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Hybrid control algorithm for a DC-AC converter

Carolina Albea Sanchez, Oswaldo Lopez Santos, David. A. Zambrano Prada, Francisco Gordillo, Germain
Garcia

Abstract—This paper presents a control law based on Hybrid
Dynamical Systems (HDS) theory for a dc-ac converter. This
theory is very suited for analysis of power electronic converters,
since they combine continuous (voltages and currents) and
discrete (on-off state of switches) signals avoiding, in this way,
the use of averaged models. Here, practical stability results
are induced for this tracking problem, ensuring a minimum
dwell-time associated with an LQR performance level during
the transient response and an admissible chattering around the
operating point. The effectiveness of the resultant control law is
validated by means of simulations and experiments.

I. INTRODUCTION

The control of power converters is characterized by the fact
that the input signals are discrete, since they are the on-off state
of switching devices, while the rest of signals, including the
ones to be controlled, are continuous. Therefore, Hybrid Dy-
namical Systems (HDS) framework is suitable for modelling
and controlling this kind of systems. Nevertheless, there are
still very few applications of HDS to power converters. Most
of the methods for the control of power converters use an
averaged model in which the discrete signals are averaged
during each sampling period and, thus, are considered contin-
uous signals. Based on the averaged model, continuous control
laws are obtained. The resultant continuous control signals are
discretized using the so-called modulation stage, for which
different methods exist [1], [2]. Nevertheless, there exist other
families of methods that explicitly consider the discrete nature
of the control signals. These families include direct torque
and flux controllers for motor drives [3], and model predictive
control [4].

The HDS framework was firstly applied to electronic con-
verters in 2003 [5] and after that more applications have
appeared [6]-[8]. All these applications consider dc-dc con-
verters, whose objective, from the control theory point of
view, is to stabilize an operating point. Nevertheless, in other
electronic converters is usual to work with ac and thus, the
problem is more involved. When ac voltage is to be generated,
as is the case of inverters, the objective is to track a sinusoidal
reference.

A preliminary version of this paper appeared in [9] where
a tradeoff between the switching frequency and performance
was considered using a tuning parameter. In this new version,
a modification of the control law is proposed in order to avoid
infinitely fast switching in steady state, which is not desirable
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for energy efficiency and reliability considerations. Further-
more, practical stability proofs are now included. Experiments
in a prototype validate the results.

The rest of the paper is organized as follows. The half-
bridge inverter model is described in Sect. II while the control
problem is stated in Sect. III. In Sect. IV a hybrid version
of the model is proposed as well as the hybrid control law.
Uniform Global Asymptotic Stability is proved. In Sect. V it
is shown that one of the parameters of the control law can be
used to cope with a tradeoff between dwell-time —and, thus, the
switching frequency— and an LQR performance measurement.
Section VI presents a modification of the control law in order
to avoid infinitely fast switching at steady state. Simulations
are presented in Sect. VII, and experiment results are presented
in Sect. VIIL. The paper closes with a section of conclusions
and future work.

Notation: Through out the paper R denotes the set of real
numbers, R™ the n-dimensional euclidean space and R™*™
the set of all real n x m matrices. The set of non-negative real
numbers is denoted by R>q. M = 0 (resp. M < 0) represents
that M is a symmetric positive (resp. negative) definite matrix.
The Euclidan norm of vector x € R is denoted by |z|. I is
the identity matrix of appropriate dimension. A, (M), Aps (M)
represent the minimum and maximum eigenvalues of M.

II. HALF-BRIDGE INVERTER MODEL

The half-bridge dc-ac converter is a type of Voltage Source
Inverters (VSI) that feeds the inverter output side from an
approximately constant-voltage source, V;, [10]. The VSI
needs to be connected either to a purely resistive load or to
an inductive component to obtain smooth current waveform,
because a capacitive load can cause a choppy current wave-
form.

This work regards the half-bridge inverter shown in Fig. 1,
which is composed of a purely resistive load, Ry, a load filter,
L,Cy, and a parasitic resistance, Ry g, that encompasses the
inductance and switching energy dissipation.

Assumption 1. Capacitors Cy and Cy are large enough,
such that the voltage ripple is negligible and, therefore, their
dynamics are not considered in the following.

A. System description

The system differential equations can be written as

S-S 18] o

where 77, is the inductance current, v¢ is the capacitor voltage.
Moreover, v = U; — Uy € {—1,1} is the control input
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which represents two operating modes. The first one, u = —1,
corresponds to U; = 0 (U; OFF) and Us = 1 (U ON). And
the second one, v = 1, corresponds to U; = 1 (U; ON) and
U; = 0 (Uz OFF). Note, that due to the converter objective
ve and iy, are alternating voltage and current, respectively.

From a control point of view, the general control objective
of this class of inverter is to stabilize system (1) in a desired
oscillatory trajectory. That means, controlling the inverter
such that its output voltage asymptotically tracks a sinusoidal
reference.

. m\ iy
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Figure 1: Half-bridge inverter.

