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A Local Search Approach to Observation Planning with Multiple UAVs

Observation planning for Unmanned Aerial Vehicles (UAVs) is a challenging task as it requires planning trajectories over a large continuous space and with motion models that can not be directly encoded into current planners. Furthermore, realistic problems often require complex objective functions that complicate problem decomposition. In this paper, we propose a local search approach to plan the trajectories of a fleet of UAVs on an observation mission. The strength of the approach lies in its loose coupling with domain specific requirements such as the UAV model or the objective function that are both used as black boxes. Furthermore, the Variable Neighborhood Search (VNS) procedure considered facilitates adaptation of the algorithm to specific requirements through the addition of new neighborhoods. We demonstrate the feasibility and convenience of the method on a large joint observation task in which a fleet of fixed-wing UAVs maps wildfires over areas of a hundred square kilometers. The approach allows generating plans over tens of minutes for a handful of UAVs in matter of seconds, even when considering very short primitive maneuvers.

Introduction

In the last decade, Unmanned Aerial Vehicles (UAVs) have become a widespread and affordable technology. Fixedwing UAVs that can reach 50 km/h are now widely available, easy to deploy, maintain and equip. As a result, there is an increasing interest in using them for various tasks where more traditional measures would be inconvenient, dangerous or simply costly. Typical examples are Search and Rescue missions in which large and hazardous terrain must be covered while searching for a missing person as well as monitoring or mapping tasks for which a number of observations must be made at several remote locations [START_REF] Saldaña | Cooperative prediction of time-varying boundaries with a team of robots[END_REF][START_REF] Casbeer | Cooperative forest fire surveillance using a team of small unmanned air vehicles[END_REF][START_REF] Merino | An unmanned aircraft system for auto-matic forest fire monitoring and measurement[END_REF].

In this paper, we case study one such monitoring task in which the objective is to leverage UAVs to perform continuous and autonomous mapping of wildfires. The operational constraints of wildfires make the use of UAVs especially appealing: they often occur in remote wooden areas and can rapidly span hundreds of square kilometers. Expected benefits are an improvement of the information available to fire-fighters on the field, leading to a safer and more efficient deployment of personnel and resources [START_REF] Noonan-Wright | Developing the US Wildland Fire Decision Support System[END_REF]. Automated or semi-automated information gathering is also expected to free up firefighters from undertaking this task themselves. Indeed, in tension areas where tens of fire can start every day, surveillance is a critical task that monopolizes many firefighters.

Unfortunately, the very reason that makes fixed-wing UAVs appealing for such tasks also renders a full automation difficult. With a typical airspeed of 50 km/h even small and widely available fixed-wing UAVs can cover large areas in a matter of minutes, meaning automated planners must cope with very large continuous search spaces. In addition, such speeds yields kinematic and dynamic constraints -e.g. augmenting the minimum turning radius -that call for more elaborate techniques to compute point to point trajectories. The presence of multiple UAVs further complicates the task at hand, as one must ensure good allocation of tasks among the different agents [START_REF] Ollero | Multiple eyes in the sky: Architecture and perception issues in the comets unmanned air vehicles project[END_REF].

In this paper, we formalize a general multi-agent observation problem that captures typical requirements for UAV observation missions. The proposed planning approach is based on Variable Neighborhood Search (VNS), a local search technique that has proved very adapted to solve Orienteering Problems and variants with which our observation problems share many characteristics [START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF][START_REF] Geiger | Metaheuristics for Tourist Trip Planning[END_REF].

We show how this technique is instantiated to plan observations of wildfires. In particular, we demonstrate that no adaptation is required to handle specialized point-to-point trajectory planners and complex nonlinear objective functions. Despite the very small necessary adaptations, we show that our approach generates good quality plans in a matter of seconds for problems involving multiple UAVs and thousands of potential observations to be made over tens of minutes.

Problem Statement UAV Model

Here we define a synthetic and generic UAV model whose aim is to abstract the specific details of a given UAV dynamics, while providing enough information to allow plan synthesis.

Definition 1 (Waypoint) A waypoint is a location in space that a UAV has to reach during the execution of a plan.

