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On the practical stability of hybrid control algorithm
with minimum dwell-time for a DC-AC converter
Carolina Albea Sanchez, Oswaldo Lopez Santos, David. A. Zambrano Prada, Francisco Gordillo, Germain

Garcia

Abstract—This paper presents a control law based on Hybrid
Dynamical Systems (HDS) theory for a dc-ac converter. This
theory is very suited for analysis of power electronic converters,
since it combines continuous (voltages and currents) and discrete
(on-off state of switches) signals avoiding, in this way, the use of
averaged models. Here, practical stability results are induced for
this tracking problem, ensuring a minimum dwell-time associated
with an LQR performance level during the transient response
and an admissible chattering around the operating point. The
effectiveness of the resultant control law is validated by means
of simulations and experiments.

I. INTRODUCTION

The control of power converters is characterized by the fact
that the input signals are discrete, since they are the on-off
state of switching devices, while the rest of signals, including
the ones to be controlled, are continuous. However, most of the
methods for the control of power converters use an averaged
model in which the discrete signals are averaged during each
sampling period and, thus, are considered continuous signals
[1]–[3]. These approaches have solved many practical prob-
lems in terms of theoretical justifications, but the answers still
are incomplete to some extent. Among the main limitations,
we can point out the difficulty of quantifying the precision of
the approximation, resulting from the averaging procedure and
the fact that the properties of the control laws are only valid
locally. More recently, the control community has concentrated
efforts on the study of new hybrid control techniques. Indeed,
Hybrid Dynamical Systems (HDS) framework is suitable for
modelling and controlling this kind of systems, because it al-
lows guaranteeing a global stability improving power converter
performance, as the reduction of switching, for instance.

The HDS framework was firstly applied to electronic con-
verters in 2003 [4] and after that more applications have
appeared [5]–[7]. All these applications consider dc-dc con-
verters, whose objective, from the control theory point of
view, is to stabilize an operating point. Nevertheless, in other
electronic converters is usual to work with ac and thus, the
problem is more involved. When ac voltage is to be generated,
as is the case of inverters, the objective is to track a sinusoidal
reference. There exist some works dealing with this problem.
For example, in [8], [9] authors provide a hybrid algorithm

Carolina Albea Sanchez and Germain Garcia are with LAAS-CNRS, Uni-
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and a hybrid predictive control, respectively, for controlling
a DC/AC converter with a minimum dwell-time, which is
guaranteed using a space regulation. However, this dwell-time
was not quantized in time for physical implementation issues.
Likewise, the authors do not provide experiments to validate
the controlled system.

A preliminary version of this paper appeared in [10] where
a tradeoff between the switching frequency and performance
was considered using a tuning parameter. In this new version,
a modification of the control law is proposed in order to avoid
infinitely fast switching in steady state, which is not desirable
for energy efficiency and reliability considerations. Further-
more, practical stability proofs are now included. Experiments
in a prototype validate the results.

The rest of the paper is organized as follows. The half-
bridge inverter model is described in Sect. II while the control
problem is stated in Sect. III. In Sect. IV a hybrid version
of the model is proposed as well as the hybrid control law.
Uniform Global Asymptotic Stability is proved. In Sect. V it
is shown that one of the parameters of the control law can be
used to cope with a tradeoff between dwell-time –and, thus, the
switching frequency– and an LQR performance measurement.
Section VI presents a modification of the control law in order
to avoid infinitely fast switching at steady state. Simulations
are presented in Sect. VII, and experiment results are presented
in Sect. VIII. The paper closes with a section of conclusions
and future work.

Notation: Through out the paper R denotes the set of real
numbers, Rn the n-dimensional euclidean space and Rn×m
the set of all real n×m matrices. The set of non-negative real
numbers is denoted by R≥0. M � 0 (resp. M ≺ 0) represents
that M is a symmetric positive (resp. negative) definite matrix.
The Euclidan norm of vector x ∈ R is denoted by |x|. I is
the identity matrix of appropriate dimension. λm(M), λM (M)
represent the minimum and maximum eigenvalues of M .

II. HALF-BRIDGE INVERTER MODEL

Among the well-known inverter topologies used in single-
phase stand-alone applications, the simpler one regarding the
number of power semiconductors is the half-bridge converter.
This converter feeds a resistive load R0, from a regulated DC
source (2Vin) as depicted in Fig. 1. The resonant LC filter
is used to increase the fundamental component amplitude,
attenuating simultaneously the high frequency components.
RLS gathers the main conduction losses.

Assumption 1. Load R0 and voltage input 2Vin are con-
sidered constant. We also regard C1 = C2, which are large
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enough, such that the voltage ripple is negligible (vC1
= v̄C1

and vC2 = v̄C2 ) and input voltage is symmetrically distributed
among them (v̄C1 = v̄C2 = Vin). Therefore, the capacitor
dynamics are not considered in the following. Moreover,
variables iL and vC are measurable.

A. System description

The system differential equations can be written as

d

dt

[
iL(t)
vC(t)

]
=

[
−RLS

L − 1
L

1
C0

− 1
R0C0

] [
iL(t)
vC(t)

]
+

[
Vin

L
0

]
u (1)

where iL is the inductance current, vC is the capacitor voltage.
Moreover, u = U1 − U2 ∈ {−1, 1} is the control input
which represents two operating modes. The first one, u = −1,
corresponds to U1 = 0 (U1 OFF) and U2 = 1 (U2 ON). And
the second one, u = 1, corresponds to U1 = 1 (U1 ON) and
U2 = 0 (U2 OFF). Note, that due to the converter objective
vC and iL are alternating voltage and current, respectively.

From a control point of view, the general control objective
of this class of inverter is to stabilize system (1) in a desired
oscillatory trajectory. That means, controlling the inverter
such that its output voltage asymptotically tracks a sinusoidal
reference.