With this goal let us consider system (1) described by the
following state-space equations:

Az + Bu
Cr 2

Tz =
y =
where x = [i, v are continuous-time variables represent-
ing the internal states, u € {—1,1} is the discrete-time variable
corresponding to the control input, and y is the system output.
Note that A, B and C' are matrices of appropriate dimensions.
The control objective mentioned above is to control the
inverter in order to follow a desired trajectory on v defined
by
ve, (1) = Vinag sin(wt). 3)

Vinaz 1S the desired amplitude of the voltage through the load
Ry. A simple circuit analysis shows that if in steady state
vo = v, the current 47, in the inductance is given by

Vmam .
Rio Sln(wt) . (4)

in,(t) = CowViag cos(wt) +

III. PROBLEM STATEMENT

The objective of this work is to stabilise the half-bridge
inverter in a limit cycle given by (3)—(4). To impose such a
behavior, let us drive system (2) by an exogenous input z € R?
generated by the next linear time-invariant exosystem:

.0 —w| 1 0
Z= [w 0 } z=0z z(0) = [VmaJ . (5)
Remark 1. From (5) it is simple to see that for all t € R>q
A () +25(t) = Viga-
Then, let us define the compact set

O={l+22=V2,., (21,22) €R}L (6)

max?

Note, from Remark 1, that we can reformulate our tracking
problem, as a regulation problem, defining the dynamics of
the overall system as

= Az + Bu
= Cx
= 0Oz )

= y+Dz=x—1lz,

e 8.

where 7 € R? is the tracking error, C' € R?*? is the identitiy
matrix, D = II being II defined from (3) and (4) as:

o UJCO %
n_[o 10]

Remark 2. From (7), we get the following algebraic equa-
tions:

AlIl + BT =110. (®)
CIll+ D =0. )
These are involved in the well-known “regulator equation”,
[11], [12]. Then, from (7) and following (8), the tracking error
dynamic is given by
i =i—1z= Az + Bu—110z
= Ax + Bu — Allz — BT’z

= A% + Bu. (10)

where
v=u—1I2z. (1
The, let us define the compact set:
T:={v=u—-Tzue{-1,1},2z € ®}.

A simple calculation shows that

F:[Fl FQ}
[mt et (Foow i) 4] 02

Assumption 2. In (7), vc, is supposed to be measurable as
a reference in such a way that it is desired that the inverter
produces a voltage with the same amplitude, frequency and
phase. Then, z can be internally reconstructed, as it is shown
in Fig. 2.

@ﬁ’ Recons. ir
R u
z Control DC/AC | ve

Figure 2: Block diagram of the controlled inverter.

ISy

The aim of this work can now be stated.

Problem 1. Design a control law v (or equivalently u) such
that for any initial condition 7(0) € R?:
o the trajectory of (10) is bounded,
(] hmtﬁoo .'I?(t) = 0,
e a minimum dwell-time, in the transient time as well as
in the steady state, is guaranteed to avoid infinite fast
switching.
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e it is possible to deal with the tradeoff between a mini-
mum dwell-time and, an LOR performance level (in the
transient time), as well as, with the tradeoff between a
minimum dwell-time and the size of the asymptotically
stable set around the compact set (6) (in the steady state).

To solve Problem 1, we use the main idea proposed in [8],
formulating the problem under a hybrid dynamical framework
following the theory given in [13], where continuous-time
behaviour follows the evolution of the voltage and current in
(1), and the discrete-time behaviour captures the switching of
the control signal u. Likewise, we remark that the problem is
an output regulation problem and the idea here is also inspired
by the work in [11], [12].

IV. HYBRID MODEL AND PROPOSED CONTROL LAW

Let us recall that error dynamics are described by
= AZ + Bu,

= Cz

= 0Oz,

(13)

[SEINSER=IE

where the available input v given in (11) is composed of a
continuous-time signal I'z and a switching signal u, which
can achieve a logical mode between 2 possible modes

uwe {-1,1}.

This paper focuses on the design of a control law for the
switching signal wu, in order to ensure suitable convergence
properties of the inverter error variable Z to 0. Following the
works shown in [7], [8], [14], we represent in the following
assumption a condition that characterizes the existence of a
suitable switching signal inducing £ = 0.

Assumption 3. Given a matrix Q > 0, there exists a matrix
P > 0 such that:

o matrix A verifies

ATP4+PA+2Q <0, (14)

o there exist two scalar M, _1 € [0,1] satisfying
M, +A_1 =1, such that for a given z € R?

)\1 —/\_1 —I'z=0. (15)
Note that the existence of the solution z = 0 for (13) is

given in Assumption 3, allowing to be v = 0 through a convex

combination of the two operating modes of u as follows

v=1-M+(-1)- A —T=z

Likewise, we remark that £ = 0 allows a Krasovskii solution
and even a Fillipov solution, because (15) means that in z = 0
the signal is a periodic sequence of arbitrarily small period 7',
spending a time equal to A\;7" in mode v = 1, and A_;7 in
mode u = —1. Likewise, if Assumption 3 does not hold, such
a signal does not exist because any arbitrary switching signal
can only generate an equivalent action on # corresponding
to a convex combination obtained with each mode (namely,
equation (15)).