Common waypoint representations combine the ground position (x, y, z) in a given frame (e.g. East-North-Up relative to a control tower) and the attitude encoded by a triple (roll, pitch, yaw). Depending on the motion model considered, part of this representation might be kept implicit, for instance the altitude z and the pitch when the UAV is constrained to stay at a given altitude.

A UAV model implicitly encodes the flight dynamics of a given UAV. The capability needed for planning is the computation of trajectories linking two waypoints. Given the ensemble of waypoints W , we require a UAV model υ to provide two functions:

travel-time υ : W × W → R energy υ : W × W → R
that respectively denote the shortest time needed to go from one waypoint to another and the energy consumption of the resulting trajectory. While not strictly necessary for the purpose of planning, the description of the resulting trajectory in space is usually provided as well.

Definition 2 (Maneuver) A maneuver is an elementary trajectory of a single UAV.

Maneuvers aim at providing a single interface that abstract the differences between subparts of long trajectories. In particular, it can be used to represent single waypoints, straight line flight overs or more complex maneuvers such as spirals or lawnmower patterns that are common when synthesizing plans for UAVs.

For a given maneuver m, a UAV model υ provides:

• an entry waypoint entry υ (m) ∈ W

• an exit waypoint exit υ (m) ∈ W

• a duration duration υ (m) ∈ R

• an energy consumption energy υ (m) ∈ R Definition 3 (Trajectory) A trajectory is a tuple (υ, t s , M ) where, υ is a UAV model, t s is the start time of the trajectory and M = m 1 , . . . , m n is a sequence of maneuvers.

For each maneuver m i ∈ M , its start time st(m i ) and end time et(m i ) are computed recursively:

st(m1) = ts et(mi) = st(mi) + durationυ(mi) st(mi+1) = et(mi) + travel-timeυ(exitυ(mi), entry υ (mi+1))
The energy consumption of a trajectory is defined as the sum of the consumption of all maneuvers in the trajectory and the energy needed to link any two subsequent maneuvers in the trajectory.

Planning Problem Formulation

Definition 4 (Flight Window) A flight window represents the opportunity for a given UAV to perform an activity subject to certain constraints. A flight window is encoded as a tuple (υ, M start , M end , T min , T max , E) composed of:

• a UAV model υ • two sequences of maneuvers M start and M end encoding the start and end of any trajectory in this flight window. A simplified application is to specify a single waypoint denoting the runway where the UAV must take off and land. More complex settings might consider full trajectories to denote previously executed or currently executing maneuvers. • a time window [T min , T max ] during which the UAV is allowed to fly. • the energy E available for the flight window. We say that a given trajectory (υ, t s , m 1 , . . . , m n ) is a valid instantiation of a flight window (υ, M start , M end , T min , T max , E) if:

• m 1 , . . . , m n is a feasible sequence of maneuvers for υ.

• the trajectory is fully contained in the allowed temporal interval, i.e., T min ≤ st(m 1 ) ≤ et(m n ) ≤ T max

• M start and M end are respectively prefix and postfix of m 1 , . . . , m n ; meaning that the trajectory begins and finishes with the maneuvers imposed by the flight window.

• the energy required by the trajectory is no greater than E Definition 5 (Multi-UAV Observation Problem) A multi-UAV observation planning problem is a tuple (M, F, utility) where M is the set of allowed maneuvers, F is a set of flight windows and utility is a utility function whose input is a set of trajectories and output is a real number.

A plan is a sequence of trajectories. A plan π = t 1 , . . . , t k is a solution to a planning problem (M, f 1 , . . . , f k , utility) if and only if for each flight window f i , t i is a valid instantiation of f i . A solution plan π is said to be optimal if there exist no solution plan π = π such that utility(π ) > utility(π).

Observation Planning as VNS

We now introduce a specialized algorithm for solving our observation problem. The proposed approach builds on the Variable Neighborhood Search (VNS) metaheuristic that has been applied to numerous combinatorial optimization problems in Operations Research [START_REF] Hansen | Variable Neighbourhood search: Methods and applications[END_REF]. VNS algorithms work by repeatedly chaining (i) a descent phase through systematic change of neighborhood providing local improvements to an existing solution; and (ii) a perturbation phase aiming at escaping the valley of the local optimum reached during the descent phase.