Figure 1: Half-bridge inverter.

With this goal let us consider system (1) described by the
following state-space equations:

ẋ = Ax+Bu (2)

where x = [iL vC ]T are continuous-time variables represent-
ing the internal states, and they are assumed to be accessible,
allowing to consider that x is the system output. u ∈ {−1, 1}
is the discrete-time variable corresponding to the control input.
Note that A, B and C are matrices of appropriate dimensions.

The control objective mentioned above is to control the
inverter in order to follow a desired trajectory on vC defined
by

vCd
(t) = Vmax sin(ωt). (3)

Vmax is the desired amplitude of the voltage through the load
R0. A simple circuit analysis shows that if in steady state
vC = vCd

, the current iL in the inductance is given by

iLd
(t) = C0ωVmax cos(ωt) +

Vmax
R0

sin(ωt). (4)

III. PROBLEM STATEMENT

The objective of this work is to stabilise the half-bridge
inverter in a limit cycle given by (3)–(4). To impose such a
behavior, let us drive system (2) by an exogenous input z ∈ R2

generated by the next linear time-invariant exosystem:

ż =

[
0 −ω
ω 0

]
z = Θz z(0) =

[
0

Vmax

]
. (5)

Remark 1. From (5) it is simple to see that for all t ∈ R≥0

z2
1(t) + z2

2(t) = V 2
max.

Then, let us define the compact set

Φ = {z2
1 + z2

2 = V 2
max, (z1, z2) ∈ R, Vmax ∈ R}. (6)

Note, from Remark 1, that we can reformulate our tracking
problem, as a regulation problem, defining the dynamics of
the overall system as

ẋ = Ax+Bu
ż = Θz
x̃ = x+Dz = x−Πz,

(7)

where x̃ ∈ R2 is the tracking error, D = −Π being Π defined
from (3) and (4) as:

Π :=

[
ωC0

1
R0

0 1

]
.

Then, from (7) and choosing

Γ :=[Γ1 Γ2]

=
[

ωL
R0Vin

+ wRLSC0

Vin

(
1
L − C0ω

2 + RLS

LR0

)
L
Vin

]
, (8)

the tracking error dynamic is given by

˙̃x = ẋ−Πż = Ax+Bu−ΠΘz

= A(x̃+ Πz) +Bu−ΠΘz ±BΓz

= Ax̃+Bv. (9)

being AΠ +BΓ = ΠΘ and

v := u− Γz. (10)

Remark 2. Note that the algebraic equations deduced from
(7) and (9)

AΠ +BΓ = ΠΘ. (11)
CΠ +D = 0 (12)

are involved in the well-known “regulator equation”, [11].

Then, let us define the compact set:

Υ := {v = u− Γz, u ∈ {−1, 1}, z ∈ Φ,Γ ∈ R1×2}.

Assumption 2. In (7), vCd
is supposed to be measurable as

a reference in such a way that it is desired that the inverter
produces a voltage with the same amplitude, frequency and
phase. Then, z can be internally reconstructed, as it is shown
in Fig. 2.

The aim of this work can now be stated.
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Figure 2: Block diagram of the hybrid controlled inverter.

Problem 1. Design a control law v (or equivalently u) such
that for any initial condition x̃(0) ∈ R2:
• the trajectory of (9) is bounded,
• limt→∞ x̃(t) = 0,
• a minimum dwell-time, in the transient time as well as

in the steady state, is guaranteed to avoid infinite fast
switching.

• it is possible to deal with the tradeoff between a mini-
mum dwell-time and, an LQR performance level (in the
transient time), as well as, with the tradeoff between a
minimum dwell-time and the size of the asymptotically
stable set around the compact set (6) (in the steady state).

To solve Problem 1, we use the main idea proposed in [7],
formulating the problem under a hybrid dynamical framework
following the theory given in [12], where continuous-time
behaviour follows the evolution of the voltage and current in
(1), and the discrete-time behaviour captures the switching of
the control signal u. Likewise, we remark that the problem is
an output regulation problem and the idea here is also inspired
by the work in [11].

IV. HYBRID MODEL AND PROPOSED CONTROL LAW

Let us recall that error dynamics are described by

˙̃x = Ax̃+Bv,
ż = Θz,

(13)

where the available input v given in (10) is composed of a
continuous-time signal Γz and a switching signal u, which
can achieve a logical mode between 2 possible modes

u ∈ {−1, 1}. (14)

This paper focuses on the design of a control law for the
switching signal u, in order to ensure suitable convergence
properties of the inverter error variable x̃ to 0. Following the
works shown in [6], [7], [13], we represent in the following
assumption a condition that characterizes the existence of a
suitable switching signal inducing x̃ = 0.

Assumption 3. Given a matrix Q � 0, there exists a matrix
P � 0 such that:

1) matrix A verifies

ATP + PA+ 2Q ≺ 0, (15)

2) for any z ∈ Φ, there exist λ1,e(t), λ−1,e(t) ∈ [0, 1]
satisfying λ1,e + λ−1,e = 1, such that,

λ1,e − λ−1,e − Γz = 0. (16)

Note that the solution x̃ = 0 to (13) with (10) is admissible
if it is an equilibrium for the averaged system ˙̃x = Ax̃ +
B(λ1,e − λ−1,e − Γz). Note that the average dynamics can
be perceived as the result of arbitrarily fast switching and as
relaxations in the generalized sense of Krasovskii or Filippov,
because (16) means that in x̃ = 0 the signal is a periodic
sequence of arbitrarily small period T , spending a time equal
to λ1,eT in mode u = 1, and λ−1,eT in mode u = −1.

