

A geoprocessing framework to compute urban indicators: The MApUCE tools chain

Erwan Bocher, Gwendall Petit, Jérémy Bernard, Sylvain Palominos

► To cite this version:

Erwan Bocher, Gwendall Petit, Jérémy Bernard, Sylvain Palominos. A geoprocessing framework to compute urban indicators: The MApUCE tools chain. Urban Climate, 2018, 24, pp.153-174. 10.1016/j.uclim.2018.01.008 . hal-01730717v1

HAL Id: hal-01730717 https://hal.science/hal-01730717v1

Submitted on 13 Mar 2018 (v1), last revised 29 May 2018 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A geoprocessing framework to compute urban indicators: The MApUCE tools chain

Erwan Bocher^{a,*}, Gwendall Petit^b, Jérémy Bernard^a, Sylvain Palominos^a

^a CNRS, Lab-STICC laboratory UMR 6285, Vannes (France)

^b Université de Bretagne Sud, Lab-STICC laboratory UMR 6285, Vannes (France)

Abstract

A growing demand from urban planning services and various research thematics concerns urban fabric characterization. Several projects (such as WU-DAPT) are currently lead in the urban climate field to answer this demand. However there is currently a need to propose standardized methods to calculate urban indicators and to automatically classify the urban fabric for any city in the world as well as to propose platforms to share these methods and the associated results. Our contribution answers partially to this challenge. A total of 64 standardized urban morphological indicators are calculated for three scales of analysis : building, block and a reference spatial unit (RSU). A supervised classification is performed for the building and the RSU scales using a regression trees model based on these indicators and on 10 urban fabric typological classes defined by urbanists and architects. A processing chain is proposed to realize indicator calculation and urban fabric classification for any french municipality according to reference data provided by the French National Geographical Institute (IGN). Spatial reasoning and morphological indicators description are formalized with SQL language and statistical analysis is carried out with R language. Finally a geoprocessing framework based on free and open source softwares, conform to the Open Geospatial Consortium standards and ready to serve open data is built. Indicators values and classification results for 6% of the french municipalities (corresponding to 41% of all french buildings) are available through a web cartographic portal by any person interested in such analysis.

Preprint submitted to Urban Climate

^{*}Corresponding author

Email address: firstname.lastname@univ-ubs.fr (Erwan Bocher)

Keywords: Morphological indicators, Local Climate Zone, GIS, Urban Heat Island, Open source

1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) 2 projections, global surface temperature will increase during the XXI^{st} cen-3 tury. In the meantime, the world population living in cities is expected to 4 grow (5,058 millions by 2030 against 4,250 millions in 2018 - [1]). Two factors 5 explain this number: the population of existing cities will grow, and new cities 6 will appear. Urbanization often implies urban temperature rise due to land 7 cover change (pervious to impervious ground [2, 3]) and morphology change 8 (new buildings mean more short and long-wave radiation trapping as well as 9 wind speed decreasing [4]). Without urbanization control, this phenomenon 10 called Urban Heat Island (UHI) may become more intense since tempera-11 ture differences between an urban area and its surrounding is proportional 12 to the logarithm of its population [5, 6]. The combination of climate change 13 and UHI may lead to higher heat related death occurrence [7, 8] and higher 14 energy consumption related to cooling use [9, 10]. Therefore, the reduction 15 of the urban heat island phenomenon may contribute both to attenuate the 16 climate change (by reducing urban greenhouse emissions) and to mitigate 17 its impacts. Several levers have proved their efficiency to lower urban air 18 temperature such as surface painting to modify the albedo, planting trees or 19 covering roofs and facades with low vegetation, decreasing energy consump-20 tions, etc. [11, 12]. Santamouris et al. [11] showed that their performance and 21 surface application potential differ greatly depending on the urban environ-22 ment where they are applied in. To study the influence of urban morphology 23 and urban land-cover on urban air temperature as well as the efficiency of 24 each UHI counter-measure, urban climate models have been developed [13]. 25 An urban climate classification have also been proposed by Stewart [14] to 26 define Local Climate Zones (LCZ) based on parameters describing urban 27 morphology, urban land-cover, urban land-use and material properties [15]. 28 Both simulation and classification approaches are very sensitive to data and 29 methodology used to calculate urban indicators (characteristic of the mor-30 phology and the land cover of the urban fabric). To obtain comparable 31 indicators at world scale, there is a need : 32

33

• to standardize data and methodology used for urban indicators calcu-

lation [16],

34

47

• to propose collaborative and open tools to allow any user to calculate 35 urban indicators for the city of its choice, thus allowing to share and 36 reuse results from any calculation. 37

In this spirit, a collaborative project called World Urban Database and 38 Access Portal Tools (WUDAPT¹) gathers a community of researchers to clas-39 sify the urban fabric by climate properties from homogeneous and available 40 data at world scale. The objective is to identify Local Climate Zones as 41 defined by Stewart and Oke [15]. The first step of the project have been 42 applied. The LCZ of several urban areas have been identified according to 43 supervised machine learning method using Landsat images (30 m resolution) 44 as input and LCZ identified by climate expert from Google Earth software 45 as desired output [17]. However, WUDAPT is open to improvements: 46

• the need to install locally several softwares (Google Earth², SAGA³) on its computer may be a break to collaborative contribution, 48

• it is now necessary to provide data and urban indicators at finer scale 49 [16]. Plenty of indicators exist but they have several definitions and 50 they are implemented within different softwares using numerous lan-51 guages and methods. Thus comparing the value of such undefined 52 indicator throughout the world or along time is impossible [18]. 53

Our contribution consists in the production of standardized urban mor-54 phological indicators dedicated for urban climate and useful for any other 55 urban planning purpose. It takes apart of a french research project called 56 $MApUCE^4$ and is encompassed in a task of urban tissue characterization, 57 illustrated in Figure 1. 58

Input data are produced from reference data. They are used to pro-59 duced both morphological and socio-economic indicators, that will be used 60 to classify the urban fabric into typological classes. In this article, we will fo-61 cus on the morphological indicators production and we will described briefly 62

¹http://www.wudapt.org/ accessed in July 2017

²https://www.google.com/earth/ accessed in July 2017

³http://www.saga-gis.org/ accessed in July 2017

⁴http://www.umr-cnrm.fr/ville.climat/spip.php?rubrique120 accessed in July 2017

Figure 1: The main steps of the method

the classification step. Further details concerning the input data production 63 and the socio-economic indicators production are available in Plumejeaud-64 Perreau et al. [19] whereas the classification process is further described in 65 Faraut et al. [20], Masson et al. [21]. Because one of the objective is that 66 the overall process be reproducible simply without any software requirement, 67 this paper proposes an open geoprocessing framework based on free and open 68 source softwares, conform to the Open Geospatial Consortium standards and 69 ready to serve open data. 70

71 **1. Data**

⁷² 1.1. Scale definition

Whereas streets may be considered as more durable than blocks and build-73 ings [22], building is the elementary object structuring the territory [23] and 74 also the object of interest when focusing on urban climate application [24]. 75 However, building scale is not appropriate when dealing with issues at city 76 scale. For this reason, Berghauser-Pont and Haupt [25] proposed five scales 77 to analyze urban areas : buildings, lots, island, fabric and district. The first 78 described only building properties whereas the others described the building 79 properties and their surrounding environment. Lots are defined by the legal 80 boundaries specified in the cadastral map. Islands include several lots lim-81 ited by road boundaries. Fabrics include several islands as well as the road 82 network whereas districts gather several fabrics and include public parks and 83 water surfaces. All these scales are the result of arbitrary objects aggrega-84 tion, except building and lot. In this context, we conserve the building as 85 the elementary scale. A second scale is chosen: the building block, defined 86 by Berghauser-Pont and Haupt [25] as an aggregation of buildings that are 87 in contact. This scale is particularly adapted when dealing with building 88 energy or urban climate issues [26]. By simplification, it will be called block 89

in this paper. To consider all the components of the urban context, the legal 90 boundaries specified in the cadastral map are also utilized (such as the lot 91 defined by Berghauser Pont). This scale offers the advantage to have a size 92 close to the one usually recommended in the urban climate literature (several 93 hundred meters wide - [24]). They are slightly modified to englobe public 94 spaces such as road surfaces, public parks and water surfaces. The generic 95 name of Reference Spatial Unit (RSU) is set for the resulting feature. Any 96 other well defined geographical entity may be used as an RSU, such as the 97 urban block defined by the road network [27]. Finally, three scales of analysis 98 will be considered: building, blocks and RSU. 99

100 1.2. Reference data

The reference data sets of the MApUCE tool chain are provided from the french national databases which are freely available for research and academic purpose. It concerns two types of data: spatial (Table 1) and statistical (Table 2).

