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Abstract
We present a phenomenological approach for modeling and animating cloudscapes. We propose a compact procedural model
for representing the different types of cloud over a range of altitudes. We define primitive-based field functions that allow the
user to control and author the cloud cover over large distances easily. Our approach allows us to animate cloudscapes by
morphing: instead of simulating the evolution of clouds using a physically-based simulation, we compute the movement of
clouds using key-frame interpolation and tackle the morphing problem as an Optimal Transport problem. The trajectories of
the cloud cover primitives are generated by solving an Anisotropic Shortest Path problem with a cost function that takes into
account the elevation of the terrain and the parameters of the wind field.

Keywords: clouds, procedural modeling, morphing, implicit surfaces.
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1. Introduction

Cloudy skies play an important part in the appearance of scenic
landscapes. Clouds have complex shapes and play a major part in
the lighting conditions of a synthetic scene. At sunset, clouds burst
into fiery colors and generate crepuscular rays which contributes to
the majesty of the sky and add dramatic visual effects.

Modeling and simulating synthetic clouds remains a complex
problem. The challenge stems not only from the complexity of
the underlying physics featuring unstable dynamical systems, but
also from the size of the three dimensional domain that should be
simulated. Moreover, simulation methods do not provide sufficient
control to artists and designers who want to tune the distribution,
dimension and location of clouds to produce special lighting ef-
fects. Finally, simulations need to compute an entire sequence of
iterations to define the cloudscape at a given input time.

Another challenging problem is the control of the cloud shapes.
While primitive-based cloud modeling systems have been proposed
for creating complex volumetric clouds such as Cumulus, these
approaches need hundreds of primitives to define a single cloud,
which makes them inappropriate for large cloudscapes modeling.

We approach the problem differently. Instead of physically sim-
ulating clouds, we present a novel procedurally-based cloudscape
model based on key-framing and morphing. It is efficient and al-
lows for a high degree of control. Moreover, contrary to primitive-
based existing methods, we do not focus on the shape of a single
cloud but on the procedural definition of large cloudscapes.

In our method, the presence of clouds is described by implicit
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Figure 1: Morphing of cloudscapes by combining an implicit-
based density definition and an Optimal Transport algorithm.

skeletal functions, making it compatible with many existing sketch-
ing and procedural methods. We rely on a new formalism for the
morphing of clouds with an Optimal mass Transport formulation.
Because each interpolated frame of the animation is described by
the same model, the user can freely consider it as a new key-frame
and modify it to deform the animation.

We claim the following contributions. We present an original
and unified framework for efficient generation and control of large
cloudscapes featuring different types of clouds. Clouds are mod-
eled by combining functions defining the shape of the clouds, and
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high level cloud cover control functions. We present a new method
for the intuitive authoring of cloudscape animations: we introduce
an efficient morphing algorithm that relies on an Anisotropic Short-
est Path combined with an Optimal Transport method to solve the
correspondence problem and compute a consistent interpolation be-
tween two input cloudscapes.

To our knowledge, our approach is the first to allow user-
controlled authoring of animated cloudscapes by using a contin-
uous density field morphing algorithm that takes into account the
elevation of the terrain and the wind field, while providing a unified
treatment of different types of clouds. The major motivation of our
work is to define the entire cloudscape as a time varying analytical
function, not requiring a simulation. This work has several appli-
cations, in particular in the entertainment industry, where there is a
need for methods able to control the weather on large landscapes.

2. Related work

Existing techniques for modeling and animating three dimen-
sional volumetric clouds can be classified into three categories:
physically-based simulations, procedural generation and sketch-
based modeling. Volumetric representations define a density func-
tion characterizing the water content of the clouds at every point
in space. Simulating the interaction between light and clouds is
beyond the scope of the paper; for a more in depth overview on
cloud rendering techniques, we refer the reader to the recent work
of [KMM∗17].

Procedural modeling approaches typically define the density
function as a combination of procedural noise [LLC∗10] and ellip-
soid primitives defining a compact support. The shape of stratiform
clouds is generally modeled by horizontal layers of varying thick-
ness [Gar85, BNL06] whereas cumuliform clouds are defined by
blending ellipsoid primitives [Gar85, DNYO98, Ney97, SSEH03,
BN04]. Details are added to those large-scale models by combin-
ing high-frequency procedural noise.

While previous approaches are effective for modeling a few
clouds, they do not scale well and cannot be used to model large
cloudscapes. Ebert et al. [EMP∗94] proposed to use turbulence,
a sum of noise functions at different scales, combined with some
warping functions to define clouds with vortexes and Coriolis ef-
fects in the atmosphere of an entire planet. Clouds can be ani-
mated either by using four-dimensional noise or warping functions.
Dobashi et al. [DNYO98] proposed to use multiple satellite im-
ages to capture the animation of clouds in the atmosphere. A hybrid
technique combining a fluid simulation over a coarse three dimen-
sional grid in the atmosphere and procedural generation for model-
ing clouds was proposed in [DYN06].

Primitive-based clouds can be animated using traditional key-
framing and particle systems [SSEH03]. Specific morphing algo-
rithms [JLCLW∗05, LJW06, LJWcH07, CMCM11] were proposed
to animate clouds by creating a correspondence graph between the
initial and final cloud models and generating a generic interpolat-
ing model as described in [GA96]. A fundamental problem of these
approaches is that the time varying model produces trajectories that
linearly interpolate the positions of the initial and final primitives,

which yields unrealistic animations. Moreover, they generate many
primitives and do not scale to larger cloudscapes. In contrast, our
morphing approach, based on the combination of Optimal Trans-
port and Anisotropic Shortest Path, solves those problems by con-
structing consistent trajectories and limiting the number of gener-
ated primitives.

Sketching techniques aim at providing the user with a high level
control over the cloud modeling. Complex models can be cre-
ated by carefully editing all the parameters describing the cloud
representation [SSEH03], but this method is time consuming
and cumbersome for the user. Cloud-sketching systems [WBC08,
DKNY08] allow the artist to outline the global shape of a cloud
from which the system automatically generates a corresponding
three-dimensional cloud.