In order to present the proposed control law, consider the
following HDS model:

H :



 ˙̃x
ż
v̇

 = f(x̃, z, v), (x̃, z, v) ∈ Cx̃+

z+

v+

 ∈ G(x̃, z), (x̃, z, v) ∈ D,

(17)

where G is a set-valued map representing the switching logic:

f(x̃, z, v) :=

 Ax̃+Bv
Θz
−ΓΘz



G(x̃, z) :=


x̃
z(

argmin
u∈{−1,1}

x̃TP (Ax̃+B(u− Γz))

)
− Γz


(18)

and where the flow and jump sets C and D encompass,
respectively, the regions in the (extended) space (x̃, z, v) where
our switching strategy will continue with the current mode v
when the states are in set C or will be require to switch to
a new mode when the states are in set D. If (x̃, z, v) ∈ D
then u will switch according to G in (18) given the value of
v = u− Γz.

Based on the parameters P and Q introduced in Assump-
tion 3, we select the following flow and jump sets:

C := {(x̃, z, v) : x̃TP (Ax̃+Bv) ≤ −ηx̃TQx̃} (19)
D := {(x̃, z, v) : x̃TP (Ax̃+Bv) ≥ −ηx̃TQx̃}, (20)

where η ∈ (0, 1) is a useful design parameter allowing to
deal with a tradeoff between an LQR performance level and
switching frequency, as characterized below in Theorem 2.

Proposition 1. The hybrid dynamical system (17)–(20) sat-
isfies the basic hybrid conditions [12, Assumption 6.5], and
then it is well-posed.

Proof. To prove the hybrid basic conditions we see that the
sets C and D are closed. Moreover f is a continuous function,
thus it trivially satisfies outer semicontinuity and convexity
properties. The map G is closed, therefore it also is outer
semicontiunuous [12, Lemma 5.1] and, f and G are locally
bounded. Finally, the second conclusion of the proposition
comes from [12, Theorem 6.30].

Now, we evoke Lemma in [7, Lemma 1], which is funda-
mental to stablish Theorem 1.
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Lemma 1. Consider that all conditions of Assumption 3 are
satisfied. Then, for each x̃ ∈ R2,

min
u∈{−1,1}

x̃TP (Ax̃+B(u− Γz)) ≤ −x̃TQx̃. (21)

�

Proof. Define the compact set

Λ = {λ−1, λ1 ∈ [0, 1] : λ−1 + λ1 = 1} .

Then, the following minimum is obtained at the extreme
points:

min
u∈{−1,1}

x̃TP (Ax̃+Bu−BΓz)

= min
λ1,λ−1∈Λ

x̃TP (Ax̃+Bλ1 −Bλ−1 −BΓz) ≤ −x̃TQx̃,

where in the last step we used relations (15) and (16) .

The switching signals generated by our solution will depend
on Lemma 1. Indeed, Assumption 3 with (19) shows that
unless x̃ = x̃+ = 0, the solution always jumps to the interior
of the flow set C because

−x̃TQx̃ < −ηx̃TQx̃,

and η < 1.
Following up, we will establish uniform stability and con-

vergence properties of the hybrid system (17)–(20) to the
compact attractor

A := {(x̃, z, v) : x̃ = 0, z ∈ Φ, v ∈ Υ}, (22)

where the sets Φ and Υ are defined in Remark 1 and 2,
respectively.

Theorem 1. Under Assumptions 2,3 the attractor (22) is
uniformly globally asymptotically stable (UGAS) for hybrid
system (17)–(20).

Proof. Let us take the Lyapunov function candidate

V (x̃) =
1

2
x̃TPx̃. (23)

In the flow set, C, using its definition in (19), we have

〈∇V (x̃), f(x̃, z, v)〉 = x̃TP (Ax̃+Bv) ≤ −ηx̃TQx̃. (24)

Across jumps we trivially get:

V (x̃+)− V (x̃) =
1

2

{
(x̃+)TPx̃+ − x̃TPx̃

}
= 0, (25)

because x̃+ = x̃.
Uniform global asymptotic stability is then proved applying

[14, Theorem 1] to the incomplete Lyapunov function, V .
Indeed, for a fixed Γ, which is defined in (8) and Vmax, z
and v are bounded and evolve in the interior of the attractor
A, being their distances to the attractor 0. Likewise, since the
distance of x̃ to the attractor (22) is defined by |x̃| = |x̃|A,
we have that [14, eq. (6)] holds from the structure of V and
from (24) and (25). [14, Theorem 1] also requires building the

restricted hybrid system Hδ,∆ by intersecting C and D with
the set

Sδ,∆ = {(x̃, z, v) : |x̃| ≥ δ and |x̃| ≤ ∆}

and then proving (semi-global) practical persistence flow
for Hδ,∆(f,G,C ∩ Sδ,∆, D ∩ Sδ,∆), for each fixed values of
(δ,∆). In particular, practical persistent flow can be guaranteed
by showing that there exists γ ∈ K∞ and M ≥ 0, such that,
all solutions to Hδ,∆ satisfy

t ≥ γ(j)−M, ∀(t, j) ∈ dom ξ (26)

where ξ = (x̃, z, v) and

dom ξ =
⋃

j∈domj ξ

[tj , tj+1]× {j} (27)

is the hybrid time domain (see [12, Ch. 2] for details). To
establish (26), notice that after each jump, from the definition
of G in (18) and from property (21) (in Lemma 1), we have

x̃TP (Ax+Bv+) ≤ −x̃TQx̃ < −ηx̃TQx̃, (28)

where we used the fact that η < 1 and that (0, z, v) /∈ Sδ,∆.
Therefore, if any solution to Hδ,∆ performs a jump from

Sδ,∆, it will remain in Sδ,∆ (because x̃ remains unchanged)
and then, from (20), it jumps to the interior of the flow set
C ∩Sδ,∆. Moreover, from the strict inequality in (28), then all
non-terminating solutions must flow for some time and since
C ∩ Sδ,∆ is bounded, there is a minimum uniform dwell-time
ρ(δ,∆) between each pair of consecutive jumps. In particular,
this dwell-time is lower-bounded by a constant, which is
directly related in the state-space by an upper-bound of V (x̃)
and 〈∇V (x̃), f(x̃, z, v+)〉, which are V (x̃) ≤ λm(P )δ2 and
〈∇V (x̃), f(x̃, z, v+)〉 ≤ −(1− η)λm(Q)δ2, respectively.