105 1.3. Data pre-processing

The above data sets were used to derive 3 spatial layers computed in 3 main steps [19].

108 1.3.1. Step 1: Data cleaning and structuring

The quality aspects of the spatial data sets are inspected using quality 109 control metrics and assessment procedures. They are implemented using 110 the Structured Query Language (SQL) extended with spatial functions. The 111 PostGreSQL-PostGIS database has been selected for this purpose. Five types 112 of geometry inconsistencies are checked : redundancy (same geometry, same 113 geometry with different attributes), overlapping (geometries having a sur-114 face in common), invalid, null, size (geometry area or length greater than a 115 threshold). They are corrected using a rules based system. The following 116 pseudo code illustrates the principle (Table 3) 117

The data quality processes are chained with a data structuring task used to organize the input data sets into main tables. This is especially the case for the BD Topo (R) data set that are grouped in two layers : BUILDINGand ROADS. e.g the BUILDING table contains all features from the three vector layers undefined, industrial or remarkable building theme.

data set	Description
BD Topo®	Topographic data, in vector format, provided by the French National Geographical Institute (IGN) (see http://professionnels.ign.fr/bdtopo). The data are classified in ten topics. Each topic contains a set of layers distributed in a GIS file format. <i>e.g</i> " <i>BUILD-</i> <i>ING</i> " theme includes undefined, industrial or remark- able building layers,
Parcels	Cadastral parcels, in vector format, provided by IGN (see http://professionnels.ign.fr/ bdparcellaire)
Gridded population	This data set depicts the distribution of human popula- tion across the french territory. The data is distributed by the French National Institute for Statistics and Eco- nomic Studies (INSEE) (see https://www.insee.fr/ en/accueil)
IRIS contouring	The IRIS contouring contains a set of polygons that represents an area of 2,000 grouping inhabitants. The median area is about 740 ha, and maximal size is of 36,700 ha. This data set is provided by IGN.

Table 1: Input spatial data sets used by the MApUCE tool chain

data set	Description
	The french households survey is provided by the Na-
Households	tional Institute of Statistics and Economics and Studies
survey	(INSEE). This survey is linked to the IRIS contouring
	thanks to a key index.

Table 2: Input statistical data set used by MApUCE tool chain

123 1.3.2. Step 2: RSU computing

Based on the dual of a Delaunay triangulation, a new partitioning of the urban territory is computed. The properties of the Voronoï tessellation are used to create new districts. The boundaries correspond to the medial axis of negative area of the union of the cadastral parcels. A district is called Reference Spatial Unit (RSU). The RSU geometries are stored into one table. They are computed municipality by municipality. Each RSU is related to one

```
if the geometry is null
then delete
else if the geometry is invalid
then correct
if the geometry overlaps another geometry
then remove the part of the geometry that have
lowest overlapping area
7 ...
```

Table 3: Pseudo code to control and fix the geometry quality

¹³⁰ and only one municipality using a national index named in the data.

131 1.3.3. Step 3: Data enriching

Data enriching is the final step of the data preprocessing stage. It involves to integrate new variables on the two tables *BUILDING* and *RSU*. The integration is solved by chaining spatial analysis methods and aggregating processes. The tables 4 and 5 list the final variables computed.

The final result of this data pre-processing task is a set of 4 tables stored in a PostGIS database. They are the main entries for the MApUCE tool chain (implying the computation of the required urban indicators). The Table 6 gives some statistics about the number of features yet processed.

¹⁴¹ 2. Method

142 2.1. Morphological indicators

The calculation method of a wide range of indicators is presented in this section. These indicators are specifically used for energy or urban climate applications [28] but they are also useful for planning purpose in some other fields [29]. Some of them are specific to the calculation scale: they are called "primary indicators". The others are aggregated from primary indicators calculated at lower level: they are called "derived indicators".

149

Three scales are considered for the morphological indicators production: building, blocks and RSU (Figure 2). A block is an aggregation of buildings that have at least one point in common when intersected.

Variable	Description	Method	Step
pk_build	Building unique identifier	Incremental value (Primary Key)	1
the_geom	Building geometry	Geometry of the building	1
insee_code	Id of the commune that contains the building	Unique key value that refers to a munic- ipality	3
pk_rsu	Id of the RSU that contains the building	Unique key value that refers to a RSU geometry. A spatial join process is used with a constrained area. e.g. If a building overlaps two RSU, the affected pk_rsu is the one corresponding to the maximal intersected area	3
h	Building height avail- able in the BD Topo	-	1
h_fixed	Corrected height (calculated from an iterative process us- ing indicators com- puted in the section 2)	If $h = 0$ or Null then {if $\frac{h_std_{rsu}}{h_mean_{rsu}} < 0.5$ then $h_fixed = round(h_std_{rsu} - h_mean_{rsu}) $ else $h_fixed = round(h_mean_{rsu}) $ } else { $h_fixed = h$ }	3
nb_level	Number of level deduced from $h_correct$	For building with the <i>indifferencie</i> theme, if $h_fixed \ge 3$ $nb_level = round((h_fixed - \frac{4}{3}) + 1$ else $nb_level = 1$	3
insee_inhab	Number of inhabitants	Derived from INSEE 200m gridded cells	3
theme	Name of BDTopo theme	Building theme from BD Topo : <i>indus-</i> <i>triel</i> (industrial), <i>remarquable</i> (remark- able) or <i>indifferencie</i> (undistinguished)	3

Table 4: List of variables in the BUILDING table

Variable	Description	Method	Step
pk_rsu	RSU unique identifier	Incremental value (Primary Key)	1
the_geom	RSUs geometry	Geometry of the RSU	2
veget_surface	Total vegetation surface	Area of vegetation intersecting the RSU	3
road_surface	Total road surface	Area of roads intersecting the RSU. This area is determined thanks to a width attribute included in the road layer. Spatial processes, using buffer and intersection are done to compute this area.	3
road_length	Total road length	Length of roads intersecting the RSU	3
sidewalk_length	Total length of sidewalk	Perimeter of the geometry resulting from the union of contiguous parcels	3
hydro_surface	Total hydrographic surface	Area of hydrological objects (based on <i>RESERVOIR_EAU</i> and <i>SUR- FACE_EAU</i> layers from BD Topo) intersecting the RSU	3
hydro_length	Total hydrographic length	Length of hydrological objects (based on <i>TRONCONCOURS_EAU</i> layer from BD Topo) intersecting the RSU	3
insee_inhabit	Number of inhabitants	*	3
insee_hh	Number of household	Number of households having a principal residence. *	3
insee_hh_coll	Number of households in collective dwellings	Number of households living in col- lective housing. *	3
insee_men_surf	Cumulative Surfaces of Main Residences in square meters	Cumulated area of housings for households having a principal resi- dence computed in square meter. *	3
insee_surf_col	Estimation of the area of collective housing	Estimation of collective housing from INSEE indicators. *	3
insee_code	French municipality unique identifier	Transferring the municipality identi- fier from the municipality layer to the RSU geometry using a spatial join.	3

* Derived from INSEE 200m gridded cells

Table 5: List of variables in the RSU table

Data set	Description	Number of features
BUILDINGS	French buildings	8 942 135
ROADS	French road network	17 043 575
RSU	Reference Spatial Units	454 308
MUNICIPALITIES	French municipalities	36553

Table 6: Number of features available after the pre-processing task

Figure 2: The three scales of analysis

153 2.1.1. For buildings

¹⁵⁴ 27 indicators are computed at the building scale (Table 7).

