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Abstract. The failure probability of geotechnical structures with spatially varying soil properties is generally computed using 
Monte Carlo simulation (MCS) methodology. This approach is well known to be very time-consuming when dealing with small 
failure probabilities. One alternative to MCS is the subset simulation approach. This approach was mainly used in the literature 
in cases where the uncertain parameters are modelled by random variables. In this paper, it is employed in the case where the 
uncertain parameters are modelled by random fields, because the spatial variability of the soil properties has proven to greatly 
affect the behavior of geotechnical structures and to induce a significant change in the variability of their responses. This is 
illustrated through the probabilistic analysis at the ultimate limit state (ULS) of a strip footing resting on a one- and two-layer 
purely cohesive soil with a spatially varying cohesion. The soil cohesion parameter was modeled as an anisotropic non-Gaussian 
(log-normal) random field using a square exponential autocorrelation function. The Expansion Optimal Linear Estimation 
(EOLE) method was used to discretize this random field. The deterministic model was based on numerical simulations using the 
finite difference software FLAC3D. 

Keywords. Strip footing, ultimate limit state, subset simulation approach, Monte Carlo simulation, random field, spatial 
variability, Expansion optimal linear estimation method (EOLE) 

1. Introduction

Traditionally, the analysis of geotechnical 
structures is based on deterministic approaches. 
In these approaches, the soil input parameters 
and the system responses are considered 
deterministic. During recent years, much effort 
has been paid to the probabilistic analysis of 
geotechnical structures. Some simplified 
methods have modelled the different uncertain 
parameters by random variables where the soil is 
considered as a uniform material. However, in 
nature, the soil parameters (shear strength 
parameters, elastic properties, etc.) vary spatially 
in both the horizontal and vertical directions as a 
result of depositional and post-depositional 
processes. This leads to the necessity of 
representing the soil parameters by random fields 
characterized not only by their marginal 
probability density functions (as is the case of 
random variables), but also by their 
autocorrelation functions. In this regard, more 

advanced probabilistic approaches were 
proposed in the literature. These approaches are 
generally based on the finite element or the finite 
difference method. In these approaches, one 
needs to discretize the random field into a finite 
number of random variables. Once the random 
field is discretized into a finite number of 
random variables, the failure probability can be 
determined. In the framework of these 
approaches, Monte Carlo simulation (MCS) is 
generally used to perform the probabilistic 
analyses.  Notice that MCS methodology is not 
suitable for the computation of a small failure 
probability because the number of simulations 
required becomes very large in this case. Au and 
Beck (2001) proposed an alternative efficient 
approach (called subset simulation ‘SS’) to 
calculate the small failure probabilities in cases 
where the uncertain parameters are modelled by 
random variables. In this approach, the failure 
probability is expressed as a product of 
conditional probabilities of some chosen 
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intermediate failure events. Thus, the problem of 
evaluating a small failure probability in the 
original probability space is replaced by a 
sequence of events in the conditional probability 
space. Later on, Ahmed and Soubra (2011, 2012) 
extended the SS approach to the case of random 
fields. 

In this paper, the subset simulation method 
was employed to perform a probabilistic analysis 
at the ultimate limit state of a strip footing 
resting on a one- and two-layer purely cohesive 
soil with a two-dimensional spatially varying 
cohesion. As for the random field discretization 
method, the Expansion Optimal Linear 
Estimation (EOLE) methodology proposed by Li 
and Der Kiureghian (1993) and extended by 
Vo�echovsky (2008) was used to discretize the 
random field. The deterministic model employed 
for the computation of the system response was 
based on numerical simulations using FLAC3D 
software. After a brief description of the 
deterministic model, the EOLE method and SS 
approach are presented. Then, the probabilistic 
analysis and the corresponding results are 
presented and discussed. This paper ends with a 
conclusion.  

2. Deterministic Model

The deterministic model used for the 
computation of the ultimate footing load was 
based on numerical simulations using the finite 
difference code FLAC3D. For this calculation, a 
footing of width B that rests on a soil domain of 
width 7.5B and depth 3B was considered in the 
analysis. For the displacement boundary 
conditions, the bottom boundary was assumed to 
be fixed and the vertical boundaries were 
constrained in motion in the horizontal direction. 

The undrained soil behavior was modeled 
using a conventional elastic-perfectly plastic 
model based on the Tresca failure criterion. On 
the other hand, an associative flow rule was 
considered in this study. Notice that the soil 
Young modulus E and Poisson ratio �� were 
assumed as follows: E = 60MPa and ���0.3. The 
footing of breadth equal to 2m and a depth equal 
to 0.5m was simulated by a weightless elastic 
material. Its elastic properties are the Young’s 
����	�
���
����������������

���
��������������

The connection between the footing and the soil 
mass was modeled by interface elements having 
the same mean values of the soil shear strength 
parameters in order to simulate a perfectly rough 
soil-footing interface. Concerning the elastic 
properties of the interface, their values were as 
follows: Ks =1GPa, Kn =1GPa, where Ks and 
Kn are the shear and normal stiffnesses of the 
interface.  