One of the key benefits of VNS is its very generic and adaptable definition. Indeed, the descent phase of VNS builds upon a sequence of neighborhoods, where each neighborhood typically proposes a local plan adaptation that improves a particular aspect of the solution. A simple neighborhood could be for instance to swap the order of two sequenced maneuvers. The fact that each neighborhood is fo-cused on a particular subtask means they can often be reused when tackling similar problems.

Definitions

Definition 6 (Neighborhood) A neighborhood N defines for each valid plan π a set of neighbor plans N (π) ⊆ Π where Π is the set of valid plans.

A neighborhood is associated with a utility function u N : Π → R giving the utility of a given plan in the context of this neighborhood.

This definition of a neighborhood differs from the usual one by the introduction of the utility function u N which is local to N . For instance, a neighborhood aiming at optimizing trajectories could base its utility function only on the length of the plan. This choice is motivated by the very general utility function considered for our observation problem. While the problem remains mono-objective, allowing the global objective function to be nonlinear and dependent on the timing of maneuvers makes the generation of useful neighbors complex. The neighborhood-dependent utility function allows a greater separation of concerns between the different neighborhoods.

Definition 7 (gen-neighbor) Given a plan π ∈ Π and a neighborhood N , the function gen-neighbor N (π) returns either (i) a valid plan π ∈ N (π) such that u N (π ) > u N (π), or (ii) nil if the neighborhood failed to generate an improving neighbor.

Definition 8 (Shuffling) A shuffling function f (π, k) : Π × N → Π produces a new plan by perturbing the plan π. This perturbation is dependent on k, the current iteration of the search.

Shuffling functions typically apply random changes to the current solution with the objective of escaping local minima.

Variable Neighborhood Search

Our VNS algorithm is depicted in Algorithm 1. It is parameterized by a sequence of neighborhoods, a shuffling function and a maximum runtime.

Given an initial (possibly empty) partial plan π init , the descent phase of VNS tries to generate plans improvements by systematically and sequentially trying all neighborhoods N 1 , . . . , N m until a neighborhood N i provides an improvement. If such an improvement is provided, the current plan is updated and the process restarts from the first neighborhood N 1 . When no neighborhood was able to generate an improvement, the best plan found so far is perturbed by the shuffling function and the descent phase restarts from the first neighborhood N 1 . This process is repeated until the total runtime goes over the allowed budget t max , at which point the best plan found is returned.

Neighborhoods

We define two classes of neighborhoods that have proved useful in our setting.

Algorithm 1 A Variable Neighborhood Search (VNS) algorithm. VNS takes as parameters an initial plan π init , a sequence of neighborhoods N 1 , . . . , N m , a real t max indicating the maximum planning time and a function shuffle that is applied to the best plan on a restart.

function VNS(π init , N 1 , . . . , N m , t max , shuffle) π best ← π init num-restarts ← 0 while runtime ≤ t max do π ← shuffle(π best , num-restarts) i ← 1 Select first neighborhood while i ≤ m do π ← gen-neighbor Ni (π) if π = nil then π ← π Update current plan if utility(π) > utility(π best ) then π best ← π end if i ← 1 Switch back to first neighborhood else i ← i + 1 Switch to next neighborhood end if end while num-restarts ← num-restarts + 1 end while return π best end function
Local Path Optimization A local path optimization neighborhood applies a transformation to a single maneuver in the plan. The scope of its utility function is limited to the duration and energy consumption of the trajectory.

Typical local path optimization neighborhoods apply a random or deterministic translation or rotation to a single maneuver already in the plan.

Maneuver Insertion A maneuver insertion neighborhood alters a plan by inserting a new maneuver m at a given position in a plan. The quality of a neighbor is assessed by the problem's utility function, with ties broken by trajectory duration or energy consumption.

Maneuver insertion typically works in two phases. First, a new maneuver is generated either systematically or by sampling. Second, an insertion location is selected for the maneuver, typically the one minimizing the required detour.

Given the potentially large number of valid maneuvers, new maneuvers and maneuver transformations are often sampled. This approach was proposed by [START_REF] Mladenović | Solving spread spectrum radar polyphase code design problem by tabu search and variable neighbourhood search[END_REF] as Reduced VNS to cope with large neighborhoods whose complete enumeration would be computationally expensive.

