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For real-valued additive process (X t ) t≥0 a recursive equation is derived for the entire positive moments of functionals

in case the Laplace exponent of X t exists for positive values of the parameter. From the equation emerges an easy-to-apply sufficient condition for the finiteness of the moments. As an application we study first hit processes of diffusions.

Introduction

Let X = (X t ) t≥0 , X 0 = 0, be a real valued additive process, i.e., a strong Markov process with independent increments having càdlàg sample paths which are continuous in probability (cf. Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], p.3). Important examples of additive processes are:

(a) Deterministic time transformations of Lévy processes, that is, if (L s ) s≥0 is a Lévy process and s → g(s) is an increasing continuous function such that g(0) = 0 then (L g(s) ) s≥0 is an additive process.

(b) Integrals of deterministic functions with respect to a Lévy process, that is, if (L s ) s≥0 is a Lévy process and s → g(s) is a measurable and locally bounded function then

Z t := t 0 g(s) dL s , t ≥ 0,
is an additive process.

(c) First hit processes of one-dimensional diffusions, that is, if (Y s ) s≥0 is a diffusion taking values in [0, ∞), starting from 0, and drifting to +∞ then H a := inf{t : Y t > a}, a ≥ 0, is an additive process.

Of course, Lévy processes themselves constitute a large and important class of additive processes. The aim of this paper is to study integral exponential functionals of X, i.e., functionals of the form

I s,t := t s exp(-X u )du, 0 ≤ s < t ≤ ∞, (1) 
in particular, the moments of I s,t . We refer also to a companion paper [START_REF] Salminen | On exponential functionals of processes with independent increments[END_REF],

where stochastic calculus is used to study the Mellin transforms of I s,t when the underlying additive process is a semimartingale with absolutely continuous characteristics.

The main result of the paper is a recursive equation, see [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF] below, which generalizes the formula for Lévy processes presented in Urbanik [START_REF] Urbanik | Functionals of transient stochastic processes with independent increments[END_REF] and Carmona, Petit and Yor [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF], see also Bertoin and Yor [3]. This formula for Lévy processes is also displayed below in (18). In Epifani, Lijoi and Prünster [START_REF] Epifani | Exponential functionals and means of neutral-to-right priors[END_REF] an extension of the Lévy process formula to integral functionals up to t = ∞ of increasing additive processes is discussed, and their formula [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] can be seen as a special case of our formula (15) -as we found out after finishing our work. We refer to these papers and also to [START_REF] Salminen | On exponential functionals of processes with independent increments[END_REF] for further references and applications, e.g., in financial mathematics and statistics.

In spite of the existing closely related results we feel that it is worthwhile to provide a more thorough discussion of the topic. We also give new (to our best knowledge) applications of the formulas for first hit processes of diffusions and present explicit results for Bessel processes and geometric Brownian motions.

Main results

Let (X t ) t≥0 be an additive process and define for 0

≤ s ≤ t ≤ ∞ and α ≥ 0 m (α) s,t := E I α s,t = E t s e -Xu du α , α ≥ 0, (2) and m (α) t 
:= m (α) 0,t , m (α) ∞ := m (α) 0,∞ .
In this section we derive a recursive integral equation for m

(α)
s,t under the following assumption:

(A) E(e -λXt ) < ∞ for all t ≥ 0 and λ ≥ 0.

Under this assumption we define Φ(t; λ) := -log E(e -λXt ).

(

) 3 
Since X is assumed to be continuous in probability it follows that t → Φ(t, λ) is continuous. Moreover, X 0 = 0 a.s. implies that Φ(0; λ) = 0. If X is a Lévy process satisfying (A) we write (with a slight abuse of the notation)

E(e -λXt ) = e -tΦ(λ) . (4) 
See Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] Theorem 9.8, p.52, for properties and the structure of the Laplace exponent Φ of the infinitely divisible distribution X t .

In particular, (A) is valid for increasing additive processes. Important examples of these are the first hit processes for diffusions (cf. (c) in Introduction). Assumption (A) holds also for additive processes of type (a) in Introduction if the underlying Lévy process fullfills (A).

