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Experimental evidence of convective and absolute instabilities in a nonlinear optical system is given.
In optics, the presence of spatial nonuniformities brings in additional complexity. Hence, signatures
characterizing these two regimes are derived based on analytical and numerical investigations. The
corresponding noise-sustained and dynamical patterns are observed experimentally in a liquid crystal
layer subjected to a laser beam with tilted feedback.
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uniform incident plane wave and space independent pa-
rameters, cannot be applied directly [12] and have to be
improved.

FIG. 1. Schematic sketch of the experimental setup. LC,
liquid crystal layer; M, feedback mirror; F, input optical field;
�, mirror tilt angle; d, feedback length.
Spatiotemporal instabilities have been predicted in
many different nonlinear systems. They arise from the
spontaneous symmetry breaking which leads to pattern
formation. The phenomenology of these instabilities is
completely modified as soon as a drift is present in the
system (breaking of the reflection symmetry ~rr! �~rr).
Indeed, transverse propagating waves rise at the onset.
One has then to deal not only with the growth of dis-
turbances, but also with their propagation. As a result, if
an instability occurs in these systems, it can be either
convective or absolute. The concepts of convective insta-
bility (CI) and absolute instability (AI) were first devel-
oped in the context of plasma physics [1], and later
successfully used in hydrodynamics [2]. In the convective
regime, an initial local disturbance exponentially grows
but is simultaneously advected away so that the system
returns locally to the initial homogeneous equilibrium
state. In contrast, disturbances in the absolute regime
grow locally fighting the drift upstream so that the sys-
tem reaches a patterned state. The convective regime,
where no pattern is expected, can, however, show struc-
tures if noise is present in the system. Then, macroscopic
noise-sustained structures (NSS) result from the selective
spatial amplification of the continuous perturbations pro-
duced by the microscopic noise source.

So far convective instabilities leading to noise-
sustained structures were theoretically predicted in many
areas such as open flows [3], optics [4], traffic flow [5],
crystal growth [6], etc. They were obtained experimen-
tally in hydrodynamics [7–9] but still wait to be observed
in extended optical systems [10,11]. In the latter field, the
question of the existence of such instabilities (CI, NSS) in
real systems, i.e., surviving the limitations of real de-
vices, is open. Namely, in most optical systems control
parameters are space dependent (Gaussian pump profile,
curved mirrors). Thus, the characterization criteria estab-
lished by theoretical works for ideal systems, i.e., with a
0031-9007=04=92(4)=043901(4)$22.50 
The purpose of this Letter is to evidence theoretically
and experimentally the convective instability in optics,
but also more generally in nonideal systems. The system
considered here is a nematic liquid crystal layer irradiated
by a laser beam and inserted in a feedback loop with a
tilted mirror [13].We emphasize that our real system (i) is
noisy with an inherent noise source stemming from ther-
mal fluctuations of the liquid crystal and (ii) pos-
sesses control parameters that are space dependent due
to the Gaussian incident beam. We focus here on the one-
dimensional (1D) case. We derive, first, analytical thresh-
olds for convective and absolute instabilities in the ideal
situation where noise is neglected and the incident wave is
a plane wave. Then, from numerical simulations carried
out for the experimental conditions, we find signatures for
these two regimes showing that the scenario of these
instabilities still remains with these specific features.
Finally, by comparison between the CI and AI signatures
of these numerical simulations and of experimental re-
cordings, we prove that CI characterized by NSS are,
indeed, experimentally observable in real systems.