Other Common Neighborhoods Other common neighborhoods in VNS include replacing some of the maneuvers by new ones or swapping maneuvers between two trajectories, e.g. as proposed by [START_REF] Geiger | Metaheuristics for Tourist Trip Planning[END_REF] and [START_REF] Hansen | Variable Neighbourhood search: Methods and applications[END_REF]. However, we found those to be inefficient in our setting, due to the mostly continuous trajectories in which a maneuver is best considered together with the preceding and following ones. Instead, we rely on shuffling to provide similar benefits (removal of maneuvers in trajectories) at a larger scale.

Initial Plan and Shuffling

Our initial plan π init is built by transforming each flight window (υ, M start , M end , T min , T max , E) into a trajectory (υ, T min , M start , M end ). The initial plan is the aggregation of the resulting trajectories. It is easy to see that such a plan is valid if there exist a solution.

One of the most general shuffling function to complement insertion neighborhoods is the one that randomly retracts a sequence of maneuvers from the current plan. The number of maneuvers to be removed in each trajectory is randomly chosen between 0 and the maximum number of maneuvers that can be removed (i.e. not in the imposed start and end of the trajectory).

Instantiation and Evaluation

Wildfire Monitoring as a Multi-Agent Observation Problem

We now give an overview of the fire mapping problem on which our VNS approach to observation planning is instantiated and evaluated. At the core is a will to take of advantage of fixed-wing UAVs to automate the mapping of wildfires in order to (i) collect images of active fires in real time, (ii) maintain a map of the current fire, and (iii) rapidly confirm and characterize new fire starts.

Fire Map The dynamic nature of wildfires and our desire to allow their autonomous mapping and monitoring calls for some complex data processing. While a complete presentation of the framework is beyond the scope of this paper, we here sketch the main components and their impact on the definition of the planning problem.

A fire mapping problem is characterized by an initial knowledge of the current status of one or multiple wildfires. Such information typically contains a partial history of the position of the fire fronts over time, compiled from past observations. Given this initial knowledge, the objective of a continuous mapping and monitoring system is to maintain a map of the fire over time. For this purpose, the system uses a fleet of fixed-wing UAVs equipped with infrared or regular cameras, and should schedule their observations for the near future (e.g. for the next hour).

The dynamic nature of fires means that the system should be able to predict their evolution in order to know where observations should be made and focus them in the location where the fire is the most dynamic. For this purpose, our system is endowed with fire models [START_REF] Rothermel | A mathematical model for predicting fire spread in wildland fuels[END_REF][START_REF] Anderson | Predicting Wind-Driven Wild Land Fire Size and Shape[END_REF]) that permit the simulation of the fire progress from its last known position, taking into account the environmental context including the wind, terrain and fuel. The output of this process is a predicted evolution of the fire taking the form of a rasterized map in which each cell is associated with its time of ignition (if any) as shown in Figure 1. In the current implementation of our system, each cell of the fire map is a square with a side of 25 meters.

UAV model Aircraft dynamics are very complex due to aerodynamics, atmospheric conditions and actuator performance bounds; leading to complex non-linear models. The planning algorithm introduced in this publication only requires a lighter UAV model, that doesn't encompass all the dynamics, but describes its kinematics in a simple yet realistic manner.

The model we propose is that of a Dubins vehicle. A Dubins vehicle moves forward at constant speed V and with bounded turn radius |u| ≤ ψmax :

ẋ = V cos(ψ) ẏ = V sin(ψ) ψ = u
For such vehicles, the work of [START_REF] Dubins | On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[END_REF] finds optimal distance paths between two points with prescribed orientation. As shown in Figure 2, those paths are composed of a succession of circular arcs and straight lines. Using Dubins' formulations we obtain a good estimate for the execution time of a UAV trajectory at constant altitude. As a result, the waypoint used is a tuple (x, y, ψ) where x and y denote the position relatively to a fixed landmark and ψ is the heading of the UAV which is assumed to fly at a fixed altitude.