Remark 2.1. If X is a semimartingale with absolutely continuous characteristics, a sufficient condition for the existence of the Laplace exponent as in (A) in terms of the jump measure is given in Proposition 1 in [START_REF] Salminen | On exponential functionals of processes with independent increments[END_REF].

By continuity we have -from Jensen's inequality -the following result Lemma 2.2. Under assumption (A) m

(α) s,t < ∞ for all 0 ≤ α ≤ 1 and 0 ≤ s ≤ t < ∞.
The main result of the paper is given in the next theorem. In the proof we are using similar ideas as in [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF].

Theorem 2.3. Under assumption (A) it holds for α ≥ 1 and 0 ≤ s ≤ t < ∞ that the moments m (α) s,t are finite and satisfy the recursive equation

m (α) s,t = α t s m (α-1) u,t
e -(Φ(u;α)-Φ(u;α-1)) du.

(

) 5 
Proof. We start with by noting that the function s : [0, t] → I s,t is for any t > 0 continuous and strictly decreasing. Hence, for α ≥ 1

α s 0 I α-1 u,t dI u,t = α Is,t I 0,t v α-1 dv = I α s,t -I α 0,t ,
where the integral is a pathwise (a.s.) Riemann-Stiltjes integral and the formula for the change of variables (see, e.g., Apostol [START_REF] Apostol | Mathematical Analysis[END_REF], p. 144) is used. Consequently, from the definition of I s,t it follows that

I α s,t -I α 0,t = -α s 0 I α-1 u,t e -X u-du = -α s 0 I α-1 u,t e -Xu du.
Introducing the shifted functional I s,t via

I s,t := t-s 0 e -(X u+s -Xs) du
we have

I s,t = e Xs I s,t = e Xs t s e -Xu du, (6) 
and, therefore,

I α s,t -I α 0,t = -α s 0 I α-1 u,t e -αXu du. (7) 
4

Notice that the independence of increments implies that I α-1 u,t and e -αXu are independent, and, hence, for all α ≥ 1

E I α u,t = E I α u,t /E e -αXu (8) 
Then evoking Lemma 2.2 and ( 8) yield for 0 ≤ α ≤ 1 and 0

≤ s ≤ t < ∞ E I α s,t ≤ E I α 0,t /E e -αXu < ∞. (9) 
Assume now that α ∈ [START_REF] Abramowitz | Mathematical Functions, 9th printing[END_REF][START_REF] Apostol | Mathematical Analysis[END_REF]. Taking the expectations in [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and applying Fubini's theorem gives

E I α s,t -I α 0,t = -α s 0 E I α-1 u,t E e -αXu du > -∞ (10) 
where the finiteness follows from ( 9). Since I s,t → 0 a.s. when s ↑ t we obtain by applying monotone convergence in ( 10)

E I α 0,t = α t 0 E I α-1 u,t E e -αXu du < ∞. (11) 
Putting [START_REF] Salminen | On exponential functionals of processes with independent increments[END_REF] and [START_REF] Salminen | Perpetual integral functionals as hitting and occupation times[END_REF] together results to the equation

E I α s,t = α t s E I α-1 u,t E e -αXu du. (12) 
Finally, using ( 8) and ( 9) in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] and recalling (3) yield (5) for α ∈ [START_REF] Abramowitz | Mathematical Functions, 9th printing[END_REF][START_REF] Apostol | Mathematical Analysis[END_REF]. Since ( 8) is valid for all α and, as just proved, the finiteness holds for α ∈ [1, 2] the proof of (5) for arbitrary α > 2 is easily accomplished by induction.

Corollary 2.4. Let (X t ) t≥0 be a Lévy process with the Laplace exponent as in (4). Then ( 5) with s = 0 and t < ∞ is equivalent to

m (α) t = α e -tΦ(α) t 0 m (α-1) u e uΦ(α) du. ( 13 
)
Proof. Put s = 0 in (5) to obtain m (α) t = α t 0 m (α-1) u,t e -u(Φ(α)-Φ(α-1)) du. (14) 
Consider

m (α-1) u,t = E t u e -Xv dv α-1 = E e -(α-1)Xu t u e -(Xv -Xu) dv α-1 = e -uΦ(α-1) E t-u 0 e -(X v+u -Xu) dv α-1 = e -uΦ(α-1) E t-u 0 e -Xv dv α-1 = e -uΦ(α-1) m (α-1)
t-u . Subsituting this expression into ( 14) proves the claim.