It should be noted that the size of a given 
element in the deterministic mesh depends on the 
autocorrelation distances of the soil properties. 
Der Kiureghian and Ke (1988) have suggested 
that the length of the largest element of the 
deterministic mesh in a given direction 
(horizontal or vertical) should not exceed 0.5 
times the autocorrelation distance in that 
direction. This condition was satisfied in this 
paper.  

For the computation of the ultimate bearing 
capacity of a rigid rough strip footing subjected 
to a central vertical load using FLAC3D, the 
following method was adopted: an optimal 
controlled downward vertical velocity of 5 × 10-6 
m/time step (i.e. displacement per time step) was 
applied to the bottom central node of the footing. 
Damping of the system was introduced by 
running several cycles until a steady state of 
plastic flow is developed in the soil underneath 
the footing. At each cycle, the vertical footing 
load was obtained by computing the integral of 
the normal stress components for all elements in 
contact with the footing. The value of the vertical 
footing load at the plastic steady state is the 
ultimate footing load.  

3. EOLE Methodology

The expansion optimal linear estimation (EOLE) 
method originally proposed by Li and Der 
Kiureghian (1993) and then extended by 
��������
�!� "
��#$� to cover the case of 
correlated non-Gaussian fields is used herein to 
discretize the non-Gaussian (log-normal) random 
field of the soil cohesion. For a non-Gaussian 
random field ����(�, �)  of the soil cohesion 
which is ��
���%���%!&� "�$����
����������'C and 

�������� ���������� *C, (ii) non-Gaussian 
marginal cumulative distribution function FC, 
and (iii) a square exponential autocorrelation 
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function �	��[(x, �), (
�, ��)] , the value of the 
correlation between two arbitrary points (x, y) 
and (x', y') is given as follows: 

�	��
(�, �), ��, ��� �� = ��� �� �����
�� �� � �����

�! "�#    (1) 

where $� and $� are the autocorrelation distances 
along x and y respectively. In the EOLE method, 
one should first define a stochastic grid 
composed of q grid points (or nodes) obtained 
from the different combination of H points in the 
x (or horizontal) direction, and V points in the y 
(or vertical) direction assembled in a vector % =  {%& = (�', �*)} where h=1, …, H, v=1, …, 
V and n=1, …, q. Notice that for the vector Q 
composed of q elements, the values of the field 
are assembled in a vector + = {+- = Z(x., y/)}  
where h=1, …, H, v=1, …, V and n=1, …, q. 
Then, one should determine the correlation 
matrix for which each element (0 )123;3 4,5  is 
calculated using Eq. (1) as follows: 

( 0  )��6;6 7,8 = �	��
%7, %8�   (2) 

where i=1, …, q and j=1, …, q. Notice that the 
matrix 0  ��6;6 in Eq. (2) provides the correlation 
%��4���� ����� ;����� ��� ���� ������� <� ���� �		� ����
other points of the same vector.  The non-
Gaussian autocorrelation matrix 0  ��6;6  should be 
transformed into the Gaussian space using the 
Nataf transformation. As a result, one obtains a 
Gaussian autocorrelation matrix  0  �6;6  that can 
be used to discretize the Gaussian random field 
of the soil cohesion as follows: 

�9�(�, �) = :� + >� 0 ?@
AB@

�8CD  . F8. 0	(�,�);6   (3)

where �G8 , F8�  are the eigenvalues and 
eigenvectors of the Gaussian autocorrelation 
matrix 0  �6;6 , 0H(I,J);3  is the correlation vector 
%��4���� ����� ;����� ��� ���� ������� <� ���� ���
arbitrary point (x, y) of the field, K5 is a standard 
normal random variable, and N is the number of 
terms (expansion order) retained in the EOLE 
method. Once the Gaussian random field is 
obtained, it should be transformed into non-
Gaussian space by applying the following 
formula: 

�9���(�, �) =  L��D{M[�9�(�, �)]}              "�$ 

where M(. )  is the standard normal cumulative 
density function.  