Maneuvers The considered maneuvers are short (50 meters) straight line trajectories. The rational behind this choice Figure 2: A Dubins path between two oriented waypoints. Curvature of both circular arcs is given by the maximum turn radius of the UAV. lies in the limitations of the actual controller for the considered UAVs that supports either waypoint based trajectories or predefined maneuvers such as lawnmower or spirals. While in general adapted to complete area coverage, the latter proved to be unadapted to the given observation task since we are interested in taking pictures of the fire front which, at a given time, is essentially a 2D line. Straight line maneuvers were preferred to simple waypoints to account for the specific constraints of the UAV whose camera points forward and provides more stable images when not turning.

The space of maneuvers M is thus defined as the set of segments of fixed length whose center is a cell of the fire map. Even though the fire map is discretized, the segment's orientation that denotes the angle of approach of the UAV is not and can take an arbitrary value in [0, 2π].

A maneuver m executed at time t is an observation of a given cell c of the fire map if (i) the segment of m is centered on c, and (ii) the fire front is active in cell c at time t.

Objective Function

The objective function measures the information gathered by a set of UAV trajectories with respect to a full knowledge situation. Given C the set of cells ignited during the planning window, our objective is to maximize the total information gathered over all cells in C:

utility(π) = c∈C kl(c, π)
where kl(c, π) associates to each cell c an amount of knowledge gathered by a plan π. It is defined through the inverse of the distance from c to the closest observed cell o ∈ π:

kl(c, π) = 1 min o∈π dist(c, o)
As a result, observing the same cell twice is useless from a utility point of view. Also, the utility brought by a new observation depends on observations already in the plan: if there is already a nearby observation in the plan, its utility will be low. This formulation captures the important spatial correlation of ignition times in the context of wildfires monitoring. This correlation can later be exploited to reconstruct fire fronts from observations.1 

VNS Configuration

Local Path Optimization Neighborhoods We include two local path optimization neighborhoods.

The N dub neighborhood aims at shortening Dubins trajectories by changing the orientation of maneuvers. For a given plan π, a neighbor π ∈ N dub (π) is obtained by replacing a maneuver m ∈ π by a new maneuver that only differs by its orientation. The new angle is chosen either randomly or such that the new maneuver is parallel to the line linking the end of the previous maneuver to the start of the next one; as proposed by [START_REF] Macharet | An Orientation Assignment Heuristic to the Dubins Traveling Salesman Problem[END_REF]. gen-neighbor N dub randomly generates a fixed number of neighbors and returns the first one that reduces the length of the trajectory.

The N fire neighborhood transforms a maneuver into an observation by translating it on the fire front. Consider a maneuver m ∈ π that is not an observation, i.e., the fire front is not in the observed cell at time st(m). Then N fire (π) contains a plan π where either:

• m is recentered on a neighbor cell in which the fire is active at st(m)

• m is removed from π . This case is triggered when the fire front is not in a neighbor cell at st(m) or such a neighbor cell is already observed.

Insertion Neighborhoods Insertion neighborhoods work by (i) non-deterministically choosing one maneuver over a yet unobserved cell, and (ii) selecting an insertion location.

We define three neighborhoods depending on the strategy for choosing the insertion location:

• N all-best ins inserts the sampled maneuver in a plan π such that the overall duration is minimized. All trajectories are considered.

• N 1-best ins inserts the sampled maneuver in a random trajectory of π such that the duration of the trajectory is minimized.

• N rand ins inserts the sampled maneuver at a random location in the plan. For all three neighborhoods, gen-neighbor generates a fixed number of neighbors and selects the valid one that has the best utility.

Results

We evaluate our approach on a hundred randomly generated instances of the fire mapping problem. Each instance is a 10 by 7 kilometers area where one to three fire start randomly and spread over 1 hour. Each instance has one to three fixedwing UAVs with a ground speed of 18 m/s. Each UAV has a flight window of 10 to 30 minutes and is based in a random corner of the area. The code for fire simulation, planning and problem generation is freely available. 2On average the fire front traverses 2243 cells of the fire map during the plan window leading to as many possible observations. Each possible observation can be made from any angle, yielding a virtually infinite number of maneuvers (note that even a coarse discretization of orientation would yield a very large number of maneuvers). In practice, each UAV can only access about 20% of the possible observations due to the limitation on its flight window.