In order to present the proposed control law, consider the
following HDS model:

I
Z = f(z,zv), (Z,z,v) €C
v
H: Lo (16)
| e G(z,2), (%,2,v) € D,
ot

where G is a set-valued map representing the switching logic:

AZ + Bv
f(@,z,v) = Oz
-I'oz
z
z
G(Z,z) =
argmin #7P(A% + B(u—Tz)) | =Tz
ue{—1,1}

a7
and where the flow and jump sets C and D encompass,
respectively, the regions in the (extended) space (Z, z, v) where
our switching strategy will continue with the current mode v
when the states are in set C or will be require to switch to
a new mode when the states are in set D. If (Z,z,v) € D
then u will switch according to GG in (17) given the value of
v=u—1Iz
Based on the parameters P and @ introduced in Assump-
tion 3, we select the following flow and jump sets:

C =
D =

{(z,2,v) : 2T P(AZ 4+ Bv) < —nzTQz} (18)
{(#,2,v) : #T P(A% + Bv) > —nz’ Qz}, (19)

where n € (0,1) is a useful design parameter allowing to
deal with a tradeoff between an LQR performance level and
switching frequency, as characterized below in Theorem 2.

Proposition 1. The hybrid dynamical system (16)-(19) sat-
isfies the basic hybrid conditions [13, Assumption 6.5], and
then it is well-posed.

Proof. To prove the hybrid basic conditions we see that the
sets C and D are closed. Moreover f is a continuous function,
thus it trivially satisfies outer semicontinuity and convexity
properties. The map G is closed, therefore it also is outer
semicontiunuous [13, Lemma 5.1] and, f and G are locally
bounded. Finally, the second conclusion of the proposition
comes from [13, Theorem 6.30]. O

Now, we evoke Lemma in [8, Lemma 1], which is funda-
mental to stablish Theorem 1.

Lemma 1. Consider that all conditions of Assumption 3 are
satisfied. Then, for each T € R2,

min 37 P(A% + B(u —T?)) < -7 Qx.

20
uwe{—1,1} (20)

]

Proof. Define the compact set

A= e01]: A+ =1}
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Then, the following minimum is obtained at the extreme
points:
min i7" P(A% + Bu — BT?)
ue{—1,1}

= min

~T ~ ~T A~
P(A BM — BMN_1 —BI'z) < —
Ahx,lez\x (A% + B\ ! ?) < QT

where in the last step we used relations (14) and (15) .
O

The switching signals generated by our solution will depend
on Lemma 1. Indeed, Assumption 3 with (18) shows that
unless & = &+ = 0, the solution always jumps to the interior
of the flow set C because

—iTQi < —nit Qz,

and 7 < 1. This fact, together with stability (ensuring
boundedness of solutions) and the sector growth condition

18] = |é] < || + |Bo| < mafé] + o

with x; and ko positive constants, coming from the flow
dynamics (13), implies that there is a uniform lower bound
on the dwell time between each pair of consecutive resets
before solutions approach © = 0. Note that, as in other
cases, (see [7], for instance) the desired behaviour = 0
is achieved with an arbitrarily fast switching. The essential
difference in our approach is that during transient time the
solution is characterized by relatively slow switching adjusted
by 1. The same paradigm was followed in [15] using very
similar techniques specified for a regulation problem, but we
focus here on a tracking problem.

Following up, we will establish uniform stability and con-
vergence properties of the hybrid system (16)—(19) to the

compact attractor
A:={(Z,z,v): 2=0,2€ P,v € T}, 21

where the sets ® and Y are defined in Remark 1 and 2,
respectively.

Theorem 1. Under Assumptions 2,3 the attractor (21) is
uniformly globally asymptotically stable (UGAS) for hybrid
system (16)—(19).

Proof. Let us take the Lyapunov function candidate

1
V(z) = §~TPQ:~. (22)
In the flow set, C, using its definition in (18), we have
(VV (&), f(&,2,v)) = T P(AZ + Bv) < —n2T Q7. (23)

Across jumps we trivially get:
1
V(Et) - V(@) = 5 {@""'pPzt —z"Pz} =0, (24

because 7T = 7.

Uniform global asymptotic stability is then proved applying
[16, Theorem 1]. In particular, since the distance of & to the
attractor (21) is defined by |Z| = |Z| 4, we have that [16, eq.
(6)] holds from the structure of V' and from (23) and (24).

[16, Theorem 1] also requires building the restricted hybrid
system Hs A by intersecting C and D with the set

Ssa ={(& 20): 7| >8 and |7 <A}

and then proving (semi-global) practical persistence flow for
Hs,a, for each fixed values of (, A). In particular, practical
persistent flow can be guaranteed by showing that there exists
v € Koo and M > 0, such that, all solutions to Hs a satisfy

t>~(j) — M, vVt € dom & (25)
where £ = (%, z,v) and
domé =) [tj.ty] x {j} (26)

j€dom; &

is the hybrid time domain (see [13, Ch. 2] for details). To
establish (25), notice that after each jump, from the definition
of G in (17) and from property (20) (in Lemma 1), we have

il (Az + Bvt) < —iTQz < —nzT Qx, 27)

where we used the fact that 7 < 1 and that (0,z,v) ¢ S5 A.
Therefore, if any solution to Hsa performs a jump from
Ss.a, it will remain in S5 o (because & remains unchanged)
and then, from (19), it jumps to the interior of the flow set
C N Ss5,a. Moreover, from the strict inequality in (27), then
all non-terminating solutions must flow for some time and
since CNSs A is bounded, there is a minimum uniform dwell-
time p(d,A) between each pair of consecutive jumps. This
dwell-time (d, A) clearly implies [16, eq. (4)] v(j) = p(d, A)j
(which is a class K function) and M = 1. Then, all the
assumptions of [16, Theorem 1] hold and UGAS of A is
concluded. O

Corollary 1. The hybrid dynamical system (16)—(19) is UGAS
and is robust with respect to the presence of small noise in the
state, unmodeled dynamics, and time regularization to relax
the rate of switching, because the attractor (21) is compact.