4. Subset Simulation Approach

4.1. Basic Idea of Subset Simulation 

Consider a failure region F defined by the 
condition G<0 where G is the performance 
function and let (s1, …, sk, ..., sNt) be Nt samples 
located in the space of the uncertain variables 
where ‘s’ is a vector of random variables. It is 
possible to define a sequence of nested failure 
regions F1, …, Fj, ..., Fm of decreasing size where 

FFFF mj ����� ......1 (cf. Figure 1). An 
intermediate failure region Fj can be defined by 
Gj < Cj where Cj>0. Thus, there is a decreasing 
sequence of positive numbers C1, …, Cj, ..., Cm 
corresponding respectively to F1,…, Fj,…, Fm 
where C1>…>Cj>...> Cm=0. The Nt samples 
(s1,…, sk, ..., sNt) will be divided into groups with 
equal number Ns of samples (s1, …, sk, ..., sNs). 
Thus, Nt=m x Ns where m is the number of 
failure regions. The first Ns samples are 
generated according to MCS methodology 
following a target PDF (Pt). The next Ns samples 
of the different subsequent failure regions are 
obtained using Markov chain method based on 
the modified Metropolis-Hastings (M-H) 
algorithm according to a proposal PDF (Pp) as 
explained in Ahmed and Soubra (2012) among 
others.  

The conditional failure probability 
corresponding to an intermediate failure region Fj 
is calculated as follows: 

N�L8OL8�D� =  D
�P 0 QR@

�STCD (UT)         (5) 

where 
jFI 1�  if jFs �  and 0�

jFI  otherwise. The 

failure probability P(F)=P(Fm) of the failure 
region F can be calculated from the sequence of 
conditional failure probabilities as follows: 

 P(F) = P(Fm) = P(Fm@Fm-1) x P(Fm-1@Fm-2) x  
    P(Fm-2@Fm-3) x ... x P(F2@F1) x P(F1)     (6) 
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Figure 1. Nested Failure domain 

4.2. Implementation of SS Approach in Case of a 
Spatially Varying Soil Property  

In order to employ the SS methodology in the 
case of a spatially varying soil property, a link 
between the SS approach and EOLE 
methodology was performed. It should be 
emphasized here that EOLE includes two types 
of parameters (deterministic and stochastic). The 
deterministic parameters are the eigenvalues and 
eigenvectors of the covariance function. The role 
of these parameters is to ensure the correlation 
between the values of the random field at the 
different points in the space. On the other hand, 
the stochastic parameters are represented by the 
vector of the standard normal random variables {V7}7CD,…,W  . The role of these parameters is to 
ensure the random nature of the uncertain 
parameter. The link between the SS approach 
and EOLE was performed through the vector {V7}7CD,…,W . The basic idea of the link is that for 
a given random field realization obtained by 
EOLE, the vector {V7}7CD,…,W represents a sample 
‘s’ of the subset simulation method for which the 
system response is calculated in two steps. The 
first step is to substitute the vector{V7}7CD,…,W in 
Eq. (3) to calculate the value of the random field 
at each point in space according to its 
coordinates. The second step is to use the 
deterministic model to calculate the 
corresponding system response. A detailed 
algorithm explaining the application of the SS 
approach in the case of a spatially varying soil 
may be found in Ahmed and Soubra (2012). 

5. Numerical Results

5.1. Deterministic Numerical Results 

Only the results of a two-layer medium are 
represented in this section. The velocity fields for 
two cases of strong over soft clay (Cu1/Cu2=2 
and Cu1/Cu2=5) when H/B=0.25 are shown in 
Figure 2. Notice that Cu1 and Cu2 are the soil 
cohesion of the upper and lower layers 
respectively. Notice also that H is the depth of 
the upper layer. Figure 2 shows that the 
displacement field becomes larger and deeper 
with increasing Cu1/Cu2. This indicates that the 
small soil strength of the bottom layer (with 
respect to the upper layer) has a significant 
influence on the displacement field, and it leads 
to a reduction in the bearing capacity. To 
investigate the influence of the depth of soft clay 
relative to that of the underlying stronger clay, 
the ratios H/B=0.25 and 0.5 were considered 
with Cu1/Cu2=0.25. The bearing capacity 
decreases with the H/B increase (cf. Figure �). 
Also the failure mechanism is likely to occur (for 
both cases) entirely in the soft clay.  

H/B=0.25 and Cu1/Cu2=2 (qult�WXZ��#����) 

H/B=0.25 and Cu1/Cu2=5 (qult=92.51 kPa)
Figure 2. Displacement fields for strong over soft clay layers 
when H/B=0.25 
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 H/B= 0.25 and Cu1/Cu2 = 0.25 (qult=351.5 kPa) 

 H/B= 0.5 and Cu1/Cu2= 0.25 (qult�
[��\�����) 
Figure 3. Displacement fields for soft over strong clay layers 
when Cu1/Cu2=0.25 

5.2. Probabilistic Numerical Results 

Figure � presents one realization of the random 
field for the case of a soft layer overlying a 
strong layer (Cu1/Cu2=0.25) when H/B=0.25.  

