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Abstract

Let X = (Xt)t≥0 be a real-valued additive process. In this paper we
study the integral exponential functionals ofX, namely, the functionals
of the form

Is,t =

∫ t

s

exp(−Xu)du, 0 ≤ s < t ≤ ∞.

Our main interest is focused on the moments of Is,t of order α ≥ 0.
In case the Laplace exponent of Xt exists for positive values of the
parameter, we derive a recursive (in α) integral equation for the mo-
ments. This yields a multiple integral formula for the entire positive
moments of Is,t. From these results emerges an easy-to-apply sufficient
condition for the finiteness of all the entire moments of I∞ := I0,∞.
The corresponding formulas for Lévy processes are also presented. As
examples we discuss the finiteness of the moments of I∞ when X is the
first hit process associated with a diffusion. In particular, we discuss
Bessel processes and geometric Brownian motions.
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1 Introduction

Let X = (Xt)t≥0, X0 = 0, be a real valued additive process, i.e., a strong
Markov process with independent increments having càdlàg sample paths
which are continuous in probability (cf. Sato [15] p.3). Important examples
of additive processes are:

(a) Deterministic time transformations of Lévy processes, that is, if (Ls)s≥0

is a Lévy process and s 7→ g(s) is an increasing continuous function
such that g(0) = 0 then (Lg(s))s≥0 is an additive process.

(b) Integrals of deterministic functions with respect to a Lévy process,
that is, if (Ls)s≥0 is a Lévy process and s 7→ g(s) is a measurable
function then

Zt :=

∫ t

0
g(s) dLs, t ≥ 0,

is an additive process.

(c) First hit processes of one-dimensional diffusions, that is, if (Ys)s≥0 is a
diffusion taking values in [0,∞), starting from 0, and drifting to +∞
then

Ha := inf{t : Yt > a}, a ≥ 0,

is an additive process.

Of course, Lévy processes themselves constitute a large and important class
of additive processes.

The basic tool in our analysis is the Laplace exponent ofX. The structure
of this is revealed in the the Lévy-Khintchine representation of the infinitely
divisible distribution of Xt. We recall this briefly from Sato [15] Theorem
9.8 p.52. Therein the characteristic function of Xt is given as follows

E
(
eiλXt

)
= eΨ(t,λ), λ ∈ R, t ≥ 0 (1)

where

Ψ(t, λ) := exp

(
iλb(t)− 1

2
λ2c(t) +

∫

R

(eiλx − 1− iλx1{|x|<1}) νt(dx)

)
,

t 7→ b(t), b(0) = 0, is continuous, t 7→ c(t), c(0) = 0, is continuous and
non-decreasing, and νt is a measure on R such that

• ν0(R) = 0,
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• for all t, νt({0}) = 0 and
∫
R
(|x|2 ∧ 1)νt(dx) <∞,

• for all B ∈ B(R) and s ≤ t, νs(B) ≤ νt(B),

• for all B ∈ B(R) with B ⊂ {x : |x| > ε}, ε > 0,

νs(B) → νt(B) as s→ t.

Notice that since X is assumed to be continuous in probability it follows
that t 7→ Ψ(t, λ) is for all λ ∈ R continuous.

The aim of this paper is to study integral exponential functionals of X,
i.e., functionals of the form

Is,t :=

∫ t

s
exp(−Xu)du, 0 ≤ s < t ≤ ∞, (2)

in particular, the moments of Is,t. We refer also to a companion paper [12]
where stochastic calculus is used to study the Mellin transforms of Is,t when
the underlying additive process is a semi martingale with absolutely contin-
uous characteristics.

The main result of the paper is a recursive equation, see (7) in Theorem
2.3, which generalizes the formula for Lévy processes presented in Urbanik
[16] Example 3.4 p.309 and Carmona, Petit and Yor [4] Proposition 3.3
p.87, see also Bertoin and Yor [2] Section 3.1 p.195. This formula for Lévy
processes is also displayed below in (18). In Epifani, Lijoi and Prünster
[7] an extension of the Lévy process formula to integral functionals up to
t = ∞ of increasing additive processes is discussed, and their formula (7) in
Proposition 5 p.798 can be seen as a special case of our formula (15) – as
we found out after finishing our work. Such an extension is also indicated
in [2] on p.196. In spite of these closely related results we feel that it is
worthwhile to provide a more thorough discussion of this interesting topic.
We also give new (to our best knowledge ) applications of the formulas
for first hit processes of diffusions and present explicit results for Bessel
processes and geometric Brownian motions.