We evaluate different combinations of neighborhoods and shuffling functions. The score of a solution plan π is given by:

score(π) = utility(π) utility(π * )
where π * is the best solution found for the problem instance.

Since VNS provides solutions in an anytime fashion, we evaluate the evolution of the score of a given VNS configuration over time, e.g., the average score of the solutions found when allowed to plan for 1 second. All configurations first consider local path optimization neighborhoods (N fire and N dub ). As a result, path optimization neighborhoods are triggered each time a new insertion occurs. The N fire neighborhood is present in all tested configurations, as omitting it strongly reduced the convergence rate. This is because inserting a new maneuver delays later maneuvers, possibly invalidating an observation. The N fire neighborhood precisely avoids this problem by locally adapting the path to maintain an observation.

Configurations mostly diverge in the definition of the insertion neighborhoods from the most involved (N all-best ins ) to the simplest (N rand ins ). In addition, we introduced a configuration C * that sequentially combines all three insertion neighborhoods. The last two configurations aim at illustrating the impact of the N dub neighborhood and of the shuffling phase.

Average scores over the hundred instances are presented in Figure 3 and Table 2. All benchmarks were executed on an Intel Core i5-7200U cadenced at 2.5GHz with a single thread and allowed to run for 30 seconds. As a result of the local search approach taken, memory usage is kept low at all times and is dominated by the encoding of the fire map. On average, the best plan contained 68 observations.

Of the three first configurations (C all-best , C 1-best , C rand ), C all-best uses the most complex neighborhood. Indeed N all-best ins preselects among all possible insertion locations the one that induces the least detour. As a result, this neighborhood favors quality at the expense of diversity. The opposite choice is made for C rand that considers any insertion location, while C 1-best is a middle ground that considers the best location in a given trajectory. These design choices have direct consequences on performance. C all-best is faster at improving its solution during the first second of search, leveraging its high quality neighborhood. However this good performance rapidly ends. As the current solution becomes more complex, the low diversity in its neighborhood appears to be detrimental. On the other hand, C 1-best and C rand both have a slow start up but provide better performance when allowed to plan for over one second, arguably because of the higher diversity in their neighborhoods.

Our C * configuration aims at combining the strengths of the different approaches. For this purpose its first insertion neighborhood is N all-best ins which allows to quickly build an initial solution by leveraging the high quality of the neighbors. However, once N all-best ins fails to generate improved solutions, C * falls back to the more diverse N 1-best ins and N rand ins neighborhoods. This combination allows C * to start as fast as C all-best while still outperforming all other approaches in Our VNS is able to generate plans that balance the information gathering effort between the three agents. In this example, the green UAV arrives early and maps the right-most fire while it is still limited. The red and blue UAVs arrive later and cooperatively map all fires while focusing on the most active areas. Important to note is that this plan was obtained by limiting the planning time to 20ms. With larger planning times, additional maneuvers would have been inserted, resulting in much denser, and less intelligible, trajectories. the long run.

As could be expected, preventing the use of shuffling in C no-shuffling rand prevents VNS from escaping the current local optimum reached during the descent phase. As a result, its overall score quickly stagnates.

More surprising is the overall good performance of C no-dubins rand . In Figure 5, it can be seen that, while the absence of N dub results in longer trajectories, this penalty is somewhat limited for sparse trajectories. Beside the positive indirect effect on the objective function, a subjective yet important benefit of N dub is the production of trajectories that are smooth and feel more natural to a human operator.

An example plan is shown in Figure 4. Important to note is that, while having no global knowledge of the task, the combination of VNS neighborhoods generates trajectories that exploit the overall structure of the problem. As a result a team of UAVs is able to follow fire front lines and cooperatively map wildfires. Essential in this result is the ability to plan with fine-grained maneuvers instead of relying on coarse predefined ones.

Furthermore, only one neighborhood (N fire ) is domaindependent. While essential for the good performance, its definition and implementation are kept simple. Overall, the good performance of the system is a result of the combination of simple and mostly generic building blocks.

Related Work

The problem we tackle in this paper features many similarities with the Orienteering Problem (OP) of Operations Research [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF]. In the OP, a set of vertices N is associated with a score score : N → R and travel time tt : N × N → R. The objective of the OP is to find a path visiting a subset of the vertices such that the duration of the path is below a predefined time budget and the collected score is maximized. While originating from the sport game of orienteering, it can be used to model observation tasks by interpreting the score as a reward associated with a given observation.