Physically-based simulations aim at computing the evolution of
clouds according to the laws of fluid dynamics and thermodynam-
ics. Note that simulating and animating clouds is different from
animating smoke [CT17, Thu17] because of the thermodynamics.

Methods for simulating and animating cloud formation using
cellular automata combined with a coupled map lattice were pro-
posed in [DKY∗00, MYDN01]. A method for animating clouds
surrounding the earth at planetary level based on high and low
pressure regions was proposed in [DYN06]. Eulerian approaches
[HL01, HBSL03, Ney97] take into account the thermodynamic
equations but have several important limitations such as limited do-
main, coarse resolution, and lack of control. In contrast, Lagrangian
approaches like smoothed particle hydrodynamics [MCG03] are
considered more reliable on moving features, even at low resolu-
tions. Barbosa et al. [BDY15] recently proposed a cloud simulation
method based on position-based fluids [MM13]. The simulation,
based on physics and thermodynamics, involves particle merging
and splitting processes in dense and sparse cloud regions respec-
tively, and requires a high number of particles.

The cloud shapes and motion depend on many simulation pa-
rameters and the initial status. The formation of clouds can be
simulated using the complex fluid dynamics of the air [DNYO98,
MDN02], but the process is costly and it is very difficult to ad-
just the parameters so that the clouds reproduce the desired shapes.
[DKNY08] proposed a feedback method for better controlling the
shape of cumuliform clouds.

Physically-based simulations are both computationally and
memory demanding. Moreover, the complexity and instability of
the thermodynamic and fluid dynamic systems make them unsuit-
able for authoring special effects. Finally, simulations require the
computation of many steps to obtain the density field at a given
time.

Our method proceeds differently: instead of simulating complex
chaotic dynamic systems, our method focuses on user-control. Our
key-frame morphing algorithm automatically generates a generic
model representing the time varying density function. The corre-
spondence between the initial and the final density distributions is
obtained by using an Optimal Transport algorithm. It minimizes an
anisotropic cost which takes into account the mass of the cloud,
the wind and the elevation of the terrain with a view to generating
plausible and consistent animations.

c© 2018 The Author(s)
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Figure 2: Overview: given a set of input cloud cover key-frames, we generate a generic animated control function ci(p, t) which defines the
time varying cloud cover. It is combined with the cloud layer models to compute the density functions ai(p, t) that are finally rendered.

Type Symbol Definition

Pe
rc

lo
ud

ty
pe φi Cloud shape

δi Details
si Final shape
ci Control for cloud type i
ai Atmosphere for cloud type i

G
lo

ba
l a Global atmosphere

c Global control
σ Normalizing function

Table 1: Notations for the functions used in our cloudscape model.

3. Workflow

In this section, we present an overview of our cloudscape model
and of the workflow for modeling and animating cloudscapes, and
introduce notations.

Given an input terrain defined as an elevation function h(p),
wind conditions w(p, t) and a set of images depicting the cloud
layers at different key-frames, our method automatically generates
a generic parametrized representation of the cloudscape interpo-
lating the input key-frames (Figure 2). The key-frames may come
from different applications and sources: they may be the result of a
simulation with a coarse time step, real cloud cover data or obtained
by interactive editing.

Our method proceeds as follows. First, the user sets the environ-
ment i.e. the terrain defined as an input height-field, and the wind
conditions defined as a vector-field. For every key-frame, the user
sketches a set of input images representing the cover map of the
different cloud layers.

We then convert the input discrete cloud cover images into a
continuous primitive-based representation that defines the control
functions at the key-frames. Key-frames are then interpolated using
an Anisotropic Shortest Path, and an Optimal Transport resulting
in a complete animated atmosphere model. Finally, the animated
cloudscape is rendered using a single scattering model.

The resulting animation can then be precisely tuned to match a
desired state between two key-frames by simply inserting a new
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Figure 3: Our procedural cloudscape model represents a variety
of types of cloud layers featuring Cumulus humilis, Altocumulus,
and Altostratus.

key-frame to guide the morphing process. Note that new key-
frames may be captured from the morphing itself. An interest-
ing property of our matching process based on Optimal Trans-
port is that inserting such intermediate key-frames into the con-
trol sequence preserves the morphing without changing the ani-
mation. We detail our procedural cloudscape model in Section 4
and show how to author procedural animated cloudscapes by us-
ing an Anisotropic Shortest Path and an Optimal Transport method
in Section 5. Table 1 provides an overview of the notations used
throughout the paper.

4. Cloudscape model

As observed and described in meteorology, there exists a vast vari-
ety of types of cloud that span at various altitudes and with different
shapes and movements. For example, fuzzy Cirrus form at high al-
titudes whereas convective cumuliform such as Cumulus, Cirrocu-
mulus or Altocumulus extend over a wide range of altitudes.

Our model defines different types of clouds (Figure 3) denoted as
T in a generic procedural framework. Every cloud type, denoted as
Ti, is defined by its characteristic density function ai that implicitly
defines the shape of clouds, its base elevation ei and altitude range
ri (Table 2).

The base elevation and range limit the support of the density
function ai. We define the compact support of the function ai as the
set of points where the density is not null:

Ωi = {p ∈ R3 |ai(p) 6= 0}

c© 2018 The Author(s)
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Cumulus Stratocumulus

Cirrocumulus Nimbostratus

Figure 4: Our procedural cloudscape model allows to represent
different types of clouds.

Type Elevation Range

H
ig

h Cirrus 8.6 - 13.0 1.0 - 2.0
Cirrostratus 6.0 - 8.0 0.1 - 3.0

Cirrocumulus 6.0 - 8.0 0.2 - 0.4

M
ed

iu
m Altostratus 3.0 - 5.0 1.0

Altocumulus 2.0 - 6.0 0.2 - 0.7
Stratus 0.1 - 0.7 0.2 - 0.8

Stratocumulus 0.5 - 1.5 0.2 - 1.2

L
ow

Nimbostratus 0.1 - 1 2.0 - 5.0
Cumulus 0.8 - 1.5 0.1 - 5.0

Cumulonimbus 0.8 - 1.0 7.0 - 12.0

Table 2: Type, base elevation ei (km) and range ri (km) parameters
for several major tropospheric clouds for temperate latitudes as
implemented in our system.