Proof. From Theorem 1, we prove that the hybrid dynamic
system is UGAS, and from Proposition 1 we see that it is
well-posed. Moreover, as the attractor (21) is compact then it
is robustly ICL asymptotically stable in a basin of attraction
[13, Chapter 6]. O]

Remark 3. Note that according to Theorem 1 system (16)—
(19) may exhibit a Zeno behaviour when & — (), and con-
sequently an infinitely fast switching may be expected, which
is not acceptable in practice. This will be practically avoided
later introducing an additional dwell-time logic to obtain a
temporal-regularisation of the dynamics, thereby weakening
asymptotic convergence into practical convergence.

V. TRADEOFF BETWEEN DWELL-TIME AND LQR
PERFORMANCE

Once that UGAS property of the attractor is established for
our solution, we focus on providing a suitable performance
guarantee in order to reduce, for instance, the energy cost,
current peaks and response time for the voltage or current.
For this goal we apply the same paradigm shown in [8] for a
hybrid context applied to switched systems.
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Within the considered hybrid context, we recall that the
solutions parametrized in a hybrid time domain dom; § cor-
responds to a finite or infinite union of intervals of the
form (26). Within this context, we represent a quadratic LQR
performance metric focusing on flowing characteristics of the
plant state, using the expression

tht

FroTczdr, (28)

kedom; & tk
where £ = (Z,z,v) : dom& — R™ x R" x R™ is a solution to
hybrid system (16)—(19), for all (¢, j) € dom¢.
The following theorem guarantees a maximum performance
cost (28) for our hybrid system.

Theorem 2. Consider hybrid system (16)—(19) satisfying
Assumptions 2,3. If

Q>c"o, (29)

then the following bound holds along any solution & =
(Z,z,v) of (16)—(19):
1
J(€) < 5, #(0.0)"P#(0,0),

for all (t,7) € dom(§).

(30)

Proof. To prove the LQR performance bound given in (30),
consider any solution { = (Z, z,v) to H. Then for each (¢, j) €
dom ¢ and denoting ¢ = t;41 to simplify notation, we have
from (23)

V(i‘(.tvj)) — V(#(0,0))

Il
MQ
<

(Z(tkt1, k) — V(2(tk, k)

=
il
o

Il
Mb
—

-~
=

(VV(Z(1,k)), f(&(T, k), 2(7, k), v(T, k)))dT

b
Il
=)

trk41
/ —niT(T, k)Qx(r, k)dr

23

M-

=~
Il
o

J trt1

<-ny / T (1, k)CTC& (T, k)dr, (31)
k=0" 1tk

where the last inequality comes from applying (29). Now,

taking the limit as ¢ + j — +oco and using the fact

that the UGAS property established in Theorem 1 implies

limyy ;400 V(Z(t,7)) = 0, we get from (31)
1T(€) < V(F0,0)) = 33(0,0)" PE(0,0),

as to be proven. O

Remark 4. Note that for a given P and Q that satisfy (29), the
guaranteed performance level is proportional to the inverse of
n € (0,1). That means that large values of 1 are expected to
drive to improved LQOR performance along solutions.

On the other hand, note from the flow and jump sets in
(18) and (19), that larger values of n (close to 1) correspond
to strictly larger jump sets (and smaller flow sets), which

reveals that solutions with larger values of ) exhibit a larger
switching frequency. In other words, through parameter n we
can deal with a tradeoff between switching frequency and an
LOR performance level given in (30).

A. Computation of P and )

Now, we address the problem of the computation of param-
eters P, @), following any class of optimization that reduces
as much as possible the right hand side in bound (30) with
any Q > CT(C'. To this end, we select the cost function as
follows [8, Section IV]:

bt P 2
J(€) :=min Y / L (we(r, k) —ve,)
u t RO
kedom; (¢) 7tk
+ Rps(ip(r,k) —ig,)?) dr,
where p is a positive scalar. Note that the constant parameters
of each term express the energy weighted sum of the error
signal for each state variable. From this, we take

o[t ]

such that, all assumptions of Theorem 2 are satisfied.

Once () is selected, and noting that matrix A is Hurwitz, the
following convex optimization expressed by the linear matrix
inequality always leads to a feasible solution

min

38 TraceP, subject to:
P=PT>0

(32)
ATP 4+ PAT +20 <0,

and this optimal solution clearly satisfies (14).