This dwell-time (δ,∆) clearly implies [14, eq. (4)] γ(j) =
ρ(δ,∆)j (which is a class K∞ function) and M = 1. Then,
all the assumptions of [14, Theorem 1] hold and UGAS of A
is concluded.

Corollary 1. The hybrid dynamical system (17)–(20) is UGAS
and is robust with respect to the presence of small noise in the
state, unmodeled dynamics, and time regularization to relax
the rate of switching, because the attractor (22) is compact.

Proof. From Theorem 1, we prove that the hybrid dynamic
system is UGAS, and from Proposition 1 we see that it is
well-posed. Moreover, as the attractor (22) is compact then it
is robustly KL asymptotically stable in a basin of attraction
[12, Chapter 6].

Remark 3. Note that according to Theorem 1 system (17)–
(20) may exhibit a Zeno behaviour when x̃ 7→ 0, and con-
sequently an infinitely fast switching may be expected, which
is not acceptable in practice. This will be practically avoided
later introducing an additional dwell-time logic to obtain a
temporal-regularisation of the dynamics, thereby weakening
asymptotic convergence into practical convergence.

Remark 4. The implementation of this control law is very
simple and requires a low computational cost. The control
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law is implemented in the interior of the assigned block in
Fig. 2, as follow: we initialize the constant parameters, and
from the inputs, we check if the condition of the jump flow, D is
verified. If it is the case, system jumps to the other functioning
mode, because from Lemma 1 and from the fact that there are
just two functioning modes, the other mode will correspond to
the map of v given in G.

V. TRADEOFF BETWEEN DWELL-TIME AND LQR
PERFORMANCE

Once that UGAS property of the attractor is established for
our solution, we focus on providing a suitable performance
guarantee in order to reduce, for instance, the energy cost,
current peaks and response time for the voltage or current.
For this goal we apply the same paradigm shown in [7] for a
hybrid context applied to switched systems.

Within the considered hybrid context, we recall that the
solutions parametrized in a hybrid time domain domj ξ cor-
responds to a finite or infinite union of intervals of the
form (27). Within this context, we represent a quadratic LQR
performance metric focusing on flowing characteristics of the
plant state, using the expression∑

k∈domj ξ

∫ tk+1

tk

x̃TCTCx̃dτ, (29)

where ξ = (x̃, z, v) : dom ξ → Rn×Rn×Rn is a solution to
hybrid system (17)–(20), for all (t, j) ∈ dom ξ.

The following theorem guarantees a maximum performance
cost (29) for our hybrid system.

Theorem 2. Consider hybrid system (17)–(20) satisfying
Assumptions 2,3. If

Q ≥ I, (30)

then the following bound holds along any solution ξ =
(x̃, z, v) of (17)–(20):

J(ξ) ≤ 1

2η
x̃(0, 0)TPx̃(0, 0), (31)

for all (t, j) ∈ dom(ξ).

Proof. To prove the LQR performance bound given in (31),
consider any solution ξ = (x̃, z, v) toH. Then for each (t, j) ∈
dom ξ and denoting t = tj+1 to simplify notation, we have
from (24)

V (x̃(t, j))− V (x̃(0, 0))

=

j∑
k=0

V (x̃(tk+1, k))− V (x̃(tk, k))

=

j∑
k=0

∫ tk+1

tk

〈∇V (x̃(τ, k)), f(x̃(τ, k), z(τ, k), v(τ, k))〉dτ

≤
j∑

k=0

∫ tk+1

tk

−ηx̃T (τ, k)Qx̃(τ, k)dτ

≤ −η
j∑

k=0

∫ tk+1

tk

x̃T (τ, k)x̃(τ, k)dτ, (32)

where the last inequality comes from applying (30). Now,
taking the limit as t + j → +∞ and using the fact
that the UGAS property established in Theorem 1 implies
limt+j→+∞ V (x̃(t, j)) = 0, we get from (32)

ηJ(ξ) ≤ V (x̃(0, 0)) =
1

2
x̃(0, 0)TPx̃(0, 0),

as to be proven.

Remark 5. Note that for a given P and Q that satisfy (30), the
guaranteed performance level is proportional to the inverse of
η ∈ (0, 1). That means that large values of η are expected to
drive to improved LQR performance along solutions.

On the other hand, note from the flow and jump sets in
(19) and (20), that larger values of η (close to 1) correspond
to strictly larger jump sets (and smaller flow sets), which
reveals that solutions with larger values of η exhibit a larger
switching frequency. In other words, through parameter η we
can deal with a tradeoff between switching frequency and an
LQR performance level given in (31).

A. Computation of P and Q

Now, we address the problem of the computation of param-
eters P , Q, following any class of optimization that reduces
as much as possible the right hand side in bound (31) with
any Q ≥ CTC. To this end, we select the cost function as
follows [7, Section IV]:

J(ξ) := min
u

∑
k∈domj(ξ)

∫ tk+1

tk

(
ρ

R0
(vC(τ, k)− vCd

)2

+ RLS(iL(τ, k)− iLd
)2
)
dτ,

where ρ is a positive scalar. Note that the constant parameters
of each term express the energy weighted sum of the error
signal for each state variable. From this, we take

Q =

[
RLS 0

0 ρ
R0

]
such that, all assumptions of Theorem 2 are satisfied.

