
HAL Id: hal-01730479
https://hal.science/hal-01730479v1

Submitted on 13 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Platypus – A Multilingual Question Answering Platform
for Wikidata

Thomas Pellissier Tanon, Marcos Dias de Assuncao, Eddy Caron, Fabian
Suchanek

To cite this version:
Thomas Pellissier Tanon, Marcos Dias de Assuncao, Eddy Caron, Fabian Suchanek. Platypus – A
Multilingual Question Answering Platform for Wikidata. [Technical Report] LIP - ENS Lyon. 2018.
�hal-01730479�

https://hal.science/hal-01730479v1
https://hal.archives-ouvertes.fr

Platypus – A Multilingual Question
Answering Platform for Wikidata

Technical report

Thomas Pellissier Tanon1,2, Marcos Dias de Assunção1, Eddy
Caron1, and Fabian M. Suchanek2

1Université de Lyon, ENS de Lyon, Inria, CNRS, Université
Claude-Bernard Lyon 1, LIP

2LTCI, Télécom ParisTech

In this paper we present Platypus, a natural language question answer-
ing system. Our objective is to provide the research community with a
production-ready multilingual question answering platform that targets Wiki-
data, the largest general-purpose knowledge base on the Semantic Web. Our
platform can answer complex queries in several languages, using hybrid gram-
matical and template based techniques.

1 Introduction

Recent years have seen the rise of systems that can answer natural language questions
such as “Who is the president of the United States?”. These systems usually rely on
knowledge bases. A knowledge base is a large, structured repository of machine-readable
facts – usually encoded in the RDF model. Several large knowledge bases are freely avail-
able, including Wikidata [36], YAGO [32], and DBpedia [3]. Numerous question answer-
ing systems have been build on top of these knowledge bases [9, 29, 4, 34, 38, 18, 7, 11],
and these systems perform well on benchmarks such as QALD [21], WebQuestions [4],
and SimpleQuestions [6]. However, considerable work remains to be done to create sys-
tems that are user-friendly, multilingual and easy to extend. With these goals in mind
we created Platypus, a multilingual question answering platform for Wikidata.

Platypus differs from existing systems in two main aspects. First, it explicitly targets
Wikidata, which is the largest of the knowledge bases mentioned above. Second, it
supports multiple natural languages with minimal adjustments.

Our method combines two approaches. The first one uses a set of transformation rules
based on sentence grammars. This approach does not require training data, and it can be

1

adapted easily to different languages. The second approach is based on query templates
and slot filling. It does require training data, but it can work even on questions with
very little grammatical structure. Our system is available online as an API1, as a Web
interface2, and as a Twitter bot3.

This paper is structured as follows. Section 2 discusses related work. Section 3
presents our system, with Section 4 describing its implementation. Section 5 presents
our experiments, followed by concluding remarks in Section 6.

2 Related Work

Question answering (QA) is an active domain of research since early 1970’s.
One group of approaches is based on the grammatical structure [23] of the questions.

Several works have augmented grammatical structures with semantics in several lan-
guages. Some of the approaches [1] focus on semantic role labeling, whereas others build
logical representations from sentences [35, 12], and again others improve universal de-
pendency trees with semantic relations [37]. Two QA systems work with this type of
structures. One of them [22] uses the formal grammar of the target language. This
approach requires large formal grammars to be built for each language. Our work, in
contrast, relies solely on semantic parsing models, and does not need expensive adapta-
tions for different languages. Furthermore, the work of [22] targets only domain-specific
knowledge. Our work, in contrast can work on broad knowledge bases like Wikidata.
The other QA approach is based on a multilingual semantic parser on top of universal
dependencies [29]. Our work differs from this approach in two aspects. First, we provide
a working implementation on Wikidata. Second, our logical representation matches di-
rectly the target knowledge base, so that we do not need an additional matching step.
Thanks to this, our system can work with specific output types such as strings, dates,
numbers, and quantities.

Another class of QA systems uses a logical representation based on the λ-calculus [40,
4]. Our approach also uses such a representation, but we show how to extend it to several
languages.