VI. PRACTICAL GLOBAL RESULTS USING
TIME-REGULARIZATION

The hybrid control law proposed above can exhibit infinitely
fast switching at steady state, because given an initial condition
in A, one sees that the hybrid dynamics (16)—(19) have
at least one solution that keeps jumping onto A. Infinitely
fast switching is not desirable in terms of energy efficiency
and reliability, because every switch dissipates energy and
reduces the switch lifespan. For this reason, we propose a
few modifications of the hybrid law, aiming at reducing the
frequency switching when e is close to zero. This goal is
reasonable for the proposed law, because it is possible to show
that away from .4, our control law already joins a desirable
property of minimum dwell time between switching, as long
as Assumption 3 holds. For this, given any v¢,,¢r, and P, Q
satisfying the above assumptions, consider system (16)—(19)
and denote it by the shortcut notation H := (f,G,C,D)
and then, for a non-negative scalar 7' and introducing the
following additional state variable 7 to dynamics (16), define
the following time-regularized version of H:

{ [5} - f(j’z’i})’ (Z,z,v) € Cr
o T 1= i(?) )
|:1Z)i:| © G<x7z>, (57,2’,1}) EDT)
Tt =0,
(33a)
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where the ¢ denotes the non-negative side of the unit deadzone
function defined as ¢(s) := max{0, s—1}, for all s > 0 and the
jump and flow sets are the following time-regularized versions
of C and D in (16)—(19):

Cr =Cx[0,2T1U{(%,2z,v,7: 7€[0,T]}
DT =D X [T, ZT]

The above regularization is clearly motivated by the attempt
that all solutions are forced to flow for at least 7' ordinary
time after each jump. Therefore, there are not jumps when the
timer 7 is too small. Note also that the deadzone given by ¢
allows a solution to flow forever while ensuring that timer 7
remains in a compact set.
The introduction of the time regularization term in (33a)
presents the following consequences:
o It modifies the attractor set defined in (21). Now the new
attractor can be characterized by
Ar = {(&,z,v,7): ||Z]| < X,z2€ ®, v Y, 7 €[0,2T]}.
(34)
« Attractor (34) is UGAS for sufficiently small values of
T > 0. Remark that attractor (34) tends to attractor (21)
as 7' tends to zero.

(33b)

To show the previous statement and give an interval of values
of T' ensuring UGAS, let us consider the following lemma
[17, Theorem 3.2.2], whose proof is given for the sake of
completeness.

Lemma 2. Consider Assumption 3 is satisfied, then all the
eigenvalues of the matrix P~1Q are positive and

Ay (P)
M2 (P)

—at

A
le ) <

where o = A\, (P71Q).

Proof. Let us multiply (14) by P~'/2 on the right and on
the left side, and define F := PY2AP~1/2 and a =
A (P~1/2QP~1/2), then we obtain:

FT 4+ F < —2P7'2QP~1/2 < —2a]. (35)

Let us now define the function ¢(t) := ||eF+*1%||2. Then,
from (35), we have
% = gTeF+eDt(pT 4 4 2al)eF+aDtz < 0,
Therefore, we can remark that ¢ is a non-increasing function
and
leFHeDtE | = ¢(t) < ¢(0) = | &), Vvt > 0.

Note that this last condition can also be rewritten as

”e(FJraI)ti,”

<1
[
which implies

||6(F+a1)t|| <1 & et <e , vT > 0. (36)

On the other hand, from F' definition and classical mathe-
matical manipulations, we get et = P~1/2¢ft P1/2 Then,

le]| = |[P~Y2eP P2 < | P2 P e
< [P PY 2ot

Note that last inequality is achieved from using (36).
Let us apply ||PY/2|[2 = Ay (P) and |[P=2/2(| = A 1(P)
which gives

A’ (P)
i (P)
Now remark that P~1/2QP~1/2 = PY2[p-lQ|P~'/? >
0 and thus, P~'/2QP~'/? presents the same eigenvalues

as P~'Q. Then from (35), a = \,(P~'/2QP~1/?) =
Am(P71Q) and the proof is complete.

|edt]| < ot vt > 0.

O

Now, we establish a useful practical minimum dwell-time
property for Hrp.

Property 1. There exists a positive scalar T*, such that for
any chosen T < T* the solutions (t,j) — £(t,7) to hybrid
system (33) flow for at least T ordinary time after the jump
before reaching set Drp. Moreover, as T tends to zero, the
minimum dwell time tends to zero as well.

Proof. Note that from Theorem 1, we guarantee that for all
solutions far enough from A, there exists a minimum dwell-
time managed by 7, as discussed in Remark 3. Consider the
hybrid system (33) between two jumps in the neighbourhood
of A. Without loss of generality, consider that the first jump
occurs at time ¢ = ¢y and let us consider the variable ¢ :=
t — tg. Then, in the flow set Cr, the trajectories are described
by:
#(f) = Az(f) + Bu — BTz(f), #(0) = &

for a given T' > 0.
From (5), note that the trajectories of z are

2(f) = {Zl(f)} _ |:Vmam sin(wti)} '

2o(t) Vinaz cos(wt)

Consequently, we can deduce that:

(37

#(f) = eM(Fg+ A B(u—W (1)) A" B (u — W(f)) (38)
for 0 <t < T and with

W(i:) = ‘/mawpl (CU) COS (wt~+ ¢1 (OJ))
+ Vinazp2(w) sin (wt + ¢o(w))

which is a bounded function with

p1(w) = [(jwl — A)"'BI|
pa(w) = |(jwI — A)"' BTy
¢1(w) = arg(jwl — A)~'BIy)
$a(w) = arg(jwl — A)"'BTy).