155

Name	Description	Method	Biblio
area	Building area	Area of the building geometry (footprint)	[23]
floor_area	Building floor area	$area \cdot nb_level$	
vol	Building volume	$area \cdot h_fixed$	
perimeter	Building perimeter	Perimeter of the building geometry	
perimeter_cvx	Building convexhull perimeter		
form_factor	Building form factor	$\frac{area}{perimeter^2}$	[30]
nb_neighbor	Building number of neighbor	Number of buildings that are in contact (at least one point) with the building of interest	[23]

Table 7: List of primary building indicators

Name	Description	Method	Biblio
b_wall_area	Total area of build- ing walls (including holes)	Sum of the linear of facades multi- plied by the building height	
p_wall_long	Total length of com- mon (party) walls	Sum of the linear of facades that are in contact with other buildings	
p_wall_area	Total area of com- mon (party) walls	When the building has a common linear of facade with another one, the common wall area is the linear of facades multiplied by the height of the smallest building. Then the sum of these areas is realized for each neighbors in contact with the building.	
free_ext_area	Area of free external facades, that are in contact with the air	$\sum_{i=1}^{i=1} b_wall_area - \sum_{i=1}^{i=1} p_wall_area + \sum_{i=1}^{i=1} area$	
concavity	Building concavity	Building area divided by its convex hulls area	[31, 32]
contiguity	Building contiguity	$\frac{p_wall_area}{b_wall_area}$	[28]
compacity_r	Building raw compacity	$\frac{b_wall_area+area}{volume^{\frac{2}{3}}}$	[25]
compacity_n	Building net compacity	$\frac{free_ext_area}{volume^{\frac{2}{3}}}$	
compactness	Building compactness	Ratio between the building perime- ter and the perimeter of a circle having the same area	[29, 33]
main_dir	Building main direction (in degree)	The main direction is defined as the direction given by the longest side of the building Smallest Minimum Bounding Rectangle (SMBR)	[34, 35]

Table 7: List of primary building indicators

Name	Description	Method	Biblio
p_vol_ratio	Building passive vol- ume ratio. This ratio can be expressed as the building portion that can be naturally lit and ventilated.	Area taken up to 6 m from a free facade inside the building, then di- vided by the building area	[36, 37, 29]
fractal_dim	Building fractal dimension	$2 \cdot \frac{log(perimeter)}{log(area)}$	[38, 39]
min_dist	Distance between the building of inter- est and the closest building which is in the same RSU	Minimum distance between the building of interest and the other ones in the same RSU	
max_dist	Distance between the building of inter- est and the furthest building which is in the same RSU	Maximum distance between the building of interest and the other ones in the same RSU	
mean_dist	Mean distance be- tween the building of interest and the other buildings which are in the same RSU		[40]
std_dist	Population standard deviation distance between the build- ing of interest and the other buildings which are in the same RSU		
num_points	Building number of points	Count the building number of points after removing duplicate (e.g startpoint and endpoint are counted once)	[23]

Table 7: List of primary building indicators

Name	Description	Method	Biblio
1_3m	Linear of building walls next to road	For each building, total length of walls that are less than 3m far from the road	
l_ratio	Part of building walls next to road	$\frac{l_3m}{perimeter}$	
l_ratio_cvx	Ratio between lin- ear of building walls next to road and the building convex- hull perimeter	$\frac{l_{-3m}}{perimeter_cvx}$	

Table 7: List of primary building indicators

156 2.1.2. For blocks

A total of 9 indicators are computed at the block scale (tables 8 and 9).

Name	Description	Method	Biblio
area	Building area compos- ing the block	Footprint area	
compacity	Block net compacity	$\frac{\sum free_ext_area}{Sumvol}^{\frac{2}{3}}$	
main_dir	Block main direction	The main direction is de- fined as the direction given by the longest side of the blocks Smallest Minimum Bounding Rectangle (SMBR)	
holes_area	Area of holes in a block		[23]
holes_ratio	Ratio between the holes area and the blocks area	$\frac{holes_area}{area+holes_area}$	

 Table 8: List of primary block indicators

159 2.1.3. For RSU

A total of 9 indicators are computed at RSU scale (tables 10 and 11).

Name	Description	Aggregation method	Biblio
floor_area	Block floor area	$\sum floor_area$	
vol	Block volume	$\sum vol$	
h_mean	Block mean height	$\frac{\sum area \cdot h_fixed}{\sum area}$	[28]
h at d	Block standard	Block population standard	
n_sta	deviation height	deviation building height	

Table 9: List of derived block indicators

Name	Description	Formula	Biblio
build_numb	Number of buildings		
	in the RSU		
dist to contor	Distance to the city	Distance between RSU cen-	
dist_to_center	center	troid and the city center	

Table 10: List of primary RSU indicators

Name	Description	Aggregation method	Biblio
area	Building area in the RSU	$\sum area_{build}$	
floor_area	Building floor area in the RSU	$\sum floor_area_{build}$	
floor_ratio	Building floor area ratio	$\frac{\sum floor_area_{build}}{rsu_area}$	$ \begin{bmatrix} 25, \\ 28, 41, \\ 42, 43 \end{bmatrix} $
vol	Building volume	$\sum vol_{build}$	
vol_m	Building mean volume	$\frac{\sum vol_{build}}{build_numb}$	
ext_env_area	Building external area	$\sum free_ext_area_{build}$	
compac_m_w	Building weighted mean compacity	$\frac{\sum compacity_n_{build} \cdot area_{build}}{\sum area_{build}}$	
compac_m	Buildingnon-weightedmeancompacity	$\frac{\sum compacity_n_{build}}{build_numb}$	
contig_m	Building mean contiguity	$\frac{\sum contiguity_{build}}{build_numb}$	

Table 11: List of derived RSU indicators

Name	Description	Aggregation method	Biblio
contig_std	Building standard	Population standard devia-	
	deviation contiguity	tion contiguity of buildings	
	Main direction of	Population standard devia-	
main_dir_std	buildings standard	tion main direction of build-	
	deviation	ings	
h mean	Building mean	$\sum area_{build} \cdot h_{-}fixed_{build}$	
	height	$\sum area_{build}$	
h std	Building standard	Population standard devia-	
11_500	deviation height	tion height of buildings	
p vol ratio m	Building mean pas-	$\sum floor_area_{build} \cdot p_vol_ratio_{build}$	
	sive volume ratios	$\sum floor_area_{build}$	
	Mean of the min-		
min m dist	imum distance be-	$\sum min_dist_{build}$	
	tween buildings that	build_numb	
	are in the same RSU		
	Mean of the mean		
mean m dist	distance between	$\sum mean_dist_{build}$	
	buildings that are in	$build_numb$	
	the same RSU		
	Standard deviation	Population standard devia-	
	of the mean dis-	tion of the mean distance be-	
mean_std_dist	tance between build-	tween buildings that are in	
	ings that are in the	the same RSU	
	same RSU		
bl_hole_area_m	Mean courtyard	$\frac{\sum holes_ratio_{block} \cdot area_{block}}{\sum area_{block}}$	
	ratio of blocks within		
	an RSU		
bl_std_h_mean	Mean of the		
	standard deviation	$\frac{\sum h_std_{block} \cdot area_{block}}{\sum area_{block}}$	
	neight of buildings,		
	computed at the		
	BSU		
	Rlock non weighted		
bl_m_nw_comp	moon composity	$\frac{\sum compacity_n_{block}}{block_numb}$	
	mean compacity		