Visually, the cloud shape of a given type Ti is similar to the com-
pact support of the cloudscape function ai. Although clouds are
organized into a layered structure, the different layers may overlap.
Figure 4 shows renderings of several types of clouds.

Complex and realistic models with a high level of detail can be
created by blending many implicit primitives as demonstrated in
[BN04]. In this approach the primitives not only define the density
distribution but also the shape of the cloud. While this approach
is effective for modeling a few clouds, it does not scale well and
cannot be used to model large cloudscapes.

Therefore, for every cloud type Ti, we define the density function
ai as a combination of two procedural functions: the shape function
si representing the global characteristic density function of a given
cloud type (Section 4.1) including its fine details, and ci defining
the presence of clouds (Section 4.2).

The density field of the atmosphere a is computed by summing
all the cloud types contributions together. Summing the terms al-

Shape: φ(p)

Final: φ(p) - δ(p)Shape: φ(p)

Final: φ(p) - δ(p)
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Figure 5: Influence of the cloud shape functions: φi defines the
overall density distribution (left); by subtracting details δi, we
generate detailed shapes characterized by their complex support
(right).

lows the overlapping cloud layers to smoothly blend together:

a(p, t) = ∑
i∈T

ai(p, t)

As the sum may get larger than one, we normalize the result by
using a sigmoid-like function σ(x) = x/

√
1+ x2.

4.1. Cloud shape functions

Every cloud type Ti is characterized by a specific cloud shape func-
tion denoted as si = max(φi − δi,0). The function φi defines the
overall aspect of the cloud and generates a low frequency distri-
bution of density in space. The function δi defines high frequency
details which are subtracted and produce finer details (Figure 5).
The maximum function guarantees that the density field is always
positive and plays an important part in the visual appearance of the
clouds as they are defined as the compact support of the density
field. Each type of clouds comes with its own definition of these
two fields φi and δi, which produces the desired cloud effect. Ap-
pendix B gives an example of the functions φi and δi used.

Cloud growth and death The final density ai of the cloud type i
is obtained by combining si and ci. The way to account for the field
ci is specific for every type of clouds. Stratiform clouds tend to
smoothly fade in and out when they appear or disappear, therefore
we multiply the density by the control field to obtain the corre-
sponding fading effect. In contrast, cumuliform clouds have a more
complex growth and vanishing process and do not vanish like high
altitude clouds. Therefore, we subtract a varying value from the
field to obtain a shrinking effect.

Recall that si = max(φi− δi,0) defines the shape of the cloud.
Let ci = 1−ci denote the complementary of the control cloud cover
function, we define the density function for every type of cloud Ti
as:

ai = (1− ci αi)si− (1−αi)ci

Since the density function should not be negative and less than 1,
we clamp every cloud field ai to the unit interval using the sigmoid-
like function σ.

c© 2018 The Author(s)
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We control the behavior of the different types of clouds Ti by
using a single coefficient, denoted as αi ∈ [0,1], which weights
clouds fading or shrinking. Shrinking is adapted to cumuliform
clouds whereas fading is more appropriated to fog or high altitude
stratiform clouds. Setting αi = 1 produces a fading effect whereas
αi = 0 generates a shrinking effect; intermediary values allows us
to weight effects (Figure 6). αi is a constant defined for each cloud
type, and is not interpolated between key-frames; in our implemen-
tation we used αi = 0.1 for Cumulus and αi = 1 for vanishing Cir-
rostratus. Recall that the compact support Ωi of the function ai rep-
resents the set of points where the density is not null. In the case
of a fading effect, i.e. αi = 1, Ωi remains unchanged when ci di-
minishes. In contrast, prescribing αi = 0, will result in a shrinking
effect of the domain as ci decreases.

c(p,t) = 1, α = 1 c(p,t) = 0.5, α = 0

c(p,t) = 0.5, α = 1 c(p,t) = 0.5, α = 0.5

Figure 6: Influence of the parameter α. The reference cloud (top
left) can be modified to obtain fading (bottom-left), shrinking (top-
right) or intermediary effects (bottom-right).

Animation Every layer of our atmosphere model is animated in-
dependently. In our method, we rely on four-dimensional simplex
noise and cellular [Wor96] noise functions to define the time vary-
ing density field. The control field ci(p, t) defines the global evolu-
tion of the cloud cover. φi(p, t) defines the evolution of the global
shape of the clouds, whereas δi(p, t) is used to produce the small
animation details.

4.2. Control functions

For every layer Ti, we define a corresponding control function
ci(p, t) that describes the large scale cover of the corresponding
cloud type. This control function ci(p, t) can be produced in sev-
eral ways, for instance procedurally or by a physical simulation.
Figure 7 shows examples of control fields drawn by the user to
obtain special effects such as a heart-shaped cloud cover, the con-
densation trails, or the hole in the dense cumuliform cloud cover
matching a high mountain peak.

In order to animate these fields, we define them as implicit func-
tions, by blending large scale spherical shaped primitives together.

During editing, the user provides the cloud covers as input im-
ages. This discrete representation is converted into a continuous

EG logo

ContrailsHeart

Hole

Figure 7: Influence of the control field functions c. A heart-shaped
cloud was carved in a layer of Stratocumulus (top left); condensa-
tion trails Cirrus produced by an aircraft cruising at high altitude
(top right); letters carved in Stratus (bottom left) and cloud hole in
Cumulus (bottom right).

primitive-based representation. We sample the image over a coarse
regular grid and generate a set of overlapping compactly supported
kernels (control primitives). The density of each primitive is com-
puted according to the greyscale value of the sampled image. Other
parameters such as the radius or the altitude of the primitives are
defined according to the cloud type.

cj
R j

xj
Without loss of generality, let us consider

a given layer Ti. Every sphere primitive C j is
characterized by several parameters: its cen-
ter b j , radius R j and maximum density x j
respectively. The corresponding compactly
supported field function is defined by com-
bining a smooth decreasing falloff function

with the Euclidean distance to the center:

c j(p, t) = g j ◦d j(p, t) d j(p, t) = ‖b j(t)−p‖/R j(t)

We use the compactly supported cubic falloff function:

g j(r) = x j

(
1− r2

)3
if 0≤ r ≤ 1 and 0 otherwise

The field function c(p, t) is defined by summing the contributions:

c(p, t) = ∑
j

c j(p, t)

As for cloud shape functions, we normalize the result by using the
sigmoid-like function σ. The control functions enables us to define
the cloud cover over large regions and allows to create special ef-
fects as depicted in Figure 7. Moreover, the primitive-based model
allows us to propose a generic and consistent morphing algorithm
that interpolates the distributions of two key-frames (Section 5).