Note that I'; and I's come from (12).
Let rewrite (38) as

F() + A7 Blu—W() = e (g + A B(u— W(D)).
From the properties of a norm, we have:

1#(5)+ A7 Blu=W (@) < [le*][[|(@o+A~" Bu=W (D))
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and applying Lemma 2, we get,
|12(f) = A7 B(u = W (D) <

\Y2(p ) )
5 P) ad) (3, 4+ A1 Bu - WD),
A2 (P)
Now, for 0 < ¢ < T, we obtain

DIl

N2(P) |Fo+ A 1B(u— W (I
— A71B(u—W(?))]|

)
a2 () [1(E)
) €

and for all £ > 0 and Z(t

€ Cr, we have

~ l ) 1/2(P) Hio_i_A*lB(u— (5))H
0<t<—T (Am( ) 12(5) = A=1B(u - W @) |-

m

Let us consider that the next jump occurs at time f = T,
such that (Z(T), z(T'),v(T)) € Dr. Then for such T', we have

{f(T)TP(Ai“(T) + Bu(r)) = —ni(r)" Qi(r)
and 7 € [T, 2T).
or\and

{i(T)TP(Ai"(T) + Bo(71)) < —ni(1)TQx(7)

and 7 =1T.

Consequently, there exists a maximum dwell time bound
defined by T which satisfies:

T*_an<AM?<P> 30 + A~ Blu— W ()| )

~a "\ N2p) @) — AT Blu— W(T)]

such that,
0<T<T".

Note that %y and Z(7T) define the maximum possible chat-
tering in the system induced by the dwell time bound, 7*. [

Property 1 ensures that some minimum dwell-time is guar-
anteed if solutions remain sufficiently far from .4. Moreover,
using this property, the following desirable results are enjoyed
by hybrid system Hr.

Theorem 3. Consider a A\, A\_1 and matrices P = 0 and
Q = 0 satisfying Assumption 3. The following holds:

1) all solutions to Hr enjoy a minimum dwell-time prop-
erty with a minimum T';

2) set Ar in (34) is compact for any positive scalar T <
T*.

3) for any positive scalar T < T*, set Ar in (34) is UGAS
for dynamics Hr in (33);

4) set Ax {0} is globally practically asymptotically stable
for (33), with respect to parameter T' (namely as long
as T is sufficiently small, the UGAS set Ap in (34) can
be made arbitrarily close to A x {0}.

Proof. Note that hybrid system (33) enjoys the hybrid basic
conditions of [13, As. 6.5], because sets Cr and D are
both closed and f and G enjoy desirable properties. Then we
may apply several useful results pertaining well-posed hybrid
systems (specifically, in the proof of item 2 below).

Proof of item 1. Note that the solutions present a minimum
dwell-time property because the jumps are forbidden, at least,
until the timer variable 7 has reached the value 7'. Since 7 = 1
for all 7 < T, then all solutions flow for at least 7" ordinary
time after each jump (because 77 = 0 across jumps).

Proof of item 2. Note that the hybrid system (33) satisfies
Property 1. From this property is easy to see that Z is bounded
in the flow set Cr. Indeed, from (38) and the properties of a
norm, we have

@) < e[ (Fo+A™* Blu=W )|+ A Blu=W (1)

and applying Lemma 2 and the variable change £ =t —t(, we
obtain

\1/2
v (P)
2] < —1/2(13)
+|A7 B(u —

e |(Zo + AT B(u— W(1)))|
W) =X, Vt>to,

proving attractor Ap is compact.

Proof of item 3. From V(Z) given in (22), and the bound
given before ||Z(¢)|] < X, consider the following Lyapunov
function candidate:

V(%) = max{V (%) — A (P)X?,0}, (39)
which is clearly positive definite with respect to A4p and
radially unbounded. Since outside set A7 the hybrid dynamics
‘Hr coincides with the one of H, then equations (23) and (24)

hold for any (Z, z,v) not in A, which implies that

(VVip(2), f(Z, 2,0)) < 0
Vr(3t) — V(@) = 0,

Vi‘ECT\AT
Vi‘EDT\AT.

(40)
(41)

Moreover, from the property established in item 1, all complete
solutions to H7 must flow for some time, and therefore
from (40), we have that no solution can keep Vr constant
and non-zero. UGAS of Ap by applying the nonsmooth
invariance principle in [18], also using the well posedness
result established at the beginning of the proof.

Proof of item 4. Item 4 follows straightforwad recalling
Property 1, the minimum dwell time converges to zero as T’
goes to zero. Consequently, set Az in (34) shrinks to A x {0}
as T goes to zero, and since we prove in item 2 that A7 exists,
we can make A7 arbitrarily close to A x {0} by selecting T
sufficiently small. O

Remark 5. Note that all solutions to the hybrid dynamical
system (33) present a minimum dwell-time in the ordinary time,
given by T. This minimum dwell-time is not constant. Indeed,
it increases if the solution does not satisfy any condition of Dr.
More precisely, the dwell-time is managed by 7 and eventually
by T, if solutions are far from the attractor Ar. In other words,
if @ is far from 0, then the rule 37 P(AZ + Bv) > —ni’ Q%
and the rule T € [T, 2T) induce the dwell time. On the other
hand, the dwell-time is mainly managed by T, if solutions are
close to the attractor Ar, that means, if solutions are close
to & = 0, then the rule T € [T, 2T mainly induces the dwell-
time.
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Table I: Simulation parameters