Figure 4.  Typical realization of the cohesion random field 
where H/B=0.25: (ax=1m, ay=1m for top layer ; ax=5000m, 
ay=1m for bottom layer) 

The following values were adopted for the 
horizontal and vertical autocorrelation distances 
of the two layers: ax=1m and ay=1m for the top 
layer and ax=5000m and ay=1m for the bottom 
layer. This realization clearly shows the ability of 
EOLE method to accurately provide the 
correlation structure of the random field. Indeed, 
for the top layer, the soil cohesion is perfectly 
correlated in the vertical direction and it exhibits 

some fluctuations in the horizontal direction. The 
inverse occurs for the bottom layer.  

5.2.1. Selection of the Optimal Number of 
Realizations Ns per Level of Subset Simulation 

The number of realizations Ns to be used per 
level of subset simulation should be sufficient to 
accurately calculate the Pf value. The case of a 
single clay layer was investigated where the 
mean value and the coefficient of variation of the 
undrained shear strength Cu were respectively 
'c=50kPa and COVc=30%. A square 
exponential covariance function with ax=10m 
and ay=1m was considered herein. Notice that the 
failure thresholds Cj of the different levels of SS 
were calculated and presented in Table 1 for 
different values of Ns. This table indicates that 
the failure threshold decreases with successive 
levels until reaching a negative value at the last 
level, which means that the realizations 
generated by SS successfully progress towards 
the limit state surface G=0. It should be 
mentioned here that P(Fj) was chosen to be equal 
to 0.1. The Pf values and the corresponding 
values of the coefficient of variation for the 
different values of Ns are presented in Table 2. 
As expected, the coefficient of variation of Pf 
decreases with the increase of Ns. Notice that a 
smaller value of the coefficient of variation 
corresponds to a more accurate value of the 
estimated failure probability. This means that the 
number of realizations Ns to be used per level of 
subset simulation depends on the value of the 
coefficient of variation adopted in the analysis. 
For a target coefficient of variation of 0.3129, the 
required number of realizations per level is equal 
to Ns =1500 which corresponds to a total number 
of realizations of 7500. The corresponding value 
of Pf is equal to  1����×10-5 as may be seen from 
Table 2. 

H/B= 0.25 and Cu1/Cu2 = 0.25 (qultqq =351.5 kPa)

H/B 0 5 d C 1/C 2 0 25 ( 
[� \� �� )
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Table 1. Evolution of the failure threshold Cj with the 
different levels j of the subset simulation and with the 
number of realizations (Ns) per level 

Table 2. Values of Pf and COVPf versus the number Ns of 
realizations per level 

Ns per level Pf x (10-4 ) COVPf 
100 ���Z� W��
\� 

500 0.120 ����Z#

1000 0.068 ��ZX[� 

1500 ��W�� 0.3129

2000 0.315 0.2689 

2500 0.158 0.2387 

3000 0.157 0.2152

6. Conclusion

This paper aims at presenting a probabilistic 
analysis at the ultimate limit state of a strip 
footing resting on a one- and two-layer purely 
cohesive soil with a spatially varying cohesion 
using the subset simulation approach. The main 
findings of the paper can be summarized as 
follows: 

1- The deterministic results of a two clay 
layer medium have shown that at the 
same strength ratio, the ultimate bearing 
capacity decreases as the thickness of the 
top layer increases for a soft-over-strong 
clay profile, whereas an inverse trend 
occurs for a strong-over-soft clay profile. 
Also, the small soil strength of the bottom 
layer (with respect to the upper layer) has 
a significant influence on the 
displacement field, and it leads to a 
reduction in the ultimate bearing capacity.  

2- The probabilistic analysis of a single clay 
layer with a spatially varying soil 
cohesion has shown that the number of 
realizations required by the subset 
simulation approach (to calculate the 
failure probability Pf) was relatively 
large. As expected, this number becomes 
smaller for a greater value of the 
coefficient of variation. The on-going 
work will focus on the probabilistic 
analysis of a two clay layer medium. 
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Ns 
per 
level 

Failure threshold  Cj  for each level j 

C1 C2 C3 C4 C5 C6 

100 0.973 0.610 ���WX 0.269 0.107 -0.059 

500 W���� 0.568 0.290 0.121 -0.01 

1000 1.006 ����� 0.312 ��W�� 0.019 -0.085 

1500 1.017 0.586 0.316 0.125 -0.02 

2000 1.028 0.550 0.273 0.076 -0.06 

2500 W���W 0.579 0.299 0.118 -0.03 

3000 1.022 0.552 0.293 0.118 -0.03 
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