5. Cloudscape morphing

Our cloudscape model defines the animation of the atmospheric
density field a(p, t) by combining the animation of the cloud mod-
els s(p, t), and by animating the primitives of the control functions
c(p, t). The cloud shape functions s define the intrinsic animation

c© 2018 The Author(s)
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1. Trajectory computation 2. Optimal transport matching 3. Ghosting 4. Generic model interpolation
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Figure 8: Overview of the morphing process. 1. All the possible trajectories between source and destination primitives Ai and B j are
computed. 2. Then, an Optimal Transport is performed to obtain the best match between pairs. 3. Trajectories that have a cost κ(ρ∗i j) higher
than a user-prescribed threshold are discarded and ghosts are inserted. 4. Finally, generic animated primitives Ci j are created from paired
primitives, they follow the shortest path trajectory ρ

∗
i j and their control parameters are interpolated.

of the clouds such as smooth fluffy details for Cirrus or the convec-
tive animation of Cumulus. In contrast, the animation of the control
function c defines the global evolution of the cloud cover.

Our approach for solving the animation problem consists in mor-
phing two cloudscape models. A key-frame is defined as a set of
control primitives at a given time step and belonging to the same
cloud type. Without loss of generality, we address the morphing of
two control fields, denoted as cA and cB. Out of clarity, let A = {Ai}
and B = {B j} denote the two models defining the control functions
cA(p) and cB(p) at time steps tA = 0 and tB = 1 respectively. Our
method proceeds in four steps as outlined in Figure 8.

Trajectory computation We first create the complete match graph
G linking all the primitives Ai and B j . For every edge (Ai,B j) we
compute the trajectory ρi j of the candidate interpolating primi-
tive Ci j(t) as the Anisotropic Shortest Path between the centers of
the primitives (Section 5.1). The cost function of the Anisotropic
Shortest Path algorithm takes into account the elevation of the ter-
rain and the wind field to generate plausible trajectories.

Matching The complete graph has nA× nB edges. In order to re-
duce the number of the time varying primitives Ci j(t), we compute
an optimal correspondence graph G̃ matching only a few primitives
Ai and B j of the initial and final models. We solve the Optimal
Transport of the mass of the primitives according to the previously
computed trajectories ρi j (Section 5.2) to generate G̃ with at most
nA +nB−1 primitives.

Trajectory analysis and ghosting At the end of the matching step,
some primitives may still have very high mass transportation costs.
Such cases may occur when the prescribed key-frames are incom-
patible with the wind direction or the terrain. Therefore, we analyze
the generated trajectories and the mass transport to invalidate some
candidate primitives Ci j. For instance low altitude primitives with
trajectories that intersect the terrain or move against the wind direc-
tion are discarded (Section 5.3). For every canceled edge (Ai,B j)
in the optimal graph G̃, we create two ghost primitives A+

i and
B−j matching Ai and B j respectively and perform a specific tra-
jectory computation to guarantee that the overall mass transport is
preserved.

Interpolation The cloudscape control function c(p, t) is finally
obtained by instantiating the generic primitive-based model C(t) =
{Ci j(t)} at the given time step t (Section 5.4).

5.1. Trajectory computation

We address the computation of a complex weighted Anisotropic
Shortest Path problem on a continuous domain by taking into ac-
count the influence of the wind field, denoted as w(p, t), and, de-
pending on the cloud type, the elevation of the terrain denoted as
z(p) (Figure 8 step 1).

Let T = [tA, tB] the time interval. Our goal is to compute a con-
tinuous path ρ from an initial point a(tA) to a final point b(tB) that
minimizes the line integral over the path of a cost weighting func-
tion κ(p, ṗ, p̈) that depends on the position p and the first successive
derivatives denoted as ṗ and p̈ respectively.

LetP denote the set of all continuous paths in a compact domain
Ω×T from a to b that are piecewise twice continuously differen-
tiable, i.e. P denotes the set of continuous functions ρ : T → Ω,
for which ρ(tA) = a and ρ(tB) = b. Let κ : P → [0,∞( denote the
functional characterizing the cost of a path ρ ∈ P:

κ(ρ) =
∫ tB

tA
κ(p(t), ṗ(t), p̈(t))dt

The continuous Anisotropic Shortest Path problem consists in
finding a path ρ

∗ that minimizes the functional κ(ρ):

ρ
∗(a,b) = argmin

ρ∈P
κ(ρ)

We approximate the continuous Anisotropic Shortest Path prob-
lem by embedding a spatio-temporal graph in the considered do-
main Ω× T . The shortest path is computed in three dimensions:
two dimensions in space plus one dimension in time. Note that we
do not sample the elevation, which would yield a fourth dimen-
sion; instead we take into account the elevation and the slope of
the terrain as in [GPMG10] when computing the cost and warp the
trajectories according to the elevation of the terrain (Figure 10).

The nodes of the graph are defined as spatio temporal points
characterized by their position in Ω and time step in T , and the
edges of the graph connect the spatio temporal point as depicted
in Figure 9. This converts the continuous shortest-path problem into
a shortest-path problem on a finite graph.

c© 2018 The Author(s)
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Time step t Time step t+δt

p ik p ik+1

p jk+1

Figure 9: Overview of the structure of the graph: the nodes pi k of a
given time-step t are connected only to the nodes p j k+1 of the next
time-step t +δt; only a few edges have been drawn out of clarity.