Experiments have been realized on a feedback optical
system (Fig. 1) well described in the framework of a
model introduced first by Akhmanov et al. [14] and later
adapted by Firth and d’Alessandro [15]. Here this model
is slightly modified to account for the input field spatial
variation and for the noise. In the 1D case it reads
2004 The American Physical Society 043901-1
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FIG. 2. Absolute (solid line) and convective (dashed line)
thresholds versus h for � � 4:23 (as in experiments).
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where n	x; t
 stands for the refractive index of the non-
linear nematic LC layer, t and x are the time and space
variables scaled with respect to the relaxation time � and
the diffusion length lD, h represents the lateral shift due
to the tilted mirror as indicated in Fig. 1, and R is its
reflectivity. We have set � � d=k0l

2
D where d is the slice-

mirror distance and k0 is the optical wave number of
the field. �	x; t
 describes a Gaussian stochastic pro-
cess of zero mean and correlation h�	x; t
�	x0; t0
i �
�	x� x0
�	t� t0
. The level of noise is controlled by
the parameter �, which is purely phenomenological. F
is the forward input optical field, and its transverse profile
is accounted for by using F	x
 � F0g	x
, with g	x
 �
exp	�x2=w2
 for a Gaussian pump beam of radius w
and g � 1 for the uniform (plane wave) case. B is the
backward optical field [15]. The Kerr effect is parame-
trized by � which is positive (negative) for a focusing
(defocusing) medium.

Starting from the above equations, in the plane wave
approximation [g	x
 � 1] and in the absence of noise
(� � 0), we can perform a linear stability analysis that
provides us with the convective and absolute thresholds in
the presence of a feedback mirror tilt. Assuming pertur-
bations of the stationary state n0 � F2

0	1� R
 in the form
�n� exp	ikx� �t
, we obtain the following dispersion
relation:

� � 1� k2 �� sin	�k2
 exp	ikh
; (3)

where� � 2RF2
0j�j. The above expression shows that the

presence of h leads to a complex dispersion relation. This
means that, in addition to the classical temporal insta-
bilities (k real and � complex), there are also spatial
amplifications (k complex). Near onset of the instability,
Eq. (3) may be approximated [16] as
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where the derivatives are evaluated at �c and kc that are
the critical values given by Eq. (3) and correspond to
�conv and kconv (in our notations), and �c � �	kc; �c
.
After simplifications, we find @�=@�jc � � sin	�k2c
 �
exp	ihkc
, @�=@kjc � �i	1� k2c
�h� 2�kc tan	hkc
=
tan	�k2c
�, and @2�=@2kjc � 	1� k2c
f4�

2k2c � h
2 �

tan	hkc
�4�kc= tan	�k
2
c
 � h=kc�g � if	1� k

2
c
 tan	hkc
�

�4�2k2c � 2�= tan	�k2c
 � h
2� � 4hkcg. Note that these

expressions are obtained without any restriction on the
value of h. The key feature is the presence of a group
velocity [imaginary part of the third term in Eq. (4)]
which vanishes for h � 0, meaning that a convective
regime may exist if h � 0.
043901-2
The convective threshold �conv is obtained by cancel-
ing Re	@�=@k
kc real in Eq. (4), whereas the absolute in-
stability threshold �abs is given by the saddle point
method. It states that the absolute threshold is such that
Re��	ks
� � 0 where ks is a complex saddle point satisfy-
ing rk�	k
 � 0 and Re�r2

k�	k
� � 0 (see Refs. [2,17–19]
for details). The thresholds are plotted in Fig. 2 versus h.
As can be seen from the figure, there exists a region
�conv <�<�abs where a convective regime is expected.

The analytical approach proves firmly the existence of
CI and AI in the ideal system; in addition, it allows one to
determine the parameter domain for h and �� that maxi-
mizes the convective region. However, the experimental
conditions differ mainly by the presence of a Gaussian
pump beam and noise that may affect drastically the
dynamics [20,21]. Fortunately, numerical investigations
performed in the parameter range of our experiments
show that these experimental features do not modify
qualitatively the scenario of CI and AI. In what follows,
we describe (i) the numerical test for demonstrating the
CI persistence in the presence of a Gaussian pumping
without noise, (ii) the signature found numerically show-
ing that the addition of noise does not affect the CI and AI
threshold values (determined without noise) and their
scenario, and (iii) the role of this signature to evidence
the CI and AI regimes in the experiments.