Table 11: List of derived RSU indicators

Name	Description	Aggregation method	Biblio
bl_m_w_comp	Block weighted mean	$\sum compacity_n_{block} \cdot area_{block}$	
	compacity	$\sum area_{block}$	
bl_std_comp	Blocks standard	Population standard devia-	
	deviation compacity	tion of block compacities	
	Building density in		
build_density	the RSU		[25,
	(based on the	$\sum area_{build}$	23, 42,
	RSU area called	rsu_area	41, 43,
	"rsu_area",		28]
	computed on the fly)		
hydro_density	Hydrographic areas	hydro_surface	[44,
	density in the RSU	rsu_area	45, 46]
veget_denstity	Vegetation areas	veget_surface	[44,
	density in the RSU	rsu_area	45, 46]
road_density	Road areas density	road_surface	[44,
	in the RSU		45, 46]

Table 11: List of derived RSU indicators

162 2.2. Urban fabric typology

Energy consumption and urban climate issues differ greatly throughout a city depending on the urban structure, the building use and the socioeconomic profile of the inhabitants. Ten french types of urban fabric have been identified using a review of technical literature combined with the result of a survey addressed to urbanists [47] (note that these types have been recently modified to fit with the LCZ classes [48]) (Figure 3).

These classes have been used to automatically classify the urban fabric of 169 any french municipality into each of this urban type. For this purpose, a su-170 pervised classification method has been used. First, a sample of 27,096 build-171 ings from 7 french conurbations have been manually classified from satellite 172 images according to a predefined typological identification procedure (Fig-173 ure 4). Second, a classification algorithm is established to automatically 174 allocate a building to one of these typological classes from its 78 morpholog-175 ical and 6 socioeconomic indicators values. For this purpose, 6 supervised 176 classification methods are tested, based on 70 % of the buildings total sam-177 ple. Finally, each of these methods are evaluated from the last third of the 178 building sample (30% of the total sample). The classification obtained using 179

Figure 3: Typological classes used to classify the urban fabric

the regression tree analysis is finally selected since it has the lowest prediction error (11.06%). Any building from any French municipality may then be classified according to the corresponding algorithm as well as the morphological and socioeconomic indicators. The dominant building typological class within a RSU is finally selected to characterize the RSU scale. Further details regarding the methodology is available in Faraut et al. [20], Masson et al. [21].

Figure 4: Production of the sample data set

187 3. Implementation

The development of standards for data description and data exchange (in-188 teroperability) as well as the arrival of the concept of Spatial Data Infrastruc-189 ture (SDI) facilitate the interconnection of systems and the implementation 190 of systemic approaches [49, 50]. Several issues have been solved by the Ge-191 ographical Information Sciences (GIS) community in order to unify systems 192 and tools and to organize the knowledge in the fields of spatial analysis and 193 cartography. The MApUCE geoprocessing framework takes profit of these 194 trends. Based on open source tools, open standards and ready for open data. 195 it relies on full transparency and explicit references to both methods and 196 data to target: verifiability, cross-disciplinary studies, re-use, compatibility 197 [51, 52].198

199 3.1. Languages

To develop an open processing framework, two languages have been selected: SQL and R. The first one has been used to formalize spatial reasoning and to describe the morphological indicators. The second one has been chosen to carry out statistical analysis.

204 3.1.1. From indicators to SQL scripts

Various approaches have been proposed to manipulate spatial data and 205 formalize spatial analysis [53, 54]. From the Map Algebra language [55] to 206 $GeoScript^5$ or GeoSPARQL [56], developers and scientists have shown great 207 imagination and originality to propose extensions or new syntaxes and opera-208 tors to query geographical informations, including 3D, temporal, topological 209 features, etc. Nevertheless, the Structured Query Language (SQL) extended 210 with spatial capabilities remains the heart of many GIS applications. SQL 211 spatial offers several advantages : 212

- the preservation of SQL concepts such as the ability to *Create* a new entry, as well as *Read*, *Update* and *Delete* existing entries in a data set containing geometries (CRUD),
- the incorporation of spatial operations and relationships normalized
 by the Open Geospatial Consortium specified in the OpenGIS Simple
 Features Specification for SQL [57, 58],

⁵http://geoscript.org/ accessed July 2017

• a comprehensible and human readable language.

The developments of the open-source relational database PostgreSQL⁶ 220 with the spatial extender PostGIS⁷ are a key of this success. PostGIS offers 221 a flexible analytical tool to organize spatial analysis allowing overlay, spa-222 tial joining and spatial summaries. Despite the NOSQL trend, the use of 223 SQL spatial grows in the last years due to the development of new spatial 224 databases like SpatialLite⁸ or $H2GIS^{9}$ [59]. Therefore, to facilitate the reuse 225 of the morphological indicators available in the MApUCE processing chain, 226 each indicator has been described in SQL spatial. 227

228

An illustration with the form factor indicator (FF_{build}) , calculated at the building level is given below.

$$FF_{build} = \frac{S_{build}}{L_{build}^2} \tag{1}$$

231 Where

 $_{232}$ - S_{build} is the building area

 $_{233}$ - L_{build} is the building length (perimeter)

234

Translated into a SQL script, the form factor is computed using two spatial operators "ST_Area" and "ST_Length" and one mathematical function ("Power") (Table 12).

238

This kind of approach allows to describe in a generic way a set of indicators that will be applied in any Relational DataBase Management System
(RDBMS) that supports the SQL spatial standard.

242 3.1.2. R language to build the urban fabric classification

R¹⁰ is one of the most famous statistical analysis tool. Using R provides
a broad range of advantages. It incorporates a great number of the standard
statistical methods and it is a comprehensive language for managing and

⁶https://www.postgresql.org/ accessed in july 2017

⁷http://postgis.net/ accessed in july 2017

 $^{^{8} \}texttt{http://www.gaia-gis.it/gaia-sins/}$ accessed in july 2017

⁹http://www.h2gis.org/ accessed in july 2017

¹⁰https://www.r-project.org/ accessed in july 2017

```
    -- Drop the table if it already exists
    DROP TABLE IF EXISTS BUILD_FORM_FACTOR;
    -- Create the table and compute the form factor value
    CREATE TABLE BUILD_FORM_FACTOR (PK integer primary key,
FORM_FACTOR double)
    AS SELECT PK, ST_AREA(THE_GEOM) / POWER(ST_LENGTH(
THE_GEOM),2) AS FORM_FACTOR
    FROM BUILDINGS;
```

Table 12: SQL script to compute the building form factor

manipulating data. The R interpreted language permits to easily and quickly
create new computational methods. Moreover, R is driven by an important
community that provides an impressive list of packages that do everything:
data loading, manipulation, visualization and modelling as well as results
reporting in various application fields such as finance, biology or any time
series or spatial application, etc.

To compute the typology of the urban fabric, two R scripts are written. The first one is used to elaborate the decision trees model (Table 13) and the second one is executed to predict the typology classes of each buildings (Table 14). The scripts take advantage of the two packages called *randomForest* [60] and *RPostgreSQL* [61].

To extract the first and second main type of urban fabric, the result of the typology prediction at building scale is aggregated at RSU level based on the percentage of the floor area.