Parameter Convention Value Units
DC input voltage Vin 48 |
Reference peak voltage Vinaz 1202 1%
Nominal angular frequency w 2w (60) | rad/s
Inductor L 50 mH
Output capacitor Co 140.72 nF
Load resistance Ro 240 Q
Estimated series resistance Rrs 1.5 Q

VII. SIMULATION

In this section, we validate in simulation the hybrid con-
troller designed in this paper for the inverter given in (1).
From parameters given in Table I and from (3) and (4) we got
the following desired behaviour

B [iﬂ B {9 sin(27r60t+86°)]
Tqg = ,

ve, | | 120v/2sin(2760¢) “42)

d

where it was applied the trigonometric relationship: a cos(x)+
bsin(z) = /(a® + b?) sin(z + atan(2)). Moreover, we take

24.71 0.10
p = 1000 and P = 010 007!

ering a chartering of ic equal to 2A and a chattering of v¢
equal to 10V, giving T™ = 0.041.

First, note that condition (14) is satisfied. Moreover, from
(1), (3), (4) and the convex combination © = A1 — A_; with
A1+ A1 = 1, we can achieve x = x4 with \y = 0.5 +
0.003 sin(2760¢t) + 0.34 cos(2760¢), satisfying condition (15).

Some simulations for different initial conditions are per-
formed in MATLAB/Simulink by using the HyEQ Toolbox
[19]. We show the average total jump count (the average is
performed from different initial conditions) with respect to
n and T in Fig. 3, for the transient time, and Fig. 4, for
the steady state. The systems is considered to be in steady
state when the trajectory evolves within a 5% band. Note
that in the steady state, 7' mainly induces the main jump
reduction. On the other hand, in the transient time slot, the
jump reduction is managed by n and 7. Moreover, note that
the jumps converge to infinity as 7' goes to zero and 7 goes to
1 (as noted in Remark 3). In practice, this is not desirable in
terms of energy efficiency and reliability, since every switch
dissipates energy and reduces the switch lifespan. On the other
side, Fig. 5 shows the average normalized switching frequency
and cost function J (the normalization of these quantities
is performed dividing by the corresponding maximum value
obtained in simulations and, the average is performed from
different initial conditions) in the transient time slot as a
function of 7 and for different 7T". Note that, the cost function is
reduced with larger values of 7, as noted in Remark 4. On the
contrary, the trend of the switching frequency is to grow with
larger values of 7. Thus we may give up a little on the LQR
performance level and suitably adjust the switching frequency,
finding a satisfactory tradeoff solution between performance
and switching frequency for different 7', which corresponds
to the intersection between the switching curve and the cost
function. Finally, in Fig.6, we show the voltage and current
error in steady state for different values of 7'. Note that the
chattering between two jumps are smaller than the chattering

T* is computed consid-

given for computing 7 above. We remark that the error, and
consequently the chattering, is reduced as 7' goes down, as
given in Theorem 4, item 3. All these simulations show the
noted in Remark 5.

Jumps

Figure 3: Jumps evolution w.r.t. n and 7" in transient time.

6000
5000
@ 4000
E 3000
3
2000
1000

Figure 4: Jumps evolution w.r.t.  and 7T in the steady state.

Figure 7 shows the voltage and current evolutions of system
(16)-(19) for T' = 10us and with different 7. This figure
shows UGAS property of the attractor (21) which is guaran-
teed by Theorem 1. In addition, Fig. 8 performs a zoom of
the jumps in the transient time marked in Fig. 7 with a shaded
area. Once again, these figures show Remark 3, that states that,
as n grows to 1, we get arbitrary faster ans faster switching.

Some simulations are given in Fig. 9 with system (16)—(19)
with 7 = 0.1 and different 7". And a zoom of the switching in
the steady state (marked in Fig. 9 with a shaded area) is given
in Fig. 10. Note, as T increases, it is expected a reduction
of the switching frequency, which is consistent with Fig. 10.
These simulations show the dwell-time and UGAS property
for attractor Ap properties given in Theorem 3, item 1 and
item 2, respectively.
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Normalized J and jumps Normalized J and jumps
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Figure 5: Average normalized jumps (solid) and cost function
J (dashed) s evolutions for different 7.

2

—T=500 s
1 ——T=100 us
. (: ! : f: Q —T=50 s
= 0 Maaddsded YRR Y| T=10 s |
= VVWW V4 \/ \/ Vv
-1 F
2 ! ! L L L !
0.07 0.075 0.08 0.085 0.09 0.095 0.1
t(s)
20
——T=500 s
10 ——T=100 s

-20

°F \,/ R

0.07 0.075 0.08 0.085 0.09 0.095 0.1
t(s)

Figure 6: Evolution of current error, (1), and voltage error,
Z(2), for different T.