In a first step we check numerically the influence of a
Gaussian input field on the existence of CI. In that pur-
pose, we analyze (in the absence of noise) the spatiotem-
poral evolution of a small perturbation applied initially
on the top of the Gaussian beam for increasing values of
the parameter � [Figs. 3(a)–3(c)], and identify three
different regimes. Namely, a homogeneous regime where
the perturbation is linearly damped [Fig. 3(a)]. A con-
vective regime, the perturbation is amplified and ad-
vected away. The system returns to the basic state for
long times [Fig. 3(b)]. An absolute regime, the pattern
invades all the available space [Fig. 3(c)]. The transitions
between these regimes set the values of the convective
and absolute thresholds (second row of Table I). Note that,
as mentioned above, these values differ slightly from the
analytical predictions obtained in the ideal case († in
Table I). If we further reduce the Gaussian width, the
043901-2
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FIG. 3. (a)–(c) Numerical simulations of the evolution of a
perturbation applied at 	x � 0; t � 0
, in case of a Gaussian
pump beam without noise. (d)–(f) Numerical simulations of the
‘‘patterns’’ obtained for the same Gaussian input beam but in
the presence of noise. (g)–(i) Corresponding experimental
observations. Pictures (a),(d),(g) correspond to a regime below
CI threshold, (b),(e),(h) to CI, and (c),(f),(i) to AI. The
parameters are w � 140, � � 4:23, h � 1:3, � � 10�2.
(a),(d) F2

0 � 0:98; (b),(e) F2
0 � 1:1; (c),(f) F2

0 � 1:21. (g)–
(i) d � 5 mm, w � 1400 �m, � ’ 1:3 mrad, h � 1:3lD.
(g) I0 � 95 W=cm2, (h) I0 � 110 W=cm2, (i) I0 � 128 W=cm2.
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separation between the two thresholds increases more. So,
the addition of a Gaussian profile does not affect the
existence of a convective region—only its domain of
existence varies with the pump width.

In the second step we take into account noise (� � 0) in
Eqs. (1) and (2). Numerical integrations for the same
parameters as previously are carried out to obtain the
realistic ‘‘noisy’’ patterns [Figs. 3(d)–3(f)] that are ex-
pected experimentally. Below the convective threshold
(determined without noise), they depict an intermittent
TABLE I. Comparison of the numerical values of the con-
vective and absolute thresholds obtained from (†) the local
perturbation method and (�) the edge detection �uuf. w � 140,
� � 4:23, h � 1:3, � � 10�2. �	F2

0
 is the uncertainty.

F2
0 conv F2

0 abs �	F2
0


Flat profile, noise (�analytic)† 0.998 1.073 � � �

Gaussian profile, no noise† 1.05 1.16 0.02
Gaussian profile and noise� 1.05 1.16 0.02
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pattern of very small amplitude and with a random spa-
tial phase [Fig. 3(d)]. It is associated with a precursor,
induced by noise [22], of the pattern that emerges at
threshold. In the convective regime [Fig. 3(e)], the per-
turbations are amplified and advected away, but since
they appear recursively they lead to NSS. Above the
absolute threshold (determined without noise, i.e., 1.16)
the domain of the roll pattern extends upstream and
invades all the available region [Fig. 3(f)]. Although the
pump profile is symmetric with respect to its center
(position x � 0), the patterns are located to the bottom.
This is a direct consequence of the amplification and
advection. As a result, drifting rolls are observed for
both unstable regimes CI and AI [Fig. 3(e) and 3(f)].
However, these two regimes do not differ sufficiently to
be distinguished without any ambiguity from the figure.
In order to evidence the CI and NSS regimes, we look for
a signature of the convective and absolute regimes based
on the evolution of the width of the pattern region versus
� and more precisely of the evolution of its upstream
edge ( �uuf) which is the most relevant. It is defined as the
mean location where the roll amplitude is 1=10 of its
maximum (at the corresponding �). Indeed, Fig. 4(a)
reveals that �uuf displays three different evolutions charac-
terized by two critical values of F2