In mathematical finance the interest in integral exponential functionals
is coming from the studies of perpetuities containing liabilities, perpetuities
under the influence of economical factors (see, for example, Kardaras and
Robertson [11]), and also of pricing Asian options and related questions
(see, for instance, Dufresne [6], Carr and Wu [5], Jeanblanc, Yor, Chesney
[9] and references therein). We refer to the survey paper [2] for further
results, potential applications, and many references, in particular, for Lévy
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processes but also for additive processes. For applications of increasing
additive processes in Bayesian statistics we refer to [7] and references therein.
Additive processes can also be found in representations of self-decompasable
laws, see Sato [14] and Jeanblanc, Pitman and Yor [10].

The paper is structured as follows. Next section contains the main results
of the paper. In particular, the recursive equation for the entire moments
E(Ins,t), n = 1, 2, . . . is established. We also give formulas for Lévy processes.
The paper is concluded with examples on first hitting time processes. It is
proved that for Bessel processes drifting to +∞ the integral exponential
functional of the first hit process has all the moments and for geometric
Brownian motion the corresponding functional has only some moments.

2 Main results

Let (Xt)t≥0 be an additive process and define for 0 ≤ s ≤ t ≤ ∞ and α ≥ 0

m
(α)
s,t := E

(
Iαs,t
)
= E

((∫ t

s
e−Xu du

)α)
, α ≥ 0, (3)

and
m

(α)
t := m

(α)
0,t , m(α)

∞ := m
(α)
0,∞.

In this section we derive a recursive integral equation for m
(α)
s,t under the

following assumption:

(A) Xt has for all t ≥ 0 a finite Laplace exponent for positive values of
the parameter, that is, there exists for all t ≥ 0 and for all λ ≥ 0 a
function t 7→ Φ(t, λ) such that

E(e−λXt) = e−Φ(t;λ). (4)

and
Φ(t; 0) = Φ(0;λ) = 0. (5)

If X is a Lévy process we write (with a slight abuse of the notation) formula
(4) as

E
(
e−λXt

)
= e−tΦ(λ). (6)

The functions Ψ and Φ are clearly connected as Ψ(t, iλ) = −Φ(t, λ). As
pointed out in Introduction, t 7→ Ψ(t, λ) is continuous and, therefore also
t 7→ Φ(t, λ) is continuous. This property has an important – obvious –
consequence formulated in the next lemma which is easily proved, e.g., with
Jensen’s inequality.
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Lemma 2.1. Under assumption (A), for 0 ≤ α ≤ 1 it holds m
(α)
s,t < ∞ for

all 0 ≤ s ≤ t <∞.

Assumption (A) is valid, in particular, for increasing additive processes.
Important examples of these are the first hit processes for diffusions (cf.
(c) in Introduction). Moments of exponential functionals of some first hit
processes are discussed in the next section. Assumption (A) holds also for
additive processes of type (a) in Introduction if the underlying Lévy process
fullfills Assumption (A).

Remark 2.2. In the case when X is a semi-martingale with absolutely con-
tinuous characteristics, the sufficient condition (see Proposition 1 in [12])
for the existence of the Laplace exponent as in Assumption (A) in terms of
the measure νt is as follows: for λ ≥ 0 and t ≥ 0

∫

{|x|>1}

(
e−λx + |x|

)
νt(dx) <∞ ⇒ E(e−λXt) <∞.

The main result of the paper is given in the next theorem. In the proof
we are using similar ideas as in [4].

Theorem 2.3. For 0 ≤ s ≤ t < ∞ and α ≥ 1 the moments m
(α)
s,t are finite

and satisfy the recursive equation

m
(α)
s,t = α

∫ t

s
m

(α−1)
u,t e−(Φ(u;α)−Φ(u;α−1)) du. (7)

Proof. We start with by introducing the shifted functional Îs,t via

Îs,t :=

∫ t−s

0
e−(Xu+s−Xs) du.