VIII. EXPERIMENTAL RESULTS

The hybrid control scheme is now tested in a 150W half-
bridge prototype. This prototype is composed by:

2 MOSFET AOT15S60 triggered using 2 photo-coupled
drivers TLP350 and 1 IRS2004 driver, which receives
only 1 control signal input, u, and generates the 2 gate
signals with dead time;

2 sensors: an isolated closed-loop hall-effect transducer
LV-20P for measuring the output voltage and an isolated
closed-loop hall-effect transducer CAS 15-NP for mea-

200 N . A
g Il/ ; n=0.1 /
: o\ o
& \ \ =2
= v \Y —-—- Reference
o v/ Y, v v
> -200
0 0.05 0.1
t(s)
20
< ———1=0.1
= 0 —— =03 N\
S ——1=0.8
= —-—- Reference
S
O -20 ‘ ‘
0 0.05 0.1

t(s)

Figure 7: Inverter voltage and current evolutions with 7' =
10us.

n=0.1

1
0.031 0.0315 0.032 0.0325 0.033 0.0335 0.034
t(s)
1n=0.3

0.031 0.0315 0.032 0.0825 0.033 0.0335 0.034
t(s)
1=0.8

1
0.03 0.0315 0.032 0.08325 0.083 0.0335 0.034
t(s)

Figure 8: Zoom for u in the inverter with 7' = 10us.

suring the inductor current. Outputs of both sensors are
conditioning using analogue circuitry.

o 1 Digital Signal Processor (DSP) TMS32028335, which
lets embedding the hybrid control algorithm, running with
an internal sampling frequency of 100k H z;

o 1 oscilloscope Tektronix MSO2014B;

« conventional voltage probes;

« 1 differential voltage probe;

o 1 isolated current probe TCP0O030A;

e 1 programmable DC source BK precision XLN6024,
which is used to provide the converter input voltage and

o 1 power source BK Precision 1672 feeding the sensors
and auxiliary circuitry.

Figure 11 shows the prototype assembled with the measure-
ment set-up.

The converter parameters appear in Table I and the desired
behaviour in (42). The gains introduced by the sensors in
the measurements (which can condition the circuit) are com-
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\ —-—- Reference
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T=500 u s
——T=10 s
—T=50 pu's
—-—- Reference

Current (A)

0 0.02 0.04 0.06 0.08 0.1

Figure 9: Voltage and current evolutions of the inverter and
n=0.1

T=500 u s
1F T T
> 10 [
0.05 0.052 0.054 0.056 0.058 0.06
t(s)
T=100 4 s
1
=} 10
0.05 0.052 0.054 0.056 0.058 0.06
t(s)
T=50 uns
! |
> [l [T
0.05 0.052 0.054 0.056 0.058 0.06

t(s)

Figure 10: Zoom for w in the inverter with n = 0.1.

pensated into the DSP algorithms. Then, the hybrid scheme
(33) with matrices P and () given above are implemented in
this DSP, and it is configured to have an internal interruption
defining the sampling time in 10us. This time is used to
generate a minimum dwell-time.

A. Performance evaluation for different values of n

First, we experimentally validate the efficiency of the hybrid
scheme (33) w.r.t. 7, which conditions the transient time, as
shown in Fig. 7. For this one, several experimental tests were
performed in the prototype in nominal conditions of input
voltage and load, for n = {0.1,0.3,0.8} and 7" = 10us. Note
that these n values are according simulation results Fig. 7. As
shown in Fig. 12, system reaches the steady state in frequency,
phase and amplitude before 50ms. The signal s(t) is obtained
from a digital output of the DSP and represents the polarity
of the internally generated sinusoidal reference for v (3V if
signal is positive and OV if signal is negative). Remark that the
switching frequency decreases as 1 diminishes, as is shown in
simulation (see Fig. 8).

B. Steady-state performance for different values of T

Now, we validate the hybrid scheme (33) for different mini-
mum dwell times in steady state, ' = {50u, 1004, 50015} and
1 = 0.1, applying several tests in nominal conditions, as per-
formed in simulations, Fig. 9. Figure 13 shows the steady state
behaviour for the different 7. We highlight that the voltage
and current output are practically the same despite different
T. However, the switching are reduced as in simulations (see
Fig. 10).

Moreover, we measured the inverter THD!, whose values
are obtained in a range between 1.0% and 1.3% using a
Power Quality Analizer Fluke 43B. The best measurement
was obtained for n = 0.1 and 7' = 100us (see Fig.14 c).
This means that for higher 7" or smaller 1 the THD increases
due to the absence of switching during a relevant slot time.
This fact is very important for low-cost devices, i.e. for low
performance devices.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a controller following a HDS
framework for a dc-ac converter composed of continuous
variables (current and voltage) and discrete variables (state
of switches), whose main problem is to track a sinusoidal
reference. The main advantage of this method is to manage
the switching frequency in both transient and steady states.
We showed practical results using a time-regularization that
allows: 1) to stabilise set compact set Ar being 7' small
enough to adjust the steady state switching frequency, 2) to get
a positive minimum dwell-time in each mode, T, whose size
can be modulated by 1 and 3) to deal with a tradeoff between
dwell-time on the one hand and an LQR performance level,
tuning parameter 7 and the size of the asymptotically stable
set around the desired operating point, tuning parameter 7°,
on the other hand. Some experiments validate our proposed
hybrid controller.

A future work is to use this inverter to inject energy in
the power grid, which means to synchronize the inverter in
amplitude, frequency and phase with the power grid.
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