying fluctuations
of the plasticity. It corresponds to a coarse-grained field
reflecting the local plastic activity and thus match the
theoretical definition of fluidity.

An important point risen by this discussion is the na-
ture of the coarse-graining at play to obtain this smooth
field. Theoretically fluidity is a variable obtained by a
coarse-graining in space and time. It is unclear in the
litterature if this last coarse-graining is in “true” time
or in strain increment. In our experiment, our technique
of measurement gives intrinsically a coarse-grained mea-
surement in space because it is based on multiple scat-
tering of light (see [19, 21] for a thorough discussion of
the spatial resolution of the method). The measurement
is also time-averaged as the acquisition rate of the cam-
era is always much smaller than the inverse of the time
of propagation of sound waves in the system. In addi-
tion to those resolution-based averages, we have studied
in the present article the effect of a coarse-graining in
strain increment on the observed plastic field. An impor-
tant conclusion drawn from our observations is the fact
that for a large enough strain increment ∆ε the plastic
field lose the memory of the “fast” correlation between
the plastic events. The mean field thus obtained has its
own dynamics on a slow scale. Consequently, there ex-
ists a strain increment above which a fluidity field can be
defined as the slowly evolving part of the plastic field.
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FIG. 9. Schematic representation of the plastic activity at different values of the axial loading ε (horizontal axis) and for
different strain increments ∆ε. At an elementary level, plasticity is awaited to occur through local plastic events represented as
dots on the first line. When integrating those spots on a larger strain increment, a correlated micro-strucutre emerges governed
by the elastic properties of the bulk material (second line). The angle characterizing this elastic coupling, θE , is given by the
Eshelby kernel. On a larger strain increment this fluctuating pattern is lost and only a slowly evolving coarse-grained field
remains. Shear band formation can be observed on this slow field as the emergence of an orientation θMC in the mean plastic
field. The grey area displays the features actually observed experimentally. The reason why (b4) is not observed experimentally
is linked to the nonlinearity in deformation of the measurement methods: the observed field saturates in the band. (a1)-(a4)
are not observed because the acquisition rate is too small to reach small enough ∆ε.
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D. Inhomogeneous fluidity field and localization.

Our experiment allows to follow a fluidity field which is
homogeneous at the beginning of the loading, and which
condensates on a inclined band. The fact that strain
localization occurs in bi- and tri-axial tests performed
on granular materials is well known since many decades.
However, a clear understanding of this feature is still
missing [5]. Some authors tried to relate strain localiza-
tion with properties of the fluidity-field. In a first study,
Goyon et al. [12] proposed a mechanism of formation of
shear band in flows of emulsion. The authors assumed
that walls that are at flow boundaries act as sources of
fluidity. This fluidity then diffuses inside the sample,
forming a fluid layer close to the wall. In Couette flow of
granular material, fluidity increases preferentially close
to the rotor because of the inhomogeneity of the stress
field. In those cases, the fluidity source is localized, and
the fluidity tends to spread into the sample.

In our experiment the situation is totally opposite.
Fluidity accumulates on a band although the applied
stress is increased homogeneously, i.e. the fluidity is ini-
tially homogeneous and finally heterogeneous. The sin-
gle property that the fluidity diffuses inside the sample
is not sufficient to explain this feature. Recently, Benzi
and coworkers [25] have shown that shear band forma-
tion starting from an initially homogeneous fluidity in a
fluidity model should be possible.

Another possible approach to understand this localiza-
tion process can be to consider that there is some memory
of where plasticity has already occurred. In the case of
cohesive materials, the introduction of a modification of
the local elastic modulus in mesoscopic models is known
to lead to some localization [26]. But the memory of
previous local plastic activity is not specific to cohesive
materials and can take different forms. It may described
any local structural modification due to plasticity as for
example a modification of the local structure or of the
local packing fraction as well as the wear of some fric-
tional contacts. In the case of shear band formation in
granular materials, it is known that the packing fraction
inside the flowing band takes a particular value (the so-
called critical state) [29]. The damage internal variable
to take into account might then be the local packing frac-

tion which should evolve when plastic events take place.
The introduction of some memory or history-dependent
effect is known to generate shear-banding in mesoscopic
models [27, 28]. Very recently, a mesoscopic model using
a local Mohr-Coulomb criterion and taking into account
the tensorial nature of the stress redistribution have been
able to reproduce macroscopic localization in the absence
of a damage variable [30].

VI. CONCLUSION

In this work we have discussed the nature of the spatio-
temporal correlations oberved in the plastic response of
a granular material submitted to a biaxial test. We have
detailed a procedure allowing us to separate a fluctuating
component of the plastic field at small strain increments
from a slowly evolving component. Those two compo-
nents correspond to two different types of behaviors: the
two fields have independent and coexisting characteris-
tic orientations. We discuss the interpretation of those
two behaviors in the framework of the present debated
theories of plasticity and rheology of amorphous materi-
als. We argue that the slowly varying component of the
plastic field is a good candidate to be interpreted as the
so-called fluidity field introduced in the last ten years to
describe nonlocal effects in the flow of amorphous mate-
rials. We underline the importance of corse-graining in
strain increment in the definition of this field.

The question of the independence or correlation be-
tween the fast and slow components of the field is still
open. Even if the two orientations observed are appar-
ently unrelated it could be possible that the slow field
inherits its characteristics from the fluctuations in a non
trivial manner.
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[11] P. Hébraud and F. Lequeux. Phys. Rev. Lett., 81, 2934

(1998).



9

[12] J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Boc-
quet. Nature, 454, 84 (2008).

[13] L. Bocquet, A. Colin, and A. Ajdari. Phys. Rev. Lett.,
103, 036001 (2009).

[14] K. Kamrin and G. Koval. Phys. Rev. Lett., 108, 178301
(2012).

[15] D. L. Henann and K. Kamrin. Proc. Natl. Acad. Sci.,
110, 6730 (2013).

[16] P. Schall and M. van Hecke. Annu. Rev. Fluid Mech., 42,
67 (2010).

[17] A. Le Bouil, A. Amon, J.-C. Sangleboeuf, H. Orain,
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