Once Q is selected, and noting that matrix A is Hurwitz, the
following convex optimization expressed by the linear matrix
inequality always leads to a feasible solution

min
P=PT>0

TraceP, subject to: (33)

ATP + PAT + 2Q ≺ 0,

and this optimal solution clearly satisfies (15).

VI. PRACTICAL GLOBAL RESULTS USING
TIME-REGULARIZATION

The hybrid control law proposed above can exhibit infinitely
fast switching at steady state, because given an initial condition
in A, one sees that the hybrid dynamics (17)–(20) have
at least one solution that keeps jumping onto A. Infinitely
fast switching is not desirable in terms of energy efficiency
and reliability, because every switch dissipates energy and
reduces the switch lifespan. For this reason, we propose a
few modifications of the hybrid law, aiming at reducing the
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frequency switching when e is close to zero. This goal is
reasonable for the proposed law, because it is possible to show
that away from A, our control law already joins a desirable
property of minimum dwell time between switching, as long
as Assumption 3 holds. For this, given any vCd

, iLd
and P,Q

satisfying the above assumptions, consider system (17)–(20)
and denote it by the shortcut notation H := (f,G, C,D)
and then, for a non-negative scalar T and introducing the
following additional state variable τ to dynamics (17), define
the following time-regularized version of H:

HT :

{ [
˙̃x
ż
v̇

]
= f(x̃, z, v),

τ̇ = 1− ς
(
τ
T

)
,

(x̃, z, v) ∈ CT
[
x̃+

z+

v+

]
∈ G(x̃, z),

τ+ = 0,
(x̃, z, v) ∈ DT ,

(34a)
where the ς denotes the non-negative side of the unit deadzone
function defined as ς(s) := max{0, s−1}, for all s ≥ 0 and the
jump and flow sets are the following time-regularized versions
of C and D in (17)–(20):

CT := C × [0, 2T ] ∪ {(x̃, z, v, τ : τ ∈ [0, T ]}
DT := D × [T, 2T ].

(34b)

The above regularization is clearly motivated by the attempt
that all solutions are forced to flow for at least T ordinary
time after each jump. Therefore, there are not jumps when the
timer τ is too small. Note also that the deadzone given by ς
allows a solution to flow forever while ensuring that timer τ
remains in a compact set.

The introduction of the time regularization term in (34a)
presents the following consequences:
• It modifies the attractor set defined in (22). Now the new

attractor can be characterized by

AT := {(x̃, z, v, τ) : ‖x̃‖ ≤ X̄, z ∈ Φ, v ∈ Υ, τ ∈ [0, 2T ]}.
(35)

• Attractor (35) is UGAS for sufficiently small values of
T > 0. Remark that attractor (35) tends to attractor (22)
as T tends to zero.

To show the previous statement and give an interval of values
of T ensuring UGAS, let us consider the following lemma
[15, Theorem 3.2.2], whose proof is given for the sake of
completeness.

Lemma 2. Consider Assumption 3 is satisfied, then all the
eigenvalues of the matrix P−1Q are positive and

‖eAt‖ ≤
λ

1/2
M (P )

λ
1/2
m (P )

e−αt

where α = λm(P−1Q).

Proof. Let us multiply (15) by P−1/2 on the right and on
the left side, and define F := P 1/2AP−1/2 and α :=
λM (P−1/2QP−1/2), then we obtain:

FT + F ≤ −2P−1/2QP−1/2 ≤ −2αI. (36)

Let us now define the function ζ(t) := ‖e(F+αI)tx̃‖2. Then,
from (36), we have

dζ

dt
= x̃T e(F+αI)t(FT + F + 2αI)e(F+αI)tx̃ ≤ 0.

Therefore, we can remark that ζ is a non-increasing function
and

‖e(F+αI)tx̃‖2 = ζ(t) ≤ ζ(0) = ‖x̃‖2, ∀t ≥ 0.

Note that this last condition can also be rewritten as

‖e(F+αI)tx̃‖
‖x̃‖

≤ 1

which implies

‖e(F+αI)t‖ ≤ 1 ⇔ ‖eFt‖ ≤ e−αt, ∀T ≥ 0. (37)

On the other hand, from F definition and classical mathe-
matical manipulations, we get eAt = P−1/2eFtP 1/2. Then,

‖eAt‖ = ‖P−1/2eFtP 1/2‖ ≤ ‖P−1/2‖‖P 1/2‖‖eFt‖
≤ ‖P−1/2‖‖P 1/2‖e−αt.

Note that last inequality is achieved from using (37).
Let us apply ‖P 1/2‖2 = λM (P ) and ‖P−1/2‖2 = λ−1

m (P )
which gives

‖eAt‖ ≤
λ

1/2
M (P )

λ
1/2
m (P )

e−αt ∀t ≥ 0.

Now remark that P−1/2QP−1/2 = P 1/2[P−1Q]P−1/2 >
0 and thus, P−1/2QP−1/2 presents the same eigenvalues
as P−1Q. Then from (36), α = λm(P−1/2QP−1/2) =
λm(P−1Q) and the proof is complete.

Now, we establish a useful practical minimum dwell-time
property for HT .

Property 1. There exists a positive scalar T ∗, such that for
any chosen T ≤ T ∗ the solutions (t, j) → ξ(t, j) to hybrid
system (34) flow for at least T ordinary time after the jump
before reaching set DT . Moreover, as T tends to zero, the
minimum dwell time tends to zero as well.