For positive integer values on α the recursive equation ( 5) can be solved explicitly to obtain the formula (15) in the next proposition. However, we offer another proof highlighting the symmetry properties present in the expressions of the moments of the exponential functional. 

s,t = n! t s dt 1 t t 1 dt 2 • • • (15) • • • t t n-1 dt n exp - n k=1 (Φ(t k ; n -k + 1) -Φ(t k ; n -k)) .
In particular, m

s,∞ < ∞ if and only if the multiple integral on the right hand side of (15) is finite.

Proof. Let t < ∞ and consider m (n) s,t = E t s e -Xu du n = E t s • • • t s e -Xt 1 -•••-Xt n dt 1 . . . dt n = n! E t s dt 1 e -Xt 1 t t 1 dt 2 e -Xt 2 • • • t t n-1 dt n e -Xt n = n! t s dt 1 t t 1 dt 2 • • • t t n-1 dt n E e -(Xt 1 +•••+Xt n ) ,
where, in the third step, we use that (t

1 , t 2 , • • • , t n ) → e -(Xt 1 +•••+Xt n ) is symmetric.
By the independence of the increments E e -αXt = E e -α(Xt-Xs)-αXs = E e -α(Xt-Xs) E e -αXs .

Consequently, E e -α(Xt-Xs) = E e -αXt /E e -αXs = e -(Φ(t;α)-Φ(s;α)) .

Since,

X t 1 + • • • + X tn = n k=1 (n -k + 1) X t k -X t k-1 , t 0 := 0, we have m (n) s,t = n! t s dt 1 t t 1 dt 2 . . . • • • t t n-1 dt n exp - n k=1 (Φ(t k ; n -k + 1) -Φ(t k-1 ; n -k + 1)) .
Applying the initial values given in (4) yields the claimed formula (15). The statement concerning the finiteness of m (n) s,∞ follows by applying the monotone convergence theorem as t → ∞ on both sides of (15). Corollary 2.6. Variable I ∞ has all the positive moments if for all n ∞ 0 e -(Φ(s;n)-Φ(s;n-1)) ds < ∞.

(16)

Proof. From (15) we have

m (n) t ≤ n! n k=1 ∞ 0 e -(Φ(s;n)-Φ(s;n-1)) ds. ( 17 
)
The right hand side of (17) is finite if (16) holds. Let t → ∞ in (17). By monotone convergence, m

(n) ∞ = lim t→∞ m (n)
t , and the claim is proved.

Formula (18) below extends the corresponding formula for subordinators found [START_REF] Urbanik | Functionals of transient stochastic processes with independent increments[END_REF], see also [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF], p.195, for Lévy processes satisfying (A). It is a straightforward implification of Proposition 2.5.

Corollary 2.7. Let (X t ) t≥0 be a Lévy process with the Laplace exponent as in (4) and define n * := min{n ∈ {1, 2, . . .

} : Φ(n) ≤ 0}. Then m (n) ∞ := E(I n ∞ ) =    n! n k=1 Φ(k) , if n < n * , +∞, if n ≥ n * . (18) 
.

Example 2.8. A much studied functional is obtained when taking X = (X t ) t≥0 with X t = σW t + µt, σ > 0, µ > 0, where (W t ) t≥0 is a standard Brownian motion. In Dufresne [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and Yor [START_REF] Yor | On some exponential functionals of Brownian motion[END_REF] (see also Salminen and Yor [START_REF] Salminen | Perpetual integral functionals as hitting and occupation times[END_REF]) it is proved that

I ∞ := ∞ 0 exp(-(σW s + µs)) ds ∼ H (δ) 0 , (19) 
where H δ 0 is the first hitting time of 0 for a Bessel process of dimension δ = 2(1 -(µ/σ 2 )) starting from σ/2, and ∼ means "is identical in law with". In particular, it holds

∞ 0 exp(-(2W s + µs)) ds ∼ 1 2 Z µ , (20) 
where Z µ is a gamma-distributed random variable with rate 1 and shape µ/2. We refer to [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] for a discussion showing how the functional on the left hand side of (19) arises as the present value of a perpetuity in a discrete model after a limiting procedure. Since the Lévy exponent in this case is

Φ(λ) = λµ - 1 2 λ 2 σ 2 ,
the criterium in Corollary 2.7 yields

E (I n ∞ ) < ∞ ⇔ n < 2µ/σ 2
, which readily can also be checked from (20).