Clearly,

Îs,t = eXs Is,t = eXs

∫ t

s
e−Xu du, (8)

and we have

d

ds
Iαs,t = αIα−1

s,t

d

ds
Is,t = −αIα−1

s,t e−Xs = −α Î α−1
s,t e−αXs .

Consequently,

Iαs,t − Iα0,t = −α
∫ s

0
Î α−1
u,t e−αXu du
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The independence of increments implies that Î α−1
u,t and e−αXu are indepen-

dent. Hence,

E
(
Iαs,t − Iα0,t

)
= −α

∫ s

0
E
(
Î α−1
u,t

)
E
(
e−αXu

)
du. (9)

Clearly, Is,t → 0 a.s. when s ↑ t. Hence, applying monotone convergence in
(9) yields

E
(
Iα0,t
)
= α

∫ t

0
E
(
Î α−1
u,t

)
E
(
e−αXu

)
du. (10)

Putting (9) and (10) together results to the equation

E
(
Iαs,t
)
= α

∫ t

s
E
(
Î α−1
u,t

)
E
(
e−αXu

)
du. (11)

From (8) evoking the independence of Î α−1
u,t and e−αXu we have

E
(
Î α−1
u,t

)
= E

(
Iα−1
u,t

)
/E
(
e−(α−1)Xu

)
. (12)

Finally, using (12) in (11) and recalling (4) yields (7). The claim that m
(α)
s,t

is finite follows by induction from the recursive equation (7) and Lemma 2.1.

Remark 2.4. In [12] the recursive equation (7) is derived via stochastic
calculus in case the additive process X is a semimartingale with absolutely
continuous characteristics.

Corollary 2.5. Let (Xt)t≥0 be a Lévy process with the Laplace exponent as
in (6). Then the recursive equation (7) for s = 0 and t < ∞ is equivalent
with

m
(α)
t = α e−tΦ(α)

∫ t

0
m(α−1)

u euΦ(α) du. (13)

Proof. Put s = 0 in (7) to obtain

m
(α)
t = α

∫ t

0
m

(α−1)
u,t e−u(Φ(α)−Φ(α−1)) du. (14)
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Consider

m
(α−1)
u,t = E

((∫ t

u
e−Xv dv

)α−1
)

= E

(
e−(α−1)Xu

(∫ t

u
e−(Xv−Xu) dv

)α−1
)

= e−uΦ(α−1)E

((∫ t−u

0
e−(Xv+u−Xu) dv

)α−1
)

= e−uΦ(α−1)E

((∫ t−u

0
e−Xv dv

)α−1
)

= e−uΦ(α−1)m
(α−1)
t−u .

Subsituting this expression in (14) and changing variables yield the claimed
equation.

For positive integer values on α the recursive equation (7) can be solved
explicitly to obtain the formula (15) in the next proposition. However,
we offer another proof highlighting the symmetry properties present in the
expressions of the moments of the exponential functional.

Proposition 2.6. For 0 ≤ s ≤ t ≤ ∞ and n = 1, 2, . . . it holds

m
(n)
s,t = n!

∫ t

s
dt1

∫ t

t1

dt2 · · · (15)

· · ·
∫ t

tn−1

dtn exp

(
−

n∑

k=1

(Φ(tk;n− k + 1)−Φ(tk;n− k))

)
.

In particular, m
(n)
s,∞ < ∞ if and only if the multiple integral on the right

hand side of (15) is finite.

Proof. Let t <∞ and consider

m
(n)
s,t = E

((∫ t

s
e−Xu du

)n)

= E

(∫ t

s
· · ·
∫ t

s
e−Xt1

−···−Xtndt1 . . . dtn

)

= n!E

(∫ t

s
dt1 e

−Xt1

∫ t

t1

dt2 e
−Xt2 · · ·

∫ t

tn−1

dtn e
−Xtn

)

= n!