The fundamental problem consists in finding a good sampling
of the three-dimensional domain Ω×T to capture the influence of
the wind field and compute plausible trajectories. We subdivide the
time interval T into N time-steps, we will denote δT = T/N. The
geometric domain Ω is sampled by generating a Poisson distribu-
tion of discs or radius r to generate nodes. The choice of the Poisson
disc radius has an important impact on the results. The sampling
should be sufficiently small to capture both the influence of the el-
evation of the terrain and the variations of speed. Let εΩ denote the
desired terrain sampling accuracy, and εw the wind speed accuracy.
The Poisson disc size can be defined as a function of the wind drag
distance during one time step δT , and the terrain sampling accu-
racy:

r = 1/2 min(εΩ,εw δT )

In our experimentation, we used an average distance between sam-
ples of 2r = 1km with a time step δT = 5 min, resulting in a speed
accuracy of ≈ 10kmh−1.

The cost function κ is defined as a weighted sum of three terms
that combines the influence of the terrain and the wind. The cost
function involves an elevation term κe(p) evaluating the intersec-
tion between the terrain and the cloud layer range (Figure 10), a
terrain slope term κs(p, ṗ) that evaluates the slope of the terrain in
the direction of the trajectory, and a wind κw(p, ṗ) term evaluating
how clouds drift from the wind field. The last two terms strongly
depend on the direction of the trajectory ṗ, resulting in a global
anisotropic cost function.

Let∇ z̃(p) denote the gradient of the smoothed terrain, the slope
term can be written as:

κs(p, ṗ) =∇ z̃(p) · ṗ/||ṗ||

Note that other slope metrics could be used, for instance we could
use an asymmetric terrain elevation metric so that clouds would
require more energy to travel uphill than downhill.

The elevation term κe(p) computes the intersection of the
smoothed terrain at p with the cloud range [a,b]:

κe(p) = (z̃(p)−a)/(b−a)

We clamp the value of κe(p) to [0,1] so that if the terrain rises
above the cloud range, the elevation term equals to 1.
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Figure 10: The elevation range of the cloud layer base is warped
by a smoothed terrain elevation function z̃. The terrain influences
the cost only when z̃(p) > a where a denotes the base elevation of
the cloud layer.

0

1

0 π

2

θ

2−cos (θ ) Recall that w denotes the wind vector
field, the function κw measures the cost for
diverging from the trajectory formed by be-
ing advected by the wind. It is a function of
the difference between the speed of the tra-
jectory and the speed of the wind, and also
takes into account the angle θ ∈ [0,π] be-

tween the two directions. Thus we define:

κw(p, ṗ) = ||ṗ−w||(2− cos(θ)) cos(θ) = ṗ/‖ṗ‖ ·w/‖w‖

The angle-dependent penalty term 2− cos(θ) is depicted hereby
and prevents movement in the opposite direction of the wind.

5.2. Matching

Automatic and consistent matching is a fundamental problem in
morphing. Although several heuristics such as cellular matching
or user-prescribed matching have been proposed in the context of
implicit surface modeling [GA96], existing approaches generate
too many correspondence links or require considerable user-tuning.
Our approach is inspired from the Optimal Transport algorithm of
Bonneel et al. [BvdPPH11]. It generates at most nA +nB−1 edges
between the set of initial and final primitives Ai and B j.

First, we compute the masses mAi and mB j of the initial and final
primitives Ai and B j . We integrate the control functions over their
compact support, thus for a given control primitive, its mass mAi

can be written as:

mAi =
∫

ΩAi

cAi(p)dω

The total mass mA is defined as the sum of all masses mAi . The
masses mB j and mB are defined in the same way. In our imple-
mentation, we use spherical primitives with a cubic falloff function
that allows us to derive a closed form expression of the mass with
respect to the radius and maximum density of the primitives; de-
tails can be found in Appendix A. Finally, Optimal Transport re-
quires that the initial and final total masses should be equal; thus
we perform a normalization step so that the masses of the initial
and final models A and B should be equal to 1: m̃Ai = mAi/mA and
m̃B j = mB j/mB.

We use the previously computed minimal cost κ(ρ∗(Ai,B j)) to
define the cost associated to the transport of a unit of mass be-
tween a source primitive Ai and a target primitive B j. Given the nor-
malized masses and the trajectory cost for every pair (Ai,B j), the
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Figure 11: Under favorable north-east wind conditions (top), no
ghosting effects occur as clouds can be transported by admissible
trajectories. Under opposite wind conditions (down), trajectories
are discarded and ghosts are created for every primitive.

Optimal Transport algorithm minimizes the cost of the morphing
transformation between the initial and final models (Figure 8 step
2). Moreover, it computes the ratios of mass transported, denoted
as mi j , from each source primitive Ai ∈ A to each target primitive
B j ∈ B. Non null factors mi j represent a valid transportation edge
(Ai,B j) and therefore corresponds to an interpolating primitive Ci j.
Recall that a notable property of the resulting transport plan is that
it is composed of less than nA + nB− 1 edges, and generates the
same number of interpolating primitives Ci j.

5.3. Trajectory analysis and ghosting

The Optimal Transport generates at most nA +nB−1 paired prim-
itives along with their trajectories ρ

∗(Ai,B j). Some trajectories
however may still have large costs: this may be the case for prim-
itives moving in opposite direction to the wind (Figure 11), which
are part of the solution of Optimal Transport problem but generate
unrealistic animations (Figure 8 step 3).
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Figure 12: After applying the Optimal Transport, trajectories that
have a cost higher than a threshold are discarded (left). Ghosts are
inserted according to the wind direction so as to obtain consistent
trajectories (right).

In those cases, we invalidate the path ρ
∗(Ai,B j) and create cor-

responding ghost primitives, denoted as A+
i and B−j (Figure 12),

that have the same radii as Ai and B j, but a null maximum density
xA+

i
= 0 and xB−

j
= 0. Their locations are derived form the centers
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Figure 13: Complete matching generates many cover primitives
and their trajectories do not take into account the wind field and
the terrain elevation. In contrast, our approach generates fewer
primitives with consistent trajectories.

bAi (and bB j respectively) by integrating the wind field forward and
backward in time respectively, which also defines the two trajec-
tories ρ

∗(Ai,A+
i ) and ρ

∗(B−j ,B j). We then add two edges in the
graph (Ai,A+

i ) and (B−j ,B j).

When all the paths of a primitive are invalid, no mass transport
exists and the primitive is excluded from the Optimal Transport
algorithm and transformed into a ghost. This special case occurs in
particular when a primitive is isolated from other primitives.