260 3.2. The MApUCE tools chain

The MApUCE tools chain implements the methodology and algorithms described previously to compute indicators and urban fabric classification. It is established around the concept of SDI in order to overcome inconsistencies in data structure as well as in data querying and to break the barriers to share and re-use spatial processing or results. The SDI includes several components (Figure 5):

• a "Web Processing Service¹¹" system to execute treatments in a documented and standardized way, available as a service using H2GIS,

¹¹http://www.opengeospatial.org/standards/wps accessed in july 2017

```
1 ## Load packages
2 library(randomForest)
3 library(RPostgreSQL)
4
5 ## Import the training data from the database
6 ## con object is the connection to the database
  training_data= dbGetQuery(con, "SELECT_*_FROM_building_
     training")
  ## Build model
9
  treesModel=randomForest(i_typo~.,data=training_data,
10
     ntree=500, mtry=7, replace=TRUE)
11
12 ## Save the model
13 save(treesModel,file="mapuce_model.RData")
```

Table 13: Pseudo-R script to create the decision trees model

```
1 ## Load packages
2 library(randomForest)
3 library(RPostgreSQL)
5 ### Load the model based on the morphological train data
  treesModel=get(load(model_path))
6
  ## Get the data to predict from the database
8
  ## The buildings_to_predict is a temporary table created
9
      on the fly with a SQL command. It contains all the
     indicators at building, block and RSU scales
  data_to_predict = dbGetQuery(con, "SELECT_*_FROM_
10
     buildings_to_predict")
11
12 ## Apply the predict function to compute the typological
      class for each building
13 typology=predict(treesModel,data_to_predict,type="class"
     )
```

Table 14: Pseudo-R script to predict the urban fabric typological class

Renjin¹² and managed from the OrbisGIS¹³ GIS platform [62],

- a spatial database management system to store all data (reference, input and results), using the PostGreSQL and PostGIS applications,
- a cartographic server, named GeoServer¹⁴, to publish maps within a standardized image stream, based on the "Web Map Service¹⁵" specification,
- a web cartographic portal to restitute in a user friendly way the results of the geoprocessing tools chain.

Figure 5: Components of the MApUCE SDI tools chain

277 3.2.1. The Web Processing Service

269

The OrbisServer is the main piece of the SDI. It has been developed on top of the H2GIS database [59] and the Apache Groovy¹⁶ programming language. OrbisServer implements the version 2.0 of the Web Processing Service

¹²http://www.renjin.org/ accessed in july 2017

¹³http://orbisgis.org/ accessed in july 2017

¹⁴http://geoserver.org/ accessed in july 2017

¹⁵http://www.opengeospatial.org/standards/wms accessed in july 2017

¹⁶http://groovy-lang.org/ accessed in july 2017

standard approved by the Open Geospatial Consortium. The WPS defines a
standardized interface to facilitate the publishing of geospatial processes and
to discover and execute those processes by a client. A WPS implementation
allows to establish geospatial service chains in a distributed way.

285

In practice, the SQL and the R scripts used to process the data in the MA-286 pUCE framework are exposed as web processes. A web process is described 287 from a groovy script that contains: a list of input data, a run method to 288 execute the process and a list of output data. The Table 15 gives an example 280 for the building form factor indicator. The script is defined with one input 290 data corresponding to the buildings table (in the database) and one output 291 data being a message warning the user that the processing method has been 292 run. 293

To execute the R scripts, OrbisServer integrates the Renjin engine. Renjin is a JVM-based interpreter dedicated to the R language (for statistical computing [63]). Aside its capabilities, the biggest advantage of Renjin is that the R interpreter itself is a Java module which can be seamlessly integrated into any Java application (this is the case for the MApUCE SDI).

The WPS scripts are managed from the OrbisGIS user interface. A toolbox plugin lists the 6 processes offered by the OrbisServer application (described in section 4).

303 3.2.2. The spatial database

As explained previously, the input data, the morphological indicators and the urban fabric classification results are stored in a PostGreSQL-PostGIS database. The database communicates with the OrbisServer to serve data to the scripts. The results are stored in 6 tables (Figure 6). These tables are suffixed with the name "METROPOLE" to isolate the geographical data that cover the french metropolitan territory. Each feature is linked to a municipality area using a key index.

311 3.2.3. The Cartographic server

The Geoserver application is used to publish the data available in the spatial database. Geoserver is advantageous because it is open source and conform to the main OGC standards such as Web Map Service (WMS) or Web Feature Service (WFS). It is stable since few years and it offers a well suited user interface to control spatial data access. From GeoServer, the

```
/** String input of the process */
1
  @LiteralDataInput(
2
           title="Buildings_table",
3
           description="Name_of_the_buildings_table")
  String buildingsTable
  /** SQL code to execute with some metadata */
  @Process(title = "Building_form_factor",
8
           description = "Compute_the_building_form_factor"
9
              )
  def processing() {
10
11 -- Drop the table if it already exists
12 DROP TABLE IF EXISTS BUILD_FORM_FACTOR;
  -- Create the table and compute the form factor value
13
  CREATE TABLE BUILD_FORM_FACTOR (PK integer primary key,
14
     FORM_FACTOR double)
    AS SELECT PK, ST_AREA(THE_GEOM) / POWER(ST_LENGTH(
        THE_GEOM), 2) AS FORM_FACTOR)
  FROM $buildingsTable; //The input table name
16
                     The form factor indicator has been
  literalOutput =
18
      computed
  }
19
20
  /** String output of the process */
21
  @LiteralDataOutput(
22
           title="Output_message",
23
           description="The_output_message")
24
  String literalOutput
25
```

Table 15: Example of a WPS script

MAPUCE SDI delivers a set of WMS layers styled with the Style Layer Descriptor¹⁷ (SLD) standard. These layers represent the morphological indicators at RSU scale. Their rendering is automatically updated after each change in the database.

¹⁷http://www.opengeospatial.org/standards/sld accessed in july 2017

Figure 6: Data model of tables finally produced

321 3.2.4. The web cartographic portal

The web cartographic portal is based on the javascript framework mviewer¹⁸. mviewer is a responsive template to build simple and elegant web mapping applications organized around one configuration file. The configuration file contains informations:

- to customize the *look and feel* of the portal,
- to build a thematic sidebar that lists a set of layers (WMS or geojson file),
- to add tools on the map such as zooming and distance measurement, map sharing from a permalink, ...

331 4. Results

Three types of results have been obtained. The first concerns the indicators and the classification produced from the MApUCE data. The second and the third are the description of respectively the MApUCE toolbox and the MApUCE web cartographic portal.

336 4.1. MApUCE data

³³⁷ Currently, 80 of the main french urban areas have been processed, rep-³³⁸ resenting 2,238 municipalities (6% of the total number in France), 3,726,108

¹⁸https://github.com/geobretagne/mviewer accessed in july 2017

³³⁹ buildings (41%) and 181,752 RSU (40%). Those computed areas are repre³⁴⁰ sented in Figure 7.

Figure 7: Cartography of the processed french urban areas (red polygons) (base map : OpenStreetMap)

An overview of the results obtained for the three scales is presented Table 16. Two types of maps are provided. The first one uses a *unique symbol representation* to display the raw geometries. The second one shows the distribution of two variables using a *choropleth technique* : the building height and the compacity.

346

The result of the classification at both building and RSU scales is illustrated in Figure 8 : the distribution of urban tissue is shown using a *unique values classification*.

4.2. The MApUCE toolbox: An interface to execute the complete chain As described in the section 3 ("Implementation"), a dedicated user interface called MAPuCE toolbox has been developed to execute the complete

Table 16: Maps for the three scales, zoomed in the city center of Nantes

chain through the open-source GIS software OrbisGIS (Figure 9). It takes
profit of the GIS capabilities to navigate, represent and query the data.
This MAPuCE interface allows non-expert users to execute processes and to
obtain data depending on their study area (defined by at least one munici-

Figure 8: Comparison between the satellite image (top left) and the classification results at the building level (top right) and RSU level (bottom right) in the french municipality of Toulouse

357 pality).