Another group of QA approaches relies on machine learning in order to build a knowl-
edge base query directly from the question. One approach [34] builds query templates
based on the part-of-speech tree, and then instantiates them by a mapping to the knowl-
edge base. Other work [38] focuses on the disambiguation process. Again other work [31]
first performs an entity linking phase before building a SPARQL query, using a convolu-
tional neural network. The recent trend is using end-to-end machine learning approaches,
especially when targeting the SimpleQuestions dataset. The work by [6] introduces an
approach based on memory networks. This work has been refined by [14] to use specific
characters instead of words as input. The approach of [39] uses attentive convolutional
networks, and [33] uses simple recurrent networks. There are some new attempts to

1https://qa.askplatyp.us
2https://askplatyp.us
3https://twitter.com/askplatypus

2

“Where was the inventor of dynamite born?”

1 Where ADV PronType=Int 0 ROOT
2 was VERB Mood=Ind—Number=Sing—Person=3—Tense=Past—VerbForm=Fin 1 cop
3 the DET Definite=Def—PronType=Art 4 det
4 inventor NOUN Number=Sing 1 nsubj
5 of ADP 6 case
6 dynamite NOUN Number=Sing 4 nmod
7 born NOUN Number=Sing 1 nmod

grammatical analysis

{y | ∃x 〈dynamite, inventor, x〉 ∧ 〈x, birthPlace, y〉}

semantic analysis

SELECT ?x WHERE { wd:Q80728 wdt:P61 ?y . ?y wdt:P19 ?x }

conversion to database request

Stockholm

request execution

Figure 1: Pipeline execution using the grammatical analyzer

use these “machine learning” techniques for multilingual systems [13, 11]. Compared to
these works, Platypus provides a similar end-to-end learning approach based on tem-
plates, but also a grammar based approach that can questions for which there is no
template. Furthermore, our work provides easy support for multiple languages.

3 Platypus System

Our Platypus system takes as input a natural language question, and produces as output
a set of answers from the Wikidata knowledge base. The system works in three steps.
In the first step, the analyzer converts the natural language question into one or several
internal logical representations. In the second step, the logical representations are ranked
according to their likelihood of being the correct interpretation of the question. In the
last step, the representations are converted into SPARQL, and executed one after the
other on Wikidata, until one of them yields an answer. This modular architecture is
designed to allow for different analyzers and different data sources. Indeed, we provide
two different analyzers: a grammatical analyzer and a template-based one. Figure 1
shows the process with the grammatical analyzer.

Section 3.1 describes the logical representation that Platypus uses. Section 3.2 intro-
duces the grammatical analyzer, whereas Section 3.3 describes the template-based one.
Section 3.4 details the ranking of the presentations.

3

3.1 Logical Representation

Our question analyzers do not directly produce a well-known query language such as
SQL or SPARQL [28], but rather a custom logical representation. The advantage of this
approach is that it allows the composition of partial representations, which is a very
useful feature for composition-based analyzers like the grammatical one. For instance,
one could give the representation {x | 〈dynamite, inventor, x〉} for “the inventor of
dynamite” and {y | 〈x, birthPlace, y〉} for “Where was X born?”; composing the two
thus gives the representation {y | ∃x 〈dynamite, inventor, x〉 ∧ 〈x, birthPlace, y〉} for
“Where was the inventor of dynamite born?”.

Our logical representation is inspired by dependency-based compositional seman-
tics [20, 19]. To define our representation formally, we assume a fixed set of variables V.
We also assume a fixed set of entities T , which contains, e.g., the person Barack Obama
or the integer 2. We will denote by P ⊂ T the set of properties (such as “was born in”).
We denote by K ⊂ T × P × T our knowledge base. We use the set B = {true, false}
for the two booleans. We will write φ[t/v] to mean the logical formula φ where all free
occurrences of the variable v have been replaced by the expression t.

We will now define the space of logical representations L, and the evaluation function
JK. The evaluation function takes as input an element of L, and returns either a boolean
value, or an entity from T , or a tuple of entities. We denote with LB ⊂ L the set of
elements on which JK returns a boolean, and with LT ⊂ L the set on which JK returns
an entity. The space L