In addition to the previous ghosting algorithm, the user may cre-
ate ghost primitives in the description of any key-frame. Ghosts
have a mass equal to 0 however, as their maximum density is 0.
Therefore, we allow the user to assign a virtual mass so that they
should be taken into account automatically by the Optimal Trans-
port algorithm.

Alternatively, the user may explicitly create edges between
ghosts and other primitives after the Anisotropic Shortest Path and
Optimal Transport computations as a post processing step, which
allows to create special effects. Figure 13 shows an example of
the way our method can account for the terrain geometry to avoid
peaks. A complete-matching strategy produces unnatural trajecto-
ries that are not consistent with the wind field.

5.4. Interpolation

The previous steps provide us with a generic particle-based model
C(t) that represents the interpolation between A and B. New an-
imated primitives are created from paired primitives. The centers
bi j(t) of the time varying primitives Ci j(t) are computed according
to their corresponding trajectory ρi j(t) and the radii Ri j(t) linearly
interpolate Ri and R j (Figure 8 step 4). Note that the interpola-
tion of the maximum density xi j has to be weighted by the mass
ratio mi j computed by the Optimal Transport, therefore we have:
xi j(t) = (1− t)mi j xi + t mi j x j.
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Figure 14: Example of crosswinds with two different cloud types (111 primitives). The Stratus form at low altitude and follow the low altitude
wind blowing from West-to-East. Cirrus start to appear at high altitudes and drift North-East to South-West an independent wind direction.
The clouds start covering the sky according to their own wind field and user-defined key-frames.

Figure Layers Size Duration

Cross-winds (14) 2 56×56km2 0.5h

Cold front (15) 8 588×120km2 10h

Fog-rise (17) 2 126×126km2 2h

Table 3: Statistics for several animations: number of cloud type,
size of the cloudscape, and duration of the scenario.

6. Results

Our method was implemented and tested on an Intel Core i7 with
16 GB of RAM and a Nvidia GTX 970. The cloudscapes shown
throughout the paper were generated using our algorithm. The
cloudscape model and the control functions were implemented as
shaders, and the different cloudscapes were rendered using a GPU-
based single-scattering ray-marching algorithm.

6.1. Control

Our method allows to author various cloudscapes animations. Ta-
ble 3 reports statistics for different scenarios. Note that the Optimal
Transport algorithm guarantees consistency with respect to the key-
frame insertion.

Our method allows to control wind constraints for different cloud
layers. Figure 14 shows Stratus at medium altitude and Cirrus at
high altitudes transported by winds blowing in different directions
and at different speeds. The animation was obtained easily by pre-
scribing different wind directions for every altitude range.

Figure 15 shows a meteorological cold front animation over the
French Alps (see the accompanying video). A cold front is the lead-
ing edge of a cooler mass of air, replacing a warmer mass of air at
ground level, and which lies within a fairly sharp surface of low
pressure. The 10-hours scenario was easily created using our sys-
tem by morphing cloud cover key-frames for every cloud types in
the same wind direction from West to the East. It involves eight dif-
ferent types of cloud such as Cumulus, Cumulus humilis, or Stra-
tocumulus.

Figure 17 shows a mountain range with fog dissipating in valleys
and Cumulus forming at high altitudes. The wind inside the fog
layer was defined as a small upward wind, whereas the wind in
the Cumulus layer was set horizontal and stronger. Two key-frames

were used to define the morphing of the fog. In the first key-frame,
primitives were placed inside the valley beds, whereas the second
key-frame was set to empty, causing an automatic fade-out thanks
to the automatic ghost generation in the matching process.

6.2. Performance

The overall morphing process, encompassing the shortest paths
computation and the Optimal Transport, runs in only a few seconds.
This step needs to be performed only once and for all for every pair
of key-frames. The primitives count for the cross-winds (Figure 14)
and fog-rise (Figure 17) cloudscapes is 110 and 460 respectively.

We implemented the cloudscape model and the control func-
tions as shaders on the GPU. The different cloudscapes shown
throughout the paper were rendered using a GPU-based single-
scattering ray-marching algorithm. Our procedural cloud functions
with closed-form expression are computationally demanding as
they involve many evaluations of noise functions for every type
of cloud. The rendering of a single frame at 1280×720 resolution
took about 10s.

Although the performance of visualization is too slow to use it
in real-time applications, to our knowledge, our method is the first
that allows for generating analytical closed-form models for var-
ious cloud types and controlling cloudscapes in a coherent way.
Simplifying and accelerating rendering for real time applications
by optimizing the hierarchical representation of the different cloud
primitives inside their corresponding layers is an important ongo-
ing research, out of the scope of this paper.

6.3. Validation

We presented the results to meteorological experts (two researchers
and a forecast teacher), a pilot and an virtual environment software
expert. All appreciated the quality and realism of the animation and
the rendering.

We conducted a small user study to compare the plausibility of
our cloudscape animations to reality. The participants were asked
to watch a real cloud animation of a given cloud type, then had
to watch a synthesized animation produced by our method. Fig-
ure 16 shows some frames extracted from the Cirrus and Altostra-
tus videos. Users were asked to rank the plausibility of our method
with respect to the real example on a five-level Likert scale. We
had 15 participants between the ages of 21 and 54. Some of them
had significant computer graphics exposure, or were accustomed to
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Figure 15: This meteorological cold front scenario was created by morphing a vast variety of cloud types in the same West-to-East direction.
The control field of each layer was defined by 8 primitives following the same wind direction. 1) The cold front starts with Cirrus followed
by Cirrostratus. 2) Altostratus arrival. 3) Altocumulus and Cumulus humilis arrival. 4) Mid-altitude clouds are getting down and Stratocu-
mulus are covering the landscape 5) At the heart of the front, stratiform clouds are replaced by convective clouds, Cumulus congestus 6)
Cumulonimbus capilatus finally appear, emphasizing the front instability.
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Figure 16: Images from the videos used in the user study (extracted
from https://youtu.be/vk-s9-qZ0bU and https://youtu.

be/MtcxfjvwV1s).

observing clouds. We performed the test on three types of clouds:
Cirrus, Altostratus and Cumulus. Based on the null-hypothesis of
the users answering equally negative and positive ranks, the p-value
obtained by a chi-squared test was respectively less than 0.16,

0.011 and 0.034 for each type of cloud (χ2 values of 2, 6.5 and
4.5 respectively).