This dedicated interface is provided as a free plugin, making available a set of 6 scripts in the OrbisGIS Toolbox panel (top right red rectangle in Figure 9 and zoomed in Figure 10). For each script, a user interface is generated on the fly, offering to the user to choose some options and to set parameter values for the computation.

Two needs are answered by the plugin: either to get the final and the intermediate results using the step-by-step processing scripts, either to obtain only the final results (indicators and classification).

366 4.2.1. Step-by-step processing

³⁶⁷ 1- Import commune areas

368

This script has to be executed at first to return the list of available municipalities which are ready to be processed. The user is invited to enter his

Figure 9: OrbisGIS UI

Figure 10: OrbisGISs Toolbox and the MAPuCE plugin

³⁷¹ login and password¹⁹ and then to press the green arrow icon to execute the ³⁷² script (Figure 11).

373

³⁷⁴ 2- Import the USR (french translation for RSU), buildings and
 ³⁷⁵ roads

376

 $^{^{19}\}mathrm{For}$ security reasons the remote database can only be accessed through personal accounts.

📽 1-Import commune areas 🕒 🗟 🚽 🗖 🗙		
Description		
Import the commune areas table.		
I his table lists all communes for which the USR,		
The commune areas table is stored into a remote		
database. Please contact info@orbigis.org to obtain		
Description		
Parameter(s)		
Login to the database		
Password to the database		
NÖ TANDAN COLUMN		
I T-Import commune areas		

Figure 11: User Interface of the script called "1-Import commune areas"

The script number 2 will import all required data, related to the munic-377 ipalities that users are invited to select in a dropdown list. The selection is 378 made through the "INSEE Code" which is the french unique identifier for 379 municipalities (Figure 12). 380

381 382

3- Compute morphological indicators

383

Once data are imported, this script will automatically compute all the 384 indicators. The user has nothing to do except pressing the "execute" button. 385 386

387 388

4- Classify the BUILDING and USR (RSU) features

Based on computed indicators, this script will perform the random forest 389 classification. The user has nothing to do except pressing the "execute" 390 button. 391

4.2.2. Direct final results obtention 392

It is possible to obtain directly the final tables (indicators and classifica-393 tion) using the two following scripts. 394

磯 2-Import the USR, buildings and roads 🖗 🖕 🗗 🤨		
Description		
Import the data (USR, buildings and roads) needed to compute morphological indicators for a specified commune. The imported data are stored into a remote database. Please contact info @orbigis.org to obtain an account. Note : The list of available communes must be already imported. If not please execute the script to import all commune areas		
Parameter(s)		
Login to the database		
Password to the database		
Commune identifier		
01030		
01043		
01049		
01142		
01160		
01166		
01194		
ProolBox 2-Import the USR, buildings and roads		

Figure 12: User Interface of the script called "2-Import the USR, buildings and roads"

395

³⁹⁶ Import computed indicators

397

This script is used to download data that have already been computed on the server side and are thus available in the spatial database. The user must fill his login and password, choose the spatial unit scale (*commune* (CODE_INSEE) or *urban area*) and select the corresponding identifiers.

402

Complete geoprocessing chain

403 404

This script is used to run the complete geoprocessing chain in a single step

⁴⁰⁵ This script is used to run the complete geoprocessing chain in a single step ⁴⁰⁶ (*i.e.* import the data, process the indicators and classify the urban fabric) in ⁴⁰⁷ the case where the municipalities have not been yet processed on the server ⁴⁰⁸ side. The user must fill his login and password, choose the spatial unit scale ⁴⁰⁹ ("municipality" (CODE_INSEE) or "urban area" (UNITE_URBAINE)) and ⁴¹⁰ select the corresponding identifiers (Figure 13).

🖁 Complete geoprocessing chain 🛛 🖒 🎼 🖬 🗖 🗮 🗙	🐝 Complete geoprocessing chain 🛛 🖒 🗳 🗖 🗖
Description	Description
This script allows to chain all processes for a set of spatial ur A spatial unit is a french commune area defined by a unique called CODE_INSEE. The user can select one of more spatial units based on a list CODE_INSEE or a selection of unit area names. If the user select a unit area a pre-process is done to return corresponding list of CODE_INSEE. For each spatial unit, 3 steps are executed :	This script allows to chain all processes for a set of spatial up A spatial unit is a french commune area defined by a unique called CODE_INSEE. The user can select one of more spatial units based on a list CODE_INSEE or a selection of unit area names. If the user select a unit area a pre-process is done to return- corresponding list of CODE_INSEE. For each spatial unit, 3 steps are executed :
1. Extract input data (USR, Buildings, Roads) from th DataBase 2. Compute membalogical indicators	1. Extract input data (USR, Buildings, Roads) from th DataBase 2. Compute membelogical indicators
Parameter(s)	Parameter(s)
Login to the database	Login to the database
Password to the database	Password to the database
Spatial unit	Spatial unit
CODE_INSEE	
Spatial unit identifiers	Spatial unit identifiers
59271 59272 59273	Nancy Nantes Nice
59275 59276	Nimes Niort
59278 59279	Orleans
59286 59288	Pau Perpignan
59291 v	Poitiers -
@ Taalbay @ Complete appropriate to the	

Choose one (or many) municipality(ies)

Choose one (or many) urban area(s)

Figure 13: User interface for the script "Complete geoprocessing chain"

411 4.3. The MApUCE web cartographic portal

The result are available accessing the mapuce.orbisgis.org web cartographic portal. People can navigate into the map and choose to display a set of layers, grouped into three categories:

- spatial units : urban area, already computed municipalities and RSU
 boundaries,
- RSU indicators : thematic analysis based on several morphological indicators,
- typology : building classification at the RSU scale.

To comply with data licences, only RSU results are presented. Two screenshots are presented in Figure 14 to illustrate the type of maps that can be consulted by users.

Figure 14: Screenshots of the mapuce.orbisgis.org portal, zoomed on the french city of Vannes (left: thematic analysis of the building mean compacity at the RSU scale / right: building classification by RSU)

423 Conclusion & Prospect

We have proposed an open geoprocessing framework to calculate standardized urban indicators useful for urban climate application and also for planning purpose in some other fields.

427

Morphological indicators have been computed at three different scales : 428 building, block and the Reference Spatial Unit (RSU). The boundaries of the 429 RSU are generated by a Voronoï tessellation from the legal boundaries spec-430 ified in the cadastral map. This scale is appropriate to analyze the climate 431 property heterogeneity of the urban fabric within an urban area. However, 432 geometric issues have been observed in certain RSU: some of them are too 433 small, have weird shape or they separate buildings in two parts (Figure 15). 434 Investigations should be realized to overcome this issue, for example using 435 the road network to slice the territory. 436

Figure 15: Two examples of geometric issues on RSU: too small (left), weird shape (right)

Indicator calculations are based on geographical databases which are 437 available and homogeneous for the french territory. Preprocessing tasks have 438 been performed by [19] to clean and structure those data, to create the RSU 439 and to enrich building and RSU tables by database cross-feeding. Because 440 the french databases used are updated every year, the preprocessing task as 441 well as the indicators calculation may be applied on annual data in order to 442 make diachronic analysis. The use of open data such as OpenStreetMap²⁰ 443 may also be investigated to generate worldwide homogeneous information. 444 445

27 morphological indicators have been calculated at building scale, 9 at 446 block scale and 28 for the RSU. These 64 indicators are finally affected to 447 each building and are used (together with socioeconomic indicators calcu-448 lated by Plumejeaud-Perreau et al. [19]) to classify buildings according to 10 449 typological classes defined by urbanists, architects and using technical liter-450 ature. The supervised classification method used has a prediction error of 451 about 11% [20]. The dominant building typological class within a RSU is se-452 lected to characterize the RSU scale. Indicator calculation and classification 453 application may now be extended to the entire french territory. However, the 454 list of the calculated indicators is not irrevocable. An overall reflection may 455 be performed to both identify existing indicators that are redundant or not 456

²⁰https://www.openstreetmap.org/ accessed in july 2017

⁴⁵⁷ relevant and new indicators to improve the classification process.