This simple formulation is however restrictive when considering more general observation problems such as our own. In particular, our problem features (i) multiple agents;

(ii) a continuous space leading to a potentially infinite number of vertices; and (iii) a more general, possibly nonlinear, utility function. In particular, our very loose definition of the utility function allows to tie the reward associated with a vertex to the time at which it is visited.

Many extensions to the orienteering problem have been proposed that partially tackle those requirements. In particular, the team orienteering problem [START_REF] Tang | A TABU search heuristic for the team orienteering problem[END_REF] considers multiple agents, the orienteering problem with time windows [START_REF] Tricoire | Heuristics for the multi-period orienteering problem with multiple time windows[END_REF] constrains the visit of vertices to be in given time windows and the Generalized OP considers nonlinear objective functions [START_REF] Wang | Using a Genetic Algorithm to Solve the Generalized Orienteering Problem[END_REF]. Many variants of the OP and approaches to tackle them are presented in the comprehensive survey of [START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF]. Most successful approaches are based on existing metaheuristics such as TABU search, Genetic Algorithms and Vari-able Neighborhood Search [START_REF] Tang | A TABU search heuristic for the team orienteering problem[END_REF][START_REF] Wang | Using a Genetic Algorithm to Solve the Generalized Orienteering Problem[END_REF][START_REF] Geiger | Metaheuristics for Tourist Trip Planning[END_REF]). These approaches were an inspiration in the choice and design of our VNS approach, however none of the surveyed algorithms consider our three additional requirements to the OP. In particular none of them was adapted to continuous or very large space for the definition of the vertices.

Classical optimization problems including the OP and the Traveling Salesman Problem have been extended to consider Dubins vehicles [START_REF] Macharet | An Orientation Assignment Heuristic to the Dubins Traveling Salesman Problem[END_REF][START_REF] Saska | Dubins Orienteering Problem[END_REF]. The former proposes heuristics for finding good orientations of waypoints while the latter relies on graph search to find the best orientations for a sequence of waypoints. Even when considering path optimization only, the comparison is however limited by the simple waypoints used instead of our more involved maneuvers. For this reason, our Dubins path optimization neighborhood combines a random orientation assignment and a heuristic one by [START_REF] Macharet | An Orientation Assignment Heuristic to the Dubins Traveling Salesman Problem[END_REF] Some formulations of the Search and Track (SaT) problem also resemble our observation problem. Most work has focused on probabilistic reasoning which is leveraged by a greedy search algorithm over a very short planning horizon [START_REF] Furukawa | Recursive Bayesian search-and-tracking using coordinated UAVs for lost targets[END_REF][START_REF] Bourgault | Process model, constraints, and the coordinated search strategy[END_REF]. Instead, [START_REF] Bernardini | Combining temporal planning with probabilistic reasoning for autonomous surveillance missions[END_REF] transform the problem of searching a target on a road network into a deterministic planning problem where the reward of observing a given road section depends on the probability of finding the target there. While the resulting problem bears many similarity with the observation problem considered in this paper, the approach taken is very different. Bernardini, Fox, and Long translate their trajectory planning problem into PDDL2.2 by precomputing a fixed set of spiral maneuvers overlapping the road network and the shortest paths between them. This compilation allows them to leverage domain-independent temporal task planners in a fully automated way. The most important limitation lies in the preprocessing steps that aggressively prunes many solutions from the search space and preselects highly suboptimal maneuvers. For instance, the authors only consider spiral maneuvers for the observation of straight roads where a simple fly over would have been vastly more efficient.

This approach of decomposing a continuous space into a more manageable subset of large predefined areas and maneuvers is considered by other authors [START_REF] Lin | Hierarchical Heuristic Search Using a Gaussian Mixture Model for UAV Coverage Planning[END_REF]. Instead we do not require any coarse discretization and escape the curse of dimensionality by sampling the possible maneuvers and leveraging point-to-point specialized planners. The use of shuffling and dedicated path optimization neighborhoods mitigate the shortcomings of sampling while still allowing the use of fine-grained maneuvers as a plan's build blocks.