Proof. From Theorem 1, we guarantee that for all solutions far
enough from A, there exists a minimum dwell- time managed
by η, as discussed in Remark 3. Consider the hybrid system
(34) between two jumps in the neighbourhood of A. Without
loss of generality, consider that the first jump occurs at time
t = t0 and let us consider the variable t̃ := t − t0. Then, in
the flow set CT , the trajectories are described by:

˙̃x(t̃) = Ax̃(t̃) +Bu−BΓz(t̃), x̃(0) = x̃0

for a given T > 0.
From (5), note that the trajectories of z are

z(t̃) =

[
z1(t̃)
z2(t̃)

]
=

[
Vmax sin(ωt̃)
Vmax cos(ωt̃)

]
. (38)

Consequently, we can deduce that:

x̃(t̃) = eAt̃(x̃0+A−1B(u−W (t̃)))−A−1B
(
u−W (t̃)

)
(39)

for 0 ≤ t̃ ≤ T and with

W (t̃) = Vmaxρ1(ω) cos
(
ωt̃+ φ1(ω)

)
+ Vmaxρ2(ω) sin

(
ωt̃+ φ2(ω)

)
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which is a bounded function with

ρ1(ω) = |(jωI −A)−1BΓ1|
ρ2(ω) = |(jωI −A)−1BΓ2|
φ1(ω) = arg(jωI −A)−1BΓ1)

φ2(ω) = arg(jωI −A)−1BΓ2).

Note that Γ1 and Γ2 come from (8).
Let rewrite (39) as

x̃(t̃) +A−1B(u−W (t̃)) = eAt̃(x̃0 +A−1B(u−W (t̃))).

From the properties of a norm, we have:

‖x̃(t̃)+A−1B(u−W (t̃))‖ ≤ ‖eAt̃‖‖(x̃0+A−1B(u−W (t̃)))‖

and applying Lemma 2, we get,

‖x̃(t̃)−A−1B(u−W (t̃))‖ ≤
λ

1/2
M (P )

λ
1/2
m (P )

e−αt̃‖(x̃0 +A−1B(u−W (t̃)))‖.

Now, for 0 ≤ t̃ ≤ T , we obtain

1 ≤ eαt̃ ≤
λ

1/2
M (P )

λ
1/2
m (P )

‖x̃0 +A−1B(u−W (t̃))‖
‖x̃(t̃)−A−1B(u−W (t̃))‖

and for all t̃ > 0 and x̃(t) ∈ CT , we have

0 ≤ t̃ ≤ 1

α
Ln

(
λ

1/2
M (P )

λ
1/2
m (P )

‖x̃0 +A−1B(u−W (t̃))‖
‖x̃(t̃)−A−1B(u−W (t̃))‖

)
.

Let us consider that the next jump occurs at time t̃ = T ,
such that (x̃(T ), z(T ), v(T )) ∈ DT . Then for such T , we have

{
x̃(τ)TP (Ax̃(τ) +Bv(τ)) = −ηx̃(τ)TQx̃(τ)

and τ ∈ [T, 2T ].

or\and{
x̃(τ)TP (Ax̃(τ) +Bv(τ)) ≤ −ηx̃(τ)TQx̃(τ)

and τ = T.

Consequently, there exists a maximum dwell time bound
defined by T ∗ which satisfies:

T ∗ =
1

α
Ln

(
λ

1/2
M (P )

λ
1/2
m (P )

‖x̃0 +A−1B(u−W (T ∗))‖
‖x̃(T ∗)−A−1B(u−W (T ∗))‖

)
,

such that,
0 ≤ T ≤ T ∗.

Note that x̃0 and x̃(T ) define the maximum possible chat-
tering in the system induced by the dwell time bound, T ∗.

Property 1 ensures that some minimum dwell-time is guar-
anteed if solutions remain sufficiently far from A. Moreover,
using this property, the following desirable results are enjoyed
by hybrid system HT .

Theorem 3. Consider a λ1, λ−1 and matrices P � 0 and
Q � 0 satisfying Assumption 3. The following holds:

1) all solutions to HT enjoy a minimum dwell-time prop-
erty with a minimum T ;

2) set AT in (35) is compact for any positive scalar T ≤
T ∗.

3) for any positive scalar T ≤ T ∗, set AT in (35) is UGAS
for dynamics HT in (34);

4) set A×{0} is globally practically asymptotically stable
for (34), with respect to parameter T (namely as long
as T is sufficiently small, the UGAS set AT in (35) can
be made arbitrarily close to A× {0}.

Proof. Note that hybrid system (34) enjoys the hybrid basic
conditions of [12, As. 6.5], because sets CT and DT are
both closed and f and G enjoy desirable properties. Then we
may apply several useful results pertaining well-posed hybrid
systems (specifically, in the proof of item 2 below).

Proof of item 1. Note that the solutions present a minimum
dwell-time property because the jumps are forbidden, at least,
until the timer variable τ has reached the value T . Since τ̇ = 1
for all τ ≤ T , then all solutions flow for at least T ordinary
time after each jump (because τ+ = 0 across jumps).

Proof of item 2. Note that the hybrid system (34) satisfies
Property 1. From this property is easy to see that x̃ is bounded
in the flow set CT . Indeed, from (39) and the properties of a
norm, we have

‖x̃(t̃)‖ ≤ ‖eAt̃‖‖(x̃0 +A−1B(u−W (t̃)))‖+ ‖A−1B(u−W (t̃))‖

and applying Lemma 2 and the variable change t̃ = t− t0, we
obtain

‖x̃(t)‖ ≤
λ

1/2
M (P )

λ
1/2
m (P )

e−αt‖(x̃0 +A−1B(u−W (t)))‖

+ ‖A−1B(u−W (t))‖ := X̄, ∀t ≥ t0,

proving attractor AT is compact.
Proof of item 3. From V (x̃) given in (23), and the bound

given before ‖x̃(t)‖ ≤ X̄ , consider the following Lyapunov
function candidate:

VT (x̃) = max{V (x̃)− λm(P )X̄2, 0}, (40)

which is clearly positive definite with respect to AT and
radially unbounded. Since outside set AT the hybrid dynamics
HT coincides with the one of H, then equations (24) and (25)
hold for any (x̃, z, v) not in AT , which implies that

〈∇VT (x̃), f(x̃, z, v)〉 < 0 ∀x̃ ∈ CT \ AT (41)
VT (x̃+)− VT (x̃) = 0, ∀x̃ ∈ DT \ AT . (42)

Moreover, from the property established in item 1, all complete
solutions to HT must flow for some time, and therefore
from (41), we have that no solution can keep VT constant
and non-zero. UGAS of AT by applying the nonsmooth
invariance principle in [16], also using the well posedness
result established at the beginning of the proof.