458

The overall processing chain is uniquely composed of open-source tools 459 and close to open standards: the OrbisGIS platform is used for morphological 460 indicator calculation and Renjin is used for building and RSU classification. 461 A free OrbisGIS plug-in called MAPuCE is available for any user interested 462 in applying the processing chain or to analyze the results obtained for the 463 municipality of its choice. It is also possible to access the results directly on 464 the internet from a web portal dedicated to this work. Future work implies 465 to give the opportunity to any user to produce the indicators through a full 466 distributed service. 467

468

⁴⁶⁹ Finally, the results of this paper offers new opportunities to extend the⁴⁷⁰ WUDAPT database at a finest scale.

471 Acknowledgements

The research and developments presented in this paper have been made within the MApUCE project, funded by the French National Research Agency (ANR).

475 **References**

- ⁴⁷⁶ [1] U. Nations, World Urbanization Prospects: The 2014 Revision, 2015.
- ⁴⁷⁷ [2] G. Levermore, J. Parkinson, K. Lee, P. Laycock, S. Lindley, The in-⁴⁷⁸ creasing trend of the urban heat island intensity, Urban Climate (2017).
- [3] J. He, J. Liu, D. Zhuang, W. Zhang, M. Liu, Assessing the effect of
 land use/land cover change on the change of urban heat island intensity,
 Theoretical and Applied Climatology 90 (2007) 217–226.
- [4] L. Chen, E. Ng, X. An, C. Ren, M. Lee, U. Wang, Z. He, Sky view
 factor analysis of street canyons and its implications for daytime intraurban air temperature differentials in high-rise, high-density urban areas
 of hong kong: a gis-based simulation approach, International Journal of
 Climatology 32 (2012) 121–136.
- ⁴⁸⁷ [5] T. R. Oke, City size and the urban heat island, Atmospheric Environ-⁴⁸⁸ ment 7 (1973) 769–779.

- [6] H.-S. Park, Features of the heat island in seoul and its surrounding
 cities, Atmospheric Environment 20 (1986) 1859–1866.
- [7] K. Laaidi, A. Zeghnoun, B. Dousset, P. Bretin, S. Vandentorren, E. Giraudet, P. Beaudeau, The impact of heat islands on mortality in paris
 during the august 2003 heat wave, Environmental health perspectives
 120 (2012) 254.
- [8] S. Conti, P. Meli, G. Minelli, R. Solimini, V. Toccaceli, M. Vichi, C. Beltrano, L. Perini, Epidemiologic study of mortality during the summer
 2003 heat wave in italy, Environmental research 98 (2005) 390–399.
- [9] Y. Hirano, Y. Yoshida, Assessing the effects of co 2 reduction strategies
 on heat islands in urban areas, Sustainable Cities and Society 26 (2016)
 383–392.
- [10] C. de Munck, G. Pigeon, V. Masson, F. Meunier, P. Bousquet,
 B. Tréméac, M. Merchat, P. Poeuf, C. Marchadier, How much can air conditioning increase air temperatures for a city like paris, france?,
 International Journal of Climatology 33 (2013) 210–227.
- [11] M. Santamouris, L. Ding, F. Fiorito, P. Oldfield, P. Osmond, R. Paolini,
 D. Prasad, A. Synnefa, Passive and active cooling for the outdoor built
 environment-analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects,
 Solar Energy (2016).
- [12] Y. Kikegawa, Y. Genchi, H. Kondo, K. Hanaki, Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a buildings energy-consumption for air-conditioning, Applied Energy 83 (2006) 649–668.
- [13] C. Grimmond, M. Blackett, M. Best, J. Barlow, J. Baik, S. Belcher,
 S. Bohnenstengel, I. Calmet, F. Chen, A. Dandou, et al., The international urban energy balance models comparison project: first results
 from phase 1, Journal of applied meteorology and climatology 49 (2010)
 1268–1292.
- [14] I. D. Stewart, Redefining the urban heat island, Ph.D. thesis, University
 of British Columbia, 2011.

- [15] I. D. Stewart, T. R. Oke, Local climate zones for urban temperature
 studies, Bulletin of the American Meteorological Society 93 (2012) 1879–
 1900.
- [16] G. Mills, J. Ching, L. See, B. Bechtel, M. Foley, An introduction to the
 wudapt project, in: 9th International Conference on Urban Climate,
 Toulouse.
- ⁵²⁷ [17] B. Bechtel, M. Foley, G. Mills, J. Ching, L. See, P. Alexander, M. OCon⁵²⁸ nor, T. Albuquerque, M. de Fatima Andrade, M. Brovelli, et al., Census
 ⁵²⁹ of cities: Lcz classification of cities (level 0)-workflow and initial results
 ⁵³⁰ from various cities (2015).
- [18] C. Böhringer, P. E. Jochem, Measuring the immeasurablea survey of
 sustainability indices, Ecological economics 63 (2007) 1–8.
- [19] C. Plumejeaud-Perreau, C. Poitevin, C. Pignon-Mussaud, N. Long,
 Building Local Climate Zones by using socio-economic and topographic
 vectorial databases, in: 9th International Conference on Urban Climate
 (ICUC9), Météo-France, Toulouse, France.
- [20] S. Faraut, M. Bonhomme, N. Tornay, A. Amoss, V. Masson, E. Bocher,
 G. Petit, C. Plumejeaud, N. Long, G. Bretagne, R. Schoetter, Des bases
 de donnes urbaines aux simulations nergtiques le projet mapuce, in:
 Sminaire de conception architecturale numrique : Mtre et paramtre,
 mesure et dmesure du projet, volume 1 of SCAN'16 Toulouse, cole Nationale Suprieure dArchitecture de Toulouse, Presses Universitaires de
 Nancy, Editions Universitaires de Lorraine, Toulouse, France, 2016.
- [21] V. Masson, J. Hidalgo, A. Amossé, E. Bocher, M. Bonhomme, A. Bour-544 geois, G. Bretagne, S. Caillerez, E. Cordeau, C. Demazeux, S. Faraut, 545 C. Gallato, S. Haoues-Jouve, M.-L. Lambert, A. Lemonsu, J.-P. Lévy, 546 N. Long, C.-X. Lopez, G. Petit, m. pellegrino, C. Pignon-Mussaud, C. J. 547 Plumejeaud, V. Ruff, R. Schoetter, N. Tornay, D. D. Vye, Urban Cli-548 mate, Human behavior & Energy consumption : from LCZ mapping to 549 simulation and urban planning(the MApUCE project), in: B. Beckers, 550 M. A. T. Pico, S. Jimenez (Eds.), First International Conference on Ur-551 ban Physics, volume 1 of FICUP 2016 First International Conference 552 on Urban Physics, Pontifical Catholic University of Ecuador, UNDP 553 Ecuador, Quito, Ecuador, 2016, pp. 155–167. 554