First hit processes of one-dimensional diffusions

We recall first some facts concerning the first hitting times of one-dimensional (or linear) diffusions. Let now Y = (Y s ) s≥0 be a linear diffusion taking values in an interval I. To fix ideas assume that I equals R or (0, ∞) or [0, ∞) and that lim sup

s→∞ Y s = +∞ a.s. ( 21 
)
Assume Y 0 = v and consider for a ≥ v the first hitting time

H a := inf{s : Y s > a}.
Defining X t := H t+v , t ≥ 0, it is easily seen -since Y is a strong Markov process -that X = (X t ) t≥0 is an increasing purely discontinuous additive process starting from 0. Moreover, from (21) it follows that X t < ∞ a.s. for all t. The process X satisfies (A) and it holds

E v (e -βXt ) = E v (e -βH t+v ) = ψ β (v) ψ β (t + v) , t ≥ 0, ( 22 
)
where β ≥ 0, E v is the expectation associated with Y, Y 0 = v, and ψ β is a unique (up to a multiple) positive and increasing solution (satisfying appropriate boundary conditions) of the ODE

(Gf )(x) = βf (x), (23) 
where G denotes the differential operator associated with Y. For details about diffusions (and further references), see Itô and McKean [START_REF] Itô | Diffusion Processes and Their Sample Paths[END_REF], and [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF].

The Laplace transform of X t can also be represented as follows

E v (e -βXt ) = exp - t+v v S(du) ∞ 0 (1 -e -βx )n(u, dx) , ( 24 
)
where S is the scale function, and n is a kernel such that for all v ∈ I and t ≥ 0

t+v v ∞ 0 (1 ∧ x)n(u, dx)S(du) < ∞.
Representation (24) clearly reveals the structure of X as a process with independent increments. From ( 22) and (24) we may conclude that

∞ 0 (1 -e -β x )n(u, dx) = lim w→u- 1 -E w (e -βXu ) S(u) -S(w) . (25) 
We now pass to present examples of exponential functionals of first hit processes. Firstly, we study Bessel processes satisfying (21) and show, in particular, that the exponential functional of the first hit process has all the moments. In our second example it is seen that the exponential functional of the first hit process of geometric Brownian motion has only finitely many moments depending on the values of the parameters.

Example 3.1. Bessel processes. Let Y be a Bessel process starting from v > 0. The differential operator associated with Y is given by

(Gf )(x) = 1 2 f ′′ (x) + δ -1 2x f ′ (x), x > 0,
where δ ∈ R is called the dimension parameter. From [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF] we extract the following information

• for δ ≥ 2 the boundary point 0 is entrance-not-exit and (21) holds,

• for 0 < δ < 2 the boundary point 0 is non-singular and (21) holds when the boundary condition at 0 is reflection,

• for δ ≤ 0 (21) does not hold.

In case when ( 21) is valid the Laplace exponent for the first hit process X = (X t ) t≥0 is given for v > 0 and t ≥ 0 by

E v (e -βXt ) = ψ β (v) ψ β (t) = v 1-δ/2 I δ/2-1 (v √ 2β) t 1-δ/2 I δ/2-1 ((t + v) √ 2β) , (26) 
where E v is the expectation associated with Y when started from v and I denotes the modified Bessel function of the first kind. For simplicity, we wish to study the exponential functional of X when v = 0. To find the Laplace exponent when v = 0 we let v → 0 in (26). For this, recall that for p = -1, -2, . . .

I p (v) ≃ 1 Γ(p + 1) v 2 p as v → 0. (27) 
Consequently,

E 0 (e -βXt ) = lim v→0 E v (e -βXt ) = 1 Γ(ν + 1) √ 2β 2 δ/2-1 t δ/2-1 I δ/2-1 (t √ 2β)
=: e -Φ(t;β) .