Proof of item 4. Item 4 follows straightforwad recalling
Property 1, the minimum dwell time converges to zero as T
goes to zero. Consequently, set AT in (35) shrinks to A×{0}
as T goes to zero, and since we prove in item 2 that AT exists,
we can make AT arbitrarily close to A× {0} by selecting T
sufficiently small.
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Remark 6. Note that all solutions to the hybrid dynamical
system (34) present a minimum dwell-time in the ordinary time,
given by T . This minimum dwell-time is not constant. Indeed,
it increases if the solution does not satisfy any condition of DT .
More precisely, the dwell-time is managed by η and eventually
by T , if solutions are far from the attractorAT . In other words,
if x̃ is far from 0, then the rule x̃TP (Ax̃+Bv) ≥ −ηx̃TQx̃
and the rule τ ∈ [T, 2T ] induce the dwell time. On the other
hand, the dwell-time is mainly managed by T , if solutions are
close to the attractor AT ; that means, if solutions are close
to x̃ = 0, then the rule τ ∈ [T, 2T ] mainly induces the dwell-
time.

The implementation of the hybrid system HT follows the
procedure given in Remark 4.

VII. SIMULATION

Table I: Simulation parameters

Parameter Convention Value Units
DC input voltage Vin 48 V

Reference peak voltage Vmax 120
√

2 V
Nominal angular frequency ω 2π (60) rad/s

Inductor L 50 mH
Output capacitor C0 140.72 µF
Load resistance R0 240 Ω

Estimated series resistance RLS 1.5 Ω

In this section, we validate in simulation the hybrid con-
troller designed in this paper for the inverter given in (1).
From parameters given in Table I and from (3) and (4) we got
the following desired behaviour

xd =

[
iLd

vcd

]
=

[
9 sin(2π60t+ 86◦)

120
√

2 sin(2π60t)

]
, (43)

where it was applied the trigonometric relationship: a cos(x)+
b sin(x) =

√
(a2 + b2) sin(x + atan( ba )). Moreover, we take

ρ = 1000 and P =

[
24.71 0.10
0.10 0.07

]
. T ∗ is computed consid-

ering a chartering of iC equal to 2A and a chattering of vC
equal to 10V , giving T ∗ = 0.041.

First, note that condition (15) is satisfied. Moreover, from
(1), (3), (4) and the convex combination u = λ1 − λ−1 with
λ1 + λ−1 = 1, we can achieve x = xd with λ1,e = 0.5 +
0.003 sin(2π60t)+0.34 cos(2π60t), satisfying condition (16).

Some simulations for different initial conditions are per-
formed in MATLAB/Simulink by using the HyEQ Toolbox
[17]. We show the average total jump count (the average is
performed from different initial conditions) with respect to
η and T in Fig. 3, for the transient time, and Fig. 4, for
the steady state. The systems is considered to be in steady
state when the trajectory evolves within a 5% band. Note
that in the steady state, T mainly induces the main jump
reduction. On the other hand, in the transient time slot, the
jump reduction is managed by η and T . Moreover, note that
the jumps converge to infinity as T goes to zero and η goes to
1 (as noted in Remark 3). In practice, this is not desirable in
terms of energy efficiency and reliability, since every switch
dissipates energy and reduces the switch lifespan. On the other
side, Fig. 5 shows the average normalized switching frequency

and cost function J (the normalization of these quantities
is performed dividing by the corresponding maximum value
obtained in simulations and, the average is performed from
different initial conditions) in the transient time slot as a
function of η and for different T . Note that, the cost function is
reduced with larger values of η, as noted in Remark 5. On the
contrary, the trend of the switching frequency is to grow with
larger values of η. Thus we may give up a little on the LQR
performance level and suitably adjust the switching frequency,
finding a satisfactory tradeoff solution between performance
and switching frequency for different T , which corresponds
to the intersection between the switching curve and the cost
function. Finally, in Fig.6, we show the voltage and current
error in steady state for different values of T . Note that the
chattering between two jumps are smaller than the chattering
given for computing T ∗ above. We remark that the error, and
consequently the chattering, is reduced as T goes down, as
given in Theorem 5, item 3. All these simulations show the
noted in Remark 6.
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Figure 3: Jumps evolution w.r.t. η and T in transient time.
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Figure 4: Jumps evolution w.r.t. η and T in the steady state.
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J (dashed) s evolutions for different T .
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Figure 6: Evolution of current error, x̃(1), and voltage error,
x̃(2), for different T .

Figure 7 shows the voltage and current evolutions of system
(17)–(20) for T = 10µs and with different η. This figure
shows UGAS property of the attractor (22), which is guaran-
teed by Theorem 1. In addition, Fig. 8 performs a zoom of
the jumps in the transient time marked in Fig. 7 with a shaded
area. Once again, these figures show Remark 3, that states that,
as η grows to 1, we get arbitrary faster and faster switching.