The null-hypothesis can be thus discarded with a relatively
strong certainty for Altostratus and Cumulus, demonstrating the ef-
fectiveness of our procedural model. In contrast, the Cirrus were
not perceived as sufficiently convincing. One possible reason for
this is that the wind directions were opposite in the real and synthe-
sized animations, which was indeed reported by some participants
at the end of the experiment.

6.4. Comparison

Our method compares favorably to primitive-based cloud anima-
tion systems in several ways. Traditional key-framing and particle
systems [SSEH03] require tedious editing of the ellipsoid primi-
tives constituting the clouds and do not scale for authoring large
scenes. In contrast, our approach allows to manipulate large cloud-
scapes easily.

Moreover, our strategy based on Optimal Transport used for
matching large cloud cover is central in our method and allows us
to synthesize cloudscape animations consistent with the wind field
and the terrain. Earlier morphing algorithms [JLCLW∗05, LJW06,
LJWcH07, CMCM11] that were proposed to animate primitive-
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Figure 17: Example of ghosting effects: the fog that covering the valleys (left) progressively rises and vanishes as the temperature increases
and is swept away by small breezes (center); when the fog has almost completely disappeared, Cumulus start to form at higher altitudes.
(465 primitives)

based clouds generate trajectories that linearly interpolate the po-
sitions of the initial and final primitives, which yields unrealistic
animations. Moreover, the matching process based on heuristics of-
ten generates many primitives, in general O(nA×nB), which makes
them ill-suited for morphing large cloudscapes.

In contrast, our morphing approach, based on a combination
of Optimal Transport and Anisotropic Shortest Path, solves those
problems by generating consistent trajectories and limiting the
number of generated primitives to O(nA + nB). Furthermore, the
cost function allows the user to influence the trajectory of the
clouds. One important contribution of our method is the trajectory
computation that accounts for the environment parameters such as
the wind direction and the terrain shape. In addition, we propose
for the first time a general model that embeds all the different types
of clouds in a procedural and controllable way.

Limitations Our approach does not lend itself for extreme weather
phenomena such as cyclones or hurricanes. In those particular
cases, the wind direction should be defined at high resolutions,
which is not currently possible in our modeling pipeline. Another
limitation of our method is that morphing is limited to a single
cloud type, i.e. we cannot transform a cloud type in another type
with our morphing process. Because we control the cloud cover
with large primitives, some of the generated clouds do not prop-
erly interact with the mountains over which they move. A solution
would consist in using a larger amount of smaller primitives, at the
price of more computationally demanding computations.

Finally, because we blend the densities of the cloud layers into a
single density field, we are not able to take into account the different
light-scattering properties of the cloud types.

7. Conclusion

We have presented a novel cloudscape editing framework which,
for the first time, allows to generate and control complex evolu-
tions of cloudscapes given input key-frames. It is achieved with
a layered atmosphere model that procedurally defines the charac-
teristics of the various types of clouds. Cloudscapes can be easily
controlled by using geometric primitives that define the cover for
every cloud layer. We avoid complex physically-based simulations
over large volumetric domains by using a morphing approach based
on an Anisotropic Shortest Path algorithm combined with Optimal

Transport which, combined together, generate a continuous proce-
dural density function model which can be evaluated directly at any
time step and allows the user to author weather scenarios.

The user can choose to interact only through the control func-
tions of the different layers, or edit specific control primitives to
achieve special effects. Our framework enables the user to paint
any of the key-frame layers during the morphing process, and in-
sert or remove key-frames easily.

Future work could include adding other types of clouds and other
procedural animations to broaden the range of meteorological phe-
nomena, such as storms, or even gales. It would also be interest-
ing to improve the influence of the elevation, the vegetation and
water bodies over the generated clouds to take into account evapo-
transpiration. Finally, one important open problem would be to in-
crease the scale of the model one level further to achieve a hierar-
chical, procedurally-defined cloudy atmosphere evolution over an
entire planet, at different levels of detail.

Acknowledgments This work was supported by the project PA-
PAYA P110720-2659260, funded by the Fonds National pour la
Société Numérique and the project HDW ANR-16-CE33-0001.

References
[BDY15] BARBOSA C. W. F., DOBASHI Y., YAMAMOTO T.: Adaptive

cloud simulation using position based fluids. Computer Animation and
Virtual Worlds 26, 3–4 (2015), 367–375. 2

[BN04] BOUTHORS A., NEYRET F.: Modeling clouds shape. In Euro-
graphics Short Papers (2004). 2, 4

[BNL06] BOUTHORS A., NEYRET F., LEFEBVRE S.: Real-time realis-
tic illumination and shading of stratiform clouds. In Eurographics Work-
shop on Natural Phenomena (2006), pp. 41–50. 2

[BvdPPH11] BONNEEL N., VAN DE PANNE M., PARIS S., HEIDRICH
W.: Displacement interpolation using lagrangian mass transport. ACM
Transactions on Graphics 30, 6 (2011), 158:1–158:12. 7

[CMCM11] CHUNG-MIN Y., CHUNG-MING W.: An effective frame-
work for cloud modeling, rendering, and morphing. Journal of Informa-
tion Science and Engineering 27, 3 (2011), 891–913. 2, 10

[CT17] CHU M., THUEREY N.: Data-driven synthesis of smoke flows
with cnn-based feature descriptors. ACM Transactions on Graphics 36,
4 (2017), 69:1–69:14. 2

[DKNY08] DOBASHI Y., KUSUMOTO K., NISHITA T., YAMAMOTO T.:
Feedback control of cumuliform cloud formation based on computa-
tional fluid dynamics. ACM Transactions on Graphics 27, 3 (2008),
94:1–94:8. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Webanck et al. / Procedural Cloudscapes

[DKY∗00] DOBASHI Y., KANEDA K., YAMASHITA H., OKITA T.,
NISHITA T.: A simple, efficient method for realistic animation of clouds.
In SIGGRAPH (2000), pp. 19–28. 2