∫ t

s
dt1

∫ t

t1

dt2· · ·
∫ t

tn−1

dtnE
(
e−(Xt1

+···+Xtn)
)
,

7



where, in the third step, we use that (t1, t2, · · · , tn) 7→ e−(Xt1
+···+Xtn ) is

symmetric. By the independence of the increments

E
(
e−αXt

)
= E

(
e−α(Xt−Xs)−αXs

)
= E

(
e−α(Xt−Xs)

)
E
(
e−αXs

)
.

Consequently,

E
(
e−α(Xt−Xs)

)
= E

(
e−αXt

)
/E
(
e−αXs

)
= e−(Φ(t;α)−Φ(s;α)).

Since,

Xt1 + · · ·+Xtn =
n∑

k=1

(n− k + 1)
(
Xtk −Xtk−1

)
, t0 := 0,

we have

m
(n)
s,t = n!

∫ t

s
dt1

∫ t

t1

dt2 . . .

· · ·
∫ t

tn−1

dtn exp

(
−

n∑

k=1

(Φ(tk;n− k + 1)− Φ(tk−1;n− k + 1))

)
.

Using here (5) yields the claimed formula (15). The statement concern-

ing the finiteness of m
(n)
s,∞ follows by applying the monotone convergence

theorem as t→ ∞ on both sides of (15).

In the next corollary we give a sufficient condition for m
(n)
∞ to be finite

for all n.

Corollary 2.7. Variable I∞ has all the positive moments if

∫ ∞

0
e−(Φ(s;n)−Φ(s;n−1)) ds <∞ (16)

for all n = 1, 2, . . . .

Proof. From (15) we have

m
(n)
t ≤ n!

n∏

k=1

∫ ∞

0
e−(Φ(s;n)−Φ(s;n−1)) ds. (17)

The right hand side of (17) is finite if (16) holds. Let t → ∞ in (17). By

monotone convergence, m
(n)
∞ = limt→∞m

(n)
t , and the claim is proved.
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Formula (18) below extends the corresponding formula for subordinators
found [16], see also [2] p.195, for Lévy processes satisfying Assumption (A).
It is a straightforward implification of Proposition 2.6.

Corollary 2.8. Let (Xt)t≥0 be a Lévy process with the Laplace exponent as
in (6) and define n∗ := min{n ∈ {1, 2, . . . } : Φ(n) ≤ 0}. Then

m(n)
∞ := E(In∞) =





n!∏n
k=1Φ(k)

, if n < n∗,

+∞, if n ≥ n∗.
(18)

.

Example 2.9. A much studied functional is obtained when taking X =
(Xt)t≥0 with Xt = σWt + µt, σ > 0, µ > 0, where (Wt)t≥0 is a standard
Brownian motion. In the papers by Dufresne [6] and Yor [17] (see also
Salminen and Yor [13]) it is proved that

I∞ :=

∫ ∞

0
e−(σWs+µs) ds ∼ H

(δ)
0 , (19)

where Hδ
0 is the first hitting time of 0 for a Bessel process of dimension

δ = 2(1 − (µ/σ2)) starting from σ/2, and ∼ means ”is identical in law
with”. In particular, it holds

∫ ∞

0
exp(−(2Ws + µs)) ds ∼ 1

2Zµ
, (20)

where Zµ is a gamma-distributed random variable with rate 1 and shape
µ/2. We refer to [6] for a discussion showing how the functional on the left
hand side of (19) arises as the present value of a perpetuity in a discrete
model after a limiting procedure. Since the Lévy exponent in this case is

Φ(λ) = λµ− 1

2
λ2σ2,

the criterium in Corollary 2.8 yields

E (In∞) <∞ ⇔ n < 2µ/σ2,

which readily can also be checked from (20).
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3 First hit processes of one-dimensional diffusions

We recall first some facts concerning the first hitting times of one-dimensional
(or linear) diffusions. Let now Y = (Ys)s≥0 be a linear diffusion taking val-
ues in an interval I. To fix ideas assume that I equals R or (0,∞) or [0,∞)
and that

lim sup
s→∞

Ys = +∞ a.s. (21)

Assume Y0 = v and consider for a ≥ v the first hitting time

Ha := inf{s : Ys > a}.