Beyond the classical Dubins model that we used to compute point-to-point trajectories, more recent work has focused on providing more expressive and realistic models. [START_REF] Chitsaz | Time-optimal paths for a dubins airplane[END_REF] introduce the Dubins airplane that extends the Dubins vehicle with independent altitude control. Using optimal control techniques, they found the requirements for the shortest Dubins airplane paths between two oriented 3D points. [START_REF] Owen | Implementing dubins airplane paths on fixed-wing UAVs[END_REF] propose algorithms to generate some paths for the Dubins Airplane -assuming the initial and goal positions are sufficiently far -and the control strategy for a fixed-wing UAV to follow them. Another approach to generate paths for the Dubins airplane, that also accounts for initial and goal pitch angles, is introduced by [START_REF] Hota | Optimal geometrical path in 3d with curvature constraint[END_REF].

When wind is considered during flight, the aircraft yaw angle does not correspond to the direction it is heading to. This changes the way of computing trajectories, as the depicted Dubins paths will get distorted in the presence of wind, without reaching the desired goal. The Dubins vehicle model is extended by [START_REF] Mcgee | Optimal path planning in a constant wind with a bounded turning rate[END_REF] to deal with this situation. They introduce a strategy to generate Dubins paths in the presence of known arbitrary wind. It models the case as a rendez-vous problem between the aircraft and the goal as a moving target.

Our VNS framework already features an implementation of the Dubins Airplane model which can be used interchangeably with the 2D version. We also plan to support McGee, Spry, and Hedrick's extension for wind in order to further increase the realism of the solutions. As long as the computational cost is kept low -as for the two mentioned Dubins' extensions -we do not foresee any difficulty in supporting other motion models in our framework.

Conclusion

In this paper, we have presented an approach to observation planning with multiple UAVs based on Variable Neighborhood Search (VNS). Our problem formulation is kept generic with minimal assumptions on the UAV model, search space and objective function. It is used to encode a wildfire mapping problem in which a fleet of fixed-wing UAVs cooperatively monitor an active wildfire.

The proposed VNS algorithm combines simple building blocks that are mostly domain-independent and easily reusable. Of all the elements in the VNS search only one neighborhood -projection on the fire front -is domainspecific. Even then, the scope of its domain-specific knowledge remains contained to a local path optimization. All other components are fully generic and remain simple both in definition and implementation. Each only focuses on a particular subproblem with no knowledge of the global problem apart from black box sampling and utility functions.

Despite its simplicity, we showed our approach to produce good quality plans for a handful of UAVs in a matter of seconds. This is done without any artificial coarse discretization of the search space. Instead, our algorithm handles thousands of very primitive maneuvers through a combination of sampling and local path optimization. This allows us to quickly generate plans that are fine grained even though they span over large areas and long times.

Figure 1 :

 1 Figure 1: Fire map showing the expected evolution of a wildfire spreading over a hilly area from a single ignition point (in red). Background colors reflect the elevation. Level lines denote the expected fire front every 30 minutes. Grey arrows represent the local wind field on the ground as given by a local wind simulator for the purpose of simulating the wildfire's evolution.

Figure 3 :

 3 Figure 3: Score of VNS configurations as a function of the planning time. Score is averaged over all problem instances.

Figure 4 :

 4 Figure4: An example plan with 3 UAVs observing 3 wildfires on a 10 by 5 kilometers area. Our VNS is able to generate plans that balance the information gathering effort between the three agents. In this example, the green UAV arrives early and maps the right-most fire while it is still limited. The red and blue UAVs arrive later and cooperatively map all fires while focusing on the most active areas. Important to note is that this plan was obtained by limiting the planning time to 20ms. With larger planning times, additional maneuvers would have been inserted, resulting in much denser, and less intelligible, trajectories.
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Figure 5 :

 5 Figure 5: Typical trajectories found with and without the N dub local path optimization neighborhood.

Table 2 :

 2 Scores for given planning times, averaged over all problem instances. Best performance is in bold font. Variance is given in parenthesis.

More involved definitions of distance (i.e. similarity) based on fire-related features of cells are also supported by our approach but are beyond the scope of this paper and omitted.

https://github.com/laas/fire-rs-saop
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