[DNYO98] DOBASHI Y., NISHITA T., YAMASHITA H., OKITA T.: Mod-
eling of clouds from satellite images using metaballs. In Pacific Confer-
ence on Computer Graphics and Applications (1998), pp. 53–60. 2

[DYN06] DOBASHI Y., YAMAMOTO T., NISHITA T.: A controllable
method for animation of earth-scale clouds. In Computer Animation and
Social Agents (2006), pp. 43–52. 2

[EMP∗94] EBERT D. S., MUSGRAVE F. K., PEACHEY D., PERLIN K.,
WORLEY S.: Texturing and Modeling: A Procedural Approach. 1994. 2

[GA96] GALIN E., AKKOUCHE S.: Blob metamorphosis based on min-
kowski sums. Computer Graphics Forum 15, 3 (1996), 143–153. 2, 7

[Gar85] GARDNER G. Y.: Visual simulation of clouds. SIGGRAPH
Computer Graphics 19, 3 (1985), 297–304. 2

[GPMG10] GALIN E., PEYTAVIE A., MARÉCHAL N., GUÉRIN E.: Pro-
cedural Generation of Roads. Computer Graphics Forum (Proceedings
of Eurographics) 29, 2 (2010), 429–438. 6

[HBSL03] HARRIS M. J., BAXTER W. V., SCHEUERMANN T., LAS-
TRA A.: Simulation of cloud dynamics on graphics hardware. In
SIGGRAPH/Eurographics Conference on Graphics Hardware (2003),
pp. 92–101. 2

[HL01] HARRIS M. J., LASTRA A.: Real-time cloud rendering. Com-
puter Graphics Forum 20, 3 (2001), 76–85. 2

[JLCLW∗05] JIN X., LIU S., C. L. WANG C., FENG J., SUN H.: Blob-
based liquid morphing. Computer Animation and Virtual Worlds 16, 3–4
(2005), 391–403. 2, 10

[KMM∗17] KALLWEIT S., MÜLLER T., MACWILLIAMS B., GROSS
M., NOVÁK J.: Deep scattering: Rendering atmospheric clouds with
radiance-predicting neural networks. ACM Transactions on Graphics
36, 6 (2017), 231:1–231:11. 2

[LJW06] LIU S., JIN X., WANG C. C. L.: Target shape controlled cloud
animation. In Computer Graphics International (2006), pp. 578–585. 2,
10

[LJWcH07] LIU S., JIN X., WANG C. C. L., CHUEN HUI K.:
Ellipsoidal-blob approximation of 3d models and its applications. Com-
puters & Graphics 31, 2 (2007), 243–251. 2, 10

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T., DRET-
TAKIS G., EBERT D. S., LEWIS J., PERLIN K., ZWICKER M.: A survey
of procedural noise functions. Computer Graphics Forum 29, 8 (2010),
2579–2600. 2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based fluid
simulation for interactive applications. In SIGGRAPH/Eurographics
Symposium on Computer Animation (2003), pp. 154–159. 2

[MDN02] MIYAZAKI R., DOBASHI Y., NISHITA T.: Simulation of cu-
muliform clouds based on computational fluid dynamics. In Eurograph-
ics Short Presentations (2002), pp. 405–410. 2

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans-
actions on Graphics 32, 4 (2013), 104:1–104:12. 2

[MYDN01] MIYAZAKI R., YOSHIDA S., DOBASHI Y., NISHITA T.:
A method for modeling clouds based on atmospheric fluid dynamics.
In Pacific Conference on Computer Graphics and Applications (2001),
pp. 363–372. 2

[Ney97] NEYRET F.: Qualitative simulation of convective cloud for-
mation and evolution. In Computer Animation and Simulation (1997),
pp. 113–124. 2

[SSEH03] SCHPOK J., SIMONS J., EBERT D. S., HANSEN C.: A
real-time cloud modeling, rendering, and animation system. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2003),
pp. 160–166. 2, 10

[Thu17] THUEREY N.: Interpolations of smoke and liquid simulations.
ACM Transactions on Graphics 36, 1 (2017), 3:1–3:16. 2

[WBC08] WITHER J., BOUTHORS A., CANI M.-P.: Rapid sketch mod-
eling of clouds. In Eurographics Workshop on Sketch-Based Interfaces
and Modeling (2008), pp. 113–118. 2

[Wor96] WORLEY S.: A cellular texture basis function. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (1996), SIGGRAPH ’96, pp. 291–294. 5

Appendix A: Mass of control primitives

We define the mass of a primitive C as the integration of its density
c(p) on its support Ω:

mC =
∫
Ω

c(p)dω =
∫
Ω

g◦d(p)dω

By integrating over the spherical domain of radius R,we have:

mC(t) =
R∫

0

2π∫
0

π∫
0

g(r)r2 sinφdφdθdr = 4π

∫ R

0
g(r)r2 dr

The integral can be computed for different falloff functions. The
corresponding masses are defined by:

mC =


4

3×5
πR3 for g(r) =−2

(
1− r

R

)3
+3
(

1− r
R

)2

4×16
105×5

πR3 for g(r) =

(
1− r2

R2

)3

Appendix B: Cloud functions

Here we present the functions φ and δ for Altostratus and Altocumu-
lus. Further information about the other types of clouds is provided
in the supplementary material. We use two turbulence functions,
denoted as w and n respectively, defined as a sum of scaled cellular
noise and simplex noise (Table 4).

φ(p) = k+(1− k)h(0.43,1,nφ( (px ·0.35,py,pz)/1000))

δ(p) = (1− k)(0.75nδ(p/1000)+0.25(1−wδ(p/1000)))

The turbulence functions are parameterized as follows:

Type Octaves Persistence Lacunarity Frequency

nφ 8 0.52 2.02 36
nδ 8 0.52 2.02 96
wδ 4 0.33 3.00 400

Table 4: Parameters of the turbulence functions.

1
h (x)

b0 xa

We denote h(a,b,x) the smooth Hermite
interpolating function between two values a
and b. k ∈ [0,1] is a morphing parameter be-
tween the closely related Altostratus (k = 1)
and Altocumulus (k = 0) as those two types

co-occur under the same meteorological conditions, any value in
between gives a continuous blend between the two types. One mod-
eling unit corresponds to a hundred meters.
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