- ⁵⁵⁵ [22] V. Oliveira, The elements of urban form, in: Urban Morphology,
 ⁵⁵⁶ Springer, 2016, pp. 7–30.
- ⁵⁵⁷ [23] S. Steiniger, T. Lange, D. Burghardt, R. Weibel, An approach for the
 ⁵⁵⁸ classification of urban building structures based on discriminant analysis
 ⁵⁵⁹ techniques, Transactions in GIS 12 (2008) 31–59.
- ⁵⁶⁰ [24] T. Oke, Boundary layer climates. 2nd, Methuen, 289p (1987).
- [25] I. Berghauser-Pont, P. Haupt, The spacemate: density and the typo morphology of the urban fabric, Urbanism laboratory for cities and
 regions: progress of research issues in urbanism (2007).
- J. Bouyer, C. Inard, M. Musy, Microclimatic coupling as a solution to
 improve building energy simulation in an urban context, Energy and
 Buildings 43 (2011) 1549 1559.
- J. Lesbegueries, N. Lachiche, A. Braud, G. Skupinski, A. Puissant,
 J. Perret, A platform for spatial data labeling in an urban context,
 Geospatial free and open source software in the 21st century (2012)
 49-61.
- [28] N. Gauthier, Analyses morphologiques de formes urbaines et Etude de limpact des formes urbaines sur les gains énergétiques solaires., Ph.D.
 thesis, INSA de Strasbourg, 2014.
- ⁵⁷⁴ [29] W. E. Dramstad, Spatial metrics-useful indicators for society or
 ⁵⁷⁵ mainly fun tools for landscape ecologists?, Norsk Geografisk Tidsskrift⁵⁷⁶ Norwegian Journal of Geography 63 (2009) 246–254.
- ⁵⁷⁷ [30] R. E. Horton, Drainage-basin characteristics, Eos, Transactions Amer-⁵⁷⁸ ican Geophysical Union 13 (1932) 350–361.
- [31] L. Adolphe, A simplified model of urban morphology: Application to an
 analysis of the environmental performance of cities, Environment and
 Planning B: Planning and Design 28 (2001) 183–200.
- [32] A. P. d'URbanisme (APUR), Consommations d'nergie et missions de gaz effet de serre lies au chauffage des rsidences principales parisiennes, Technical Report, Atelier Parisien d'URbanisme (APUR), 2007.

- [33] H. Gravelius, Grundriß der gesamten Gewässerkunde: in vier Bänden,
 vol.1, Göschen, 1914.
- ⁵⁸⁷ [34] D. Rainsford, W. Mackaness, Template Matching in Support of Generalisation of Rural Buildings, Springer, Berlin, Heidelberg, pp. 137–151.
- [35] C. Duchne, S. Bard, X. Barillot, A. Ruas, J. Trvisan, F. Holzapfel, Quantitative and qualitative description of building orientation, in: Fifth
 workshop on progress in automated map generalisation, ICA, commission on map generalisation.
- [36] S. Salat, Les villes et les formes: sur l'urbanisme durable, Hermann
 Editeurs, 2011.
- ⁵⁹⁵ [37] C. Ratti, N. Baker, K. Steemers, Energy consumption and urban tex-⁵⁹⁶ ture, Energy and Buildings 37 (2005) 762 – 776.
- [38] M. Herold, J. Scepan, K. C. Clarke, The use of remote sensing and
 landscape metrics to describe structures and changes in urban land uses,
 Environment and Planning A 34 (2002) 1443–1458.
- [39] K. McGarigal, B. J. Marks, Fragstats: spatial pattern analysis program
 for quantifying landscape structure., Gen. Tech. Rep. PNW-GTR-351.
 Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific
 Northwest Research Station. 122 p. (1995).
- [40] N. Colaninno, J. R. Cladera, K. Pfeffer, An automatic classification of
 urban texture: form and compactness of morphological homogeneous
 structures in barcelona, in: 51st European Congress of the Regional
 Science Association International, pp. 1–20.
- ⁶⁰⁸ [41] E. R. Alexander, Density measures: A review and analysis, Journal of ⁶⁰⁹ Architectural and Planning Research 10 (1993) 181–202.
- [42] M. Berghauser-Pont, P. Haupt, Space, density and urban form, Ph.D.
 thesis, TU Delft, Delft University of Technology, 2009.
- [43] C. S.-L. Chan, Measuring Physical Density: Implications on the Use
 of Different Measures on Land Use Policy in Singapore, Ph.D. thesis,
 Massachusetts Institute of Technology, Department of Urban Studies
 and Planning, 1999.

- [44] N. Long, C. Kergomard, Classification morphologique du tissus urbain
 pour des applications climatologiques. cas de marseille, Revue Internationale de Gomatique 15 (2006) 487–512.
- [45] J. Tratalos, R. A. Fuller, P. H. Warren, R. G. Davies, K. J. Gaston,
 Urban form, biodiversity potential and ecosystem services, Landscape
 and Urban Planning 83 (2007) 308–317.
- [46] N. Schwarz, Urban form revisited-selecting indicators for characterising
 european cities, Landscape and Urban Planning 96 (2010) 29–47.
- [47] N. Tornay, M. Bonhomme, S. Faraut, Genius, a methodology to integer building scale data into urban microclimate and energy consumption modelling, in: 9th International Conference on Urban Climate,
 Toulouse.
- [48] N. Tornay, R. Schoetter, M. Bonhomme, S. Faraut, V. Masson, Genius:
 A methodology to define a detailed description of buildings for urban climate and building energy consumption simulations, Urban Climate 20 (2017) 75 93.
- [49] S. Steiniger, A. J. S. Hunter, Free and Open Source GIS Software
 for Building a Spatial Data Infrastructure, Springer Berlin Heidelberg,
 Berlin, Heidelberg, pp. 247–261.
- [50] G. S. D. I. Association, et al., The spatial data infrastructure cookbook,
 2009.
- [51] M. A. Parsons, R. Duerr, J.-B. Minster, Data Citation and Peer Review,
 Eos, Transactions American Geophysical Union 91 (2010) 297.
- ⁶³⁹ [52] S. Steiniger, E. Bocher, An overview on current free and open source
 ⁶⁴⁰ desktop gis developments, International Journal of Geographical Infor⁶⁴¹ mation Science 23 (2009) 1345–1370.
- E. Bocher, T. Leduc, G. Moreau, F. G. Cortès, Gdms: an abstraction layer to enhance spatial data infrastructures usability, in: 11th
 AGILE International Conference on Geographic Information ScienceAGILE'2008.

- ⁶⁴⁶ [54] T. Leduc, E. Bocher, F. G. Cortés, G. Moreau, Gdms-r: A mixed sql to
 ⁶⁴⁷ manage raster and vector data, in: GIS 2009.
- ⁶⁴⁸ [55] C. D. Tomlin, Map algebra: one perspective, Landscape and Urban
 ⁶⁴⁹ Planning 30 (1994) 3–12.
- [56] R. Battle, D. Kolas, Geosparql: enabling a geospatial semantic web,
 Semantic Web Journal 3 (2011) 355–370.
- [57] J. Herring, Implementation specification for geographic information simple feature access-part 1: Common architecture, Open Geospatial
 Consortium Inc 95 (2006).
- [58] J. R. Herring, Opengis implementation specification for geographic
 information-simple feature access-part 2: Sql option, Open Geospatial
 Consortium Inc (2006).
- [59] E. Bocher, G. Petit, N. Fortin, S. Palominos, H2GIS a spatial database
 to feed urban climate issues, in: 9th International Conference on Urban
 Climate (ICUC9), Météo-France, Toulouse, France.
- [60] A. Liaw, M. Wiener, R's Breiman and Cutler's Random Forests for
 Classification and Regression, Technical Report, University of Califor nia, Berkeley, 2015.
- [61] J. Conway, D. Eddelbuettel, T. Nishiyama, S. K. Prayaga, N. Tiffin, R
 Interface to the 'PostgreSQL' Database System, Technical Report, Post greSQL Global Development Group and The Regents of the University
 of California, 2017.
- [62] E. Bocher, G. Petit, OrbisGIS: Geographical Information System De signed by and for Research, John Wiley & Sons, Inc., pp. 23–66.
- [63] M.-J. Kallen, H. Mhleisen, Latest developments around Renjin, in: R
 Summit & Workshop, Centrum Wiskunde & Informatica, Copenhaguen,
 Denmark.