The validity of (16), that is, the finiteness of the positive moments, can now be checked by exploiting the asymptotic behaviour of I p saying that for all p ∈ R (see Abramowitz and Stegun [START_REF] Abramowitz | Mathematical Functions, 9th printing[END_REF], 9.7.1 p.377)

I p (t) ≃ e t / √ 2πt as t → ∞. (28) 
Indeed, for n = 1, 2, . . . 

e -(Φ(t;n)-Φ(t;n-1)) = n δ/2-1 I δ/2-1 (t √ 2n) I δ/2-1 (t 2(n -1)) (n -1) δ/2-1 ≃ n n -1 δ/2-1 n n -1 1/4 e -t( √ 2n- √ 2(n-
• lim s→∞ Y s = +∞ a.s if µ > 1 2 σ 2 ,
• lim s→∞ Y s = 0 a.s if µ < 1 2 σ 2 .

• lim sup s→∞ Y s = +∞ and lim inf s→∞ Y s = 0 a.s. if µ = 1 2 σ 2 .

Consequently, condition (21) is valid if and only if µ ≥ 1 2 σ 2 . Since Y 0 = 1 we consider the first hitting times of points a ≥ 1. Consider

H a := inf{s : Y s = a} = inf s : exp σW s + (µ - 1 2 σ 2 )s = a = inf s : W s + µ -1 2 σ 2 σ s = 1 σ log a .
We assume now that σ > 0 and µ ≥ 1 2 σ 2 . Let ν := (µ -1 2 σ 2 )/σ. Then H a is identical in law with the first hitting time of log a/σ for Brownian motion with drift ν ≥ 0 starting from 0. Consequently, letting X t := H 1+t we have

for t ≥ 0 E 1 (e -βXt ) = ψ β (0) ψ β (log(1 + t)/σ) = exp - 2β + ν 2 -ν log(1 + t) σ = (1 + t) - √ 2β+ν 2 -ν /σ , (29) 
=: exp (-Φ(t; β)) .

where E 1 is the expectation associated with Y when started from 1 and

ψ β (x) = exp 2β + ν 2 -ν x
is the increasing fundamental solution for Brownian motion with drift (see [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF] p.132). Notice that the additive process X is a deterministic time change of the first hit process of Brownian motion with drift, which is a subordinator. We use now By formula (15) the nth moment is given by 

E 1 (I n ∞ ) = n! ∞ 0 dt 1 (1 + t 1 ) -(ρ(n)-ρ(n-1)) ∞ t 1 dt 2 (1 + t 2 ) -(ρ(n-1)-ρ(n-2)) × ∞ t 2 dt 3 • • • ∞ t n-1 dt n (1 + t n ) -ρ(1) =          n! n k=1 (ρ(k) -k) , if n < n * , +∞, if n ≥ n * ,
ρ(n) > n ⇔ n < 2 σ 2 , (32) 
i.e., smaller the volatility (i.e. σ) more moments of I ∞ exist, as expected. Moreover, in this case

ρ(n) -ρ(n -1) > 1 ⇔ √ 2n + 2(n -1) < 2 σ ⇔ 2n -1 + 4n(n -1) < 2 σ 2 (33) 
showing, in particular, that when σ is "small" there exist "many" n satisfying (32) but not (33).

Proposition 2 . 5 .

 25 For 0 ≤ s ≤ t ≤ ∞ and n = 1, 2, . . . it holds m (n)

0 e

 0 Proposition 2.5 to study the moments of the perpetual integral functional I ∞ = ∞ -Xs ds. To simplify the notation (cf. (29)) introduce ρ(β) := 2β + ν 2 -ν /σ.

  where n * := min{n ∈ {1, 2, . . .} : ρ(n) -n ≤ 0}.Condition (16) in Corollary 2.6 takes in this case the formρ(n) -ρ(n -1) > 1. (30)This being a sufficient condition for the finiteness of m(n) ∞ we have ρ(n) -ρ(n -1) > 1 ⇒ ρ(n) -n > 0. (31)Consider now the case ν = 0. Then
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