0 (� in Table I) corre-
sponding to the two transitions in the evolution of �uuf
[vertical dashed lines in Fig. 4(a)]. Comparison between
these critical values and the numerical evaluations of the
CI-AI thresholds († second row in Table I) previously
found for a Gaussian pumping without noise are in ex-
cellent agreement. One may conclude that the first break-
ing in the curve of �uuf occurring at F2

0 � 1:05 (left dashed
vertical line) corresponds to the convective instability
threshold while that observed at F2

0 � 1:16 (right dashed
vertical line) is associated with the onset of the absolute
instability. This means that the three distinct evolutions
of �uuf correspond to the three different regimes of below
CI threshold, CI, and AI (respectively, regions labeled H,
C, and A in Fig. 4). The above quantitative comparison
demonstrates that the addition of a realistic level of noise
does not change the scenario of the instabilities. Finally,
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FIG. 4 (color online). Evolution of �uuf versus the incident
intensity. Left: numerical simulations; right: experiments.
Same parameters as Fig. 3. H, C, and A refer to the homoge-
neous, convective, and absolute regimes, respectively. The
arrows correspond to the diagrams of Fig. 3.
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the jumps in the slope evolution of �uuf provide a criterion
for evidencing the CI regime in the realistic conditions.
Note that the study of temporal Fourier transform of the
intensity at a space location [4,23] confirms the existence
of the two regimes (CI and AI).

Corresponding experiments have been performed on
the setup already described in Refs. [20,22], with the
essential difference of having a feedback mirror tilted
by an angle � (see Fig. 1). As the power of the input laser
beam is increased, we observe experimentally [Figs. 3(g)–
3(i)] three qualitatively different spatiotemporal behav-
iors that are similar to those of numerical simulations
[Figs. 3(d)–3(f)]. For low input intensities, the output
beam intensity shows erratic rolls that appear randomly
in time and space with short time duration [Fig. 3(g)].
When increasing the input intensity, drifting ‘‘rolls’’ are
observed that never die out and have a spread width
increasing with I0 [Figs. 3(h) and 3(i)]. The inspection
of the �uuf evolution evaluated from the experimental re-
cordings [Fig. 4(b)] shows clearly three distinct regimes
that mimic those of the realistic numerical simulations
[Fig. 4(a)]. By comparison, we conclude the existence of a
convective regime [C region in Fig. 4(b)] and locate
approximately the two thresholds. The agreement be-
tween the simulations and the experiments is quantita-
tively good with a ratio of the absolute to convective
‘‘thresholds’’ of about, respectively, 1.1 and 1.07.

To summarize, we have demonstrated that noise-
sustained rolls associated with the convectively unstable
regime survive in a real system with parameters slowly
varying in space. The existence of a CI regime highlights
the crucial role of noise source in the dynamics of pat-
terns. Indeed, these structures result from the amplifica-
tion of perturbations by deterministic dynamics. This
contrasts with other noise effects as, for instance, the
noisy precursors corresponding to weakly damped fluc-
tuations observed in the linear stable regime [22]. The
necessary condition for the occurrence of the convective
regime is the reflection symmetry breaking which is
produced here by feedback mirror tilt, thus producing a
drift velocity. Dynamical rolls as due to the absolute
instability have also been observed beyond the CI domain.
They are self-sustained by the nonlinear dynamics.
Experiments and simulations show that the best indicator
of the nature of the instabilities is provided by the evolu-
tion of the boundaries of the patterned region. In spite of
the presence of noise, this evolution exhibits clear thresh-
olds for convective and absolute instabilities. The statis-
tics and temporal Fourier transform confirm that there
exists a sizable domain of convective instabilities be-
tween the unpatterned and the fully patterned states.
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