Defining Xt := Ht+v, t ≥ 0, it is easily seen – since Y is a strong Markov
process – that X = (Xt)t≥0 is an increasing purely discontinuous additive
process starting from 0. Moreover, from assumption (21) it follows that
Xt <∞ a.s. for all t. The process X satisfies Assumption (A) in Section 2.
Indeed, using the well known characterization of the Laplace transform of
Ha we have

Ev(e
−βXt) = Ev(e

−βHt+v ) =
ψβ(v)

ψβ(t+ v)
, t ≥ 0, (22)

where β ≥ 0, Ev is the expectation associated with Y starting from v, and
ψβ is a unique (up to a multiple) positive and increasing solution of the
ODE

Gf(x) = βf(x) (23)

satisfying the appropriate boundary condition at 0 in case I = [0,∞) and 0
is reflecting. In (23) G denotes the differential operator associated with Y.
In the absolutely continuous case G is of the form

Gf(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x), f ∈ C2(I), x ∈ I,

where σ and µ are continuous functions. For details about diffusions (and
further references), see Itô and McKean [8], and [3]. The Laplace transform
of Xt can also be represented as follows

Ev(e
−βXt) = exp

(
−
∫ t+v

v
S(du)

∫ ∞

0
(1− e−βx)n(u, dx)

)
, (24)

where S is the scale function, and n is a kernel such that for all v ∈ I and
t ≥ 0 ∫ t+v

v

∫ ∞

0
(1 ∧ x)n(u, dx)S(du) <∞.
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Representation (24) clearly reveals the structure of X as a process with

independent increments. Comparing with the notation in Introduction, we
have

νt(dx) =

∫ t+v

v
n(u, dx)S(du).

From (22) and (24) we may conclude that

∫ ∞

0
(1− e−β x)n(u, dx) = lim

w→u−
1−Ew(e

−βXu)

S(u)− S(w)
. (25)

We now pass to present examples of exponential functionals of first hit
processes. Firstly, we study Bessel processes satisfying (21) and show, in
particular, that the exponential functional of the first hit process has all the
moments. In our second example it is seen that the exponential functional
of the first hit process of geometric Brownian motion has only finitely many
moments depending on the values of the parameters.

Example 3.1. Bessel processes. Let Y be a Bessel process starting from
v > 0. The differential operator associated with Y is given by

Gf(x) =
1

2
f ′′(x) +

δ − 1

2x
f ′(x), x > 0,

where δ ∈ R is called the dimension parameter. From [3] we extract the
following information

• for δ ≥ 2 the boundary point 0 is entrance-not-exit and (21) holds,

• for 0 < δ < 2 the boundary point 0 is non-singular and (21) holds when
the boundary condition at 0 is reflection,

• for δ ≤ 0 (21) does not hold.

In case when (21) is valid the Laplace exponent for the first hit process
X = (Xt)t≥0 is given for v > 0 and t ≥ 0 by

Ev(e
−βXt) =

ψβ(v)

ψβ(t)
=

v1−δ/2 Iδ/2−1(v
√
2β)

t1−δ/2 Iδ/2−1((t+ v)
√
2β)

, (26)

where Ev is the expectation associated with Y when started from v and I
denotes the modified Bessel function of the first kind. For simplicity, we
wish to study the exponential functional of X when v = 0. To find the

11



Laplace exponent when v = 0 we let v → 0 in (26). For this, recall that for
p 6= −1,−2, . . .

Ip(v) ≃
1

Γ(p+ 1)

(v
2

)p
as v → 0. (27)

Consequently,

E0(e
−βXt) = lim

v→0
Ev(e

−βXt)

=
1

Γ(ν + 1)

(√
2β

2

)δ/2−1
tδ/2−1

Iδ/2−1(t
√
2β)

=: e−Φ(t;β).

The validity of (16), that is, the finiteness of the positive moments, can now
be checked by exploiting the asymptotic behaviour of Ip saying that for all
p ∈ R (see Abramowitz and Stegun [1], 9.7.1 p.377)

Ip(t) ≃ et/
√
2πt as t→ ∞. (28)

Indeed, for n = 1, 2, . . .

e−(Φ(t;n)−Φ(t;n−1)) =
nδ/2−1

Iδ/2−1(t
√
2n)

Iδ/2−1(t
√

2(n − 1))

(n − 1)δ/2−1

≃
(

n

n− 1

)δ/2−1( n

n− 1

)1/4

e−t(
√
2n−

√
2(n−1)),

which clearly is integrable at +∞. Consequently, by Corollary 2.7, the inte-
gral functional ∫ ∞

0
e−Xt dt

has all the (positive) moments.