Some simulations are given in Fig. 9 with system (17)–(20)
with η = 0.1 and different T . And a zoom of the switching in
the steady state (marked in Fig. 9 with a shaded area) is given
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Figure 7: Inverter voltage and current evolutions with T =
10µs.
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Figure 8: Zoom for u in the inverter with T = 10µs.

in Fig. 10. Note, as T increases, it is expected a reduction
of the switching frequency, which is consistent with Fig. 10.
These simulations show the dwell-time and UGAS property
for attractor AT properties given in Theorem 3, item 1 and
item 2, respectively.

VIII. EXPERIMENTAL RESULTS

The hybrid control scheme is now tested in a 150W half-
bridge prototype. This prototype is composed by:
• 2 MOSFET AOT15S60 triggered using 2 photo-coupled

drivers TLP350 and 1 IRS2004 driver, which receives
only 1 control signal input, u, and generates the 2 gate
signals with dead time;

• 2 sensors: an isolated closed-loop hall-effect transducer
LV-20P for measuring the output voltage and an isolated
closed-loop hall-effect transducer CAS 15-NP for mea-
suring the inductor current. Outputs of both sensors are
conditioning using analogue circuitry.
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Figure 10: Zoom for u in the inverter with η = 0.1.

• 1 Digital Signal Processor (DSP) TMS32028335, which
lets embedding the hybrid control algorithm, running with
an internal sampling frequency of 100kHz;

• 1 oscilloscope Tektronix MSO2014B;
• conventional voltage probes;
• 1 differential voltage probe;
• 1 isolated current probe TCP0030A;
• 1 programmable DC source BK precision XLN6024,

which is used to provide the converter input voltage and
• 1 power source BK Precision 1672 feeding the sensors

and auxiliary circuitry.

Figure 11 shows the prototype assembled with the measure-
ment set-up.

The converter parameters appear in Table I and the desired
behaviour in (43). The gains introduced by the sensors in
the measurements (which can condition the circuit) are com-
pensated into the DSP algorithms. Then, the hybrid scheme
(34) with matrices P and Q given above are implemented in
this DSP, and it is configured to have an internal interruption
defining the sampling time in 10µs. This time is used to

generate a minimum dwell-time.

A. Performance evaluation for different values of η

First, we experimentally validate the efficiency of the hybrid
scheme (34) w.r.t. η, which conditions the transient time, as
shown in Fig. 7. For this one, several experimental tests were
performed in the prototype in nominal conditions of input
voltage and load, for η = {0.1, 0.3, 0.8} and T = 10µs. Note
that these η values are according simulation results Fig. 7. As
shown in Fig. 12, system reaches the steady state in frequency,
phase and amplitude before 50ms. The signal s(t) is obtained
from a digital output of the DSP and represents the polarity
of the internally generated sinusoidal reference for vC (3V if
signal is positive and 0V if signal is negative). Remark that the
switching frequency decreases as η diminishes, as is shown in
simulation (see Fig. 8).

B. Steady-state performance for different values of T

Now, we validate the hybrid scheme (34) for different min-
imum dwell times in steady state, T = {50µ, 100µ, 500µs}
and η = 0.1, applying several tests in nominal conditions.
Figure 13 shows the steady state behaviour for different T . We
highlight that the voltage and current output are practically the
same despite different T . However, the switching are reduced,
as expected. These results show the dwell-time and UGAS
property for attractor AT properties given in Theorem 3, item
1 and item 2, respectively. Moreover, we measured the THD of
the output voltage using a Power Quality Analyzer Fluke 43B
with constrained computations to 21 harmonics (1.26 kHz).
THD values were obtained in a range between 1.0% and 1.3%,
presenting the best result for η = 0.1 and T = 100µs (see Fig.
14.c). In order to complement this result, a FFT analysis with
extended bandwidth was performed using PSIM simulations
for the same values of η and T obtaining THD values in a
range between 1.8% and 3.5% and presenting the best result
for η = 0.1 and T = 100µs. This means that for higher values
of T , it is expected that THD increases due to the absence of
commutations during a relevant slot time. This fact is very
important for low performance devices.

Moreover, we measured the inverter THD1, whose values
are obtained in a range between 1.0% and 1.3% using a
Power Quality Analizer Fluke 43B. The best measurement
was obtained for η = 0.1 and T = 100µs (see Fig.14 c).
This means that for higher T or smaller η the THD increases
due to the absence of switching during a relevant slot time.
This fact is very important for low-cost devices, i.e. for low
performance devices.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a controller following a HDS
framework for a dc-ac converter composed of continuous
variables (current and voltage) and discrete variables (state
of switches), whose main problem is to track a sinusoidal
reference. The main advantage of this method is to manage

1The Total Harmonic Distortion (THD) is an output signal corresponding
to a quality indicator of electronic converters



11

Figure 11: Laboratory prototype and experimental set-up

Figure 12: Oscilloscope captures of the inverter signals (input, s, and outputs, vC and iL) during transient-state and zoom of
u for T = 10µs and η = 0.8 a)-b), η = 0.3 c)-d) and η = 0.1 e)-f).

the switching frequency in both transient and steady states.
We showed practical results using a time-regularization that
allows: 1) to stabilise set compact set AT being T small
enough to adjust the steady state switching frequency, 2) to get
a positive minimum dwell-time in each mode, T , whose size
can be modulated by η and 3) to deal with a tradeoff between
dwell-time on the one hand and an LQR performance level,
tuning parameter η and the size of the asymptotically stable
set around the desired operating point, tuning parameter T ,
on the other hand. Some experiments validate our proposed
hybrid controller.

A future work is to use this inverter to inject energy in
the power grid, which means to synchronize the inverter in

amplitude, frequency and phase with the power grid. Likewise,
it will be desirable to ensure that the output voltage is
robust with respect to load and DC/AC converter parameter
variations.
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