Example 3.2. Geometric Brownian motion. Let Y = (Ys)s≥0 be a
geometric Brownian motion with parameters σ2 > 0 and µ ∈ R, i.e.,

Ys = exp

(
σWs + (µ− 1

2
σ2)s

)

where W = (Ws)s≥0 is a standard Brownian motion initiated at 0. Since
Ws/s→ 0 a.s. when s→ ∞ it follows

• lims→∞ Ys = +∞ a.s if µ > 1
2σ

2,
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• lims→∞ Ys = 0 a.s if µ < 1
2σ

2.

• lim sups→∞ Ys = +∞ and lim infs→∞ Ys = 0 a.s. if µ = 1
2σ

2.

Consequently, condition (21) is valid if and only if µ ≥ 1
2σ

2. Since Y0 = 1
we consider the first hitting times of the points a ≥ 1. Consider

Ha := inf{s : Ys = a}

= inf

{
s : exp

(
σWs + (µ − 1

2
σ2)s

)
= a

}

= inf

{
s : σWs + (µ − 1

2
σ2)s = log a

}

= inf

{
s : Ws +

µ− 1
2σ

2

σ
s =

1

σ
log a

}
.

We assume now that σ > 0 and µ ≥ 1
2σ

2. Let ν := (µ − 1
2σ

2)σ. Then Ha is
identical in law with the first hitting time of (log a)/σ for Brownian motion
with drift ν ≥ 0 starting from 0. Consequently, letting Xt := H1+t we have
for t ≥ 0

E1(e
−βXt) =

ψβ(0)

ψβ(log(1 + t)/σ)

= exp

(
−
(√

2β + ν2 − ν
) log(1 + t)

σ

)

= (1 + t)
−
(√

2β+ν2−ν
)

/σ
, (29)

=: exp (−Φ(t;β)) .

where E1 is the expectation associated with Y when started from 1 and

ψβ(x) = exp
((√

2β + ν2 − ν
)
x
)

is the increasing fundamental solution for Brownian motion with drift (see [3]
p.132). Notice that the additive process X is a deterministic time change of
the first hit process of Brownian motion with drift, which is a subordinator.
We use now Proposition 2.6 to study the moments of the perpetual integral
functional

I∞ =

∫ ∞

0
e−Xs ds.

To simply the notation (cf. (29)) introduce

ρ(β) :=
(√

2β + ν2 − ν
)
/σ.
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By formula (15) the nth moment is given by

E1(I
n
∞) = n!

∫ ∞

0
dt1 (1 + t1)

−(ρ(n)−ρ(n−1))

∫ ∞

t1

dt2 (1 + t2)
−(ρ(n−1)−ρ(n−2))

×
∫ ∞

t2

dt3 · · ·
∫ ∞

tn−1

dtn (1 + tn)
−ρ(1)

=





n!∏n
k=1(ρ(k)− k)

, if n < n∗,

+∞, if n ≥ n∗,

where
n∗ := min{n ∈ {1, 2, . . . } : ρ(n)− n ≤ 0}.

Condition (16) in Corollary 2.7 takes in this case the form

ρ(n)− ρ(n− 1) > 1. (30)

This being a sufficient condition for the finiteness of m
(n)
∞ we have

ρ(n)− ρ(n− 1) > 1 ⇒ ρ(n)− n > 0. (31)

Consider now the case ν = 0. Then

ρ(n) > n ⇔ n <
2

σ2
, (32)

i.e., smaller the volatility (i.e. σ) more moments of I∞ exist, as expected.
Moreover, in this case

ρ(n)− ρ(n− 1) > 1 ⇔
√
2n+

√
2(n− 1) <

2

σ

⇔ 2n− 1 +
√

4n(n− 1) <
2

σ2
(33)

showing, in particular, that when σ is “small” there exist ”many” n satisfy-
ing (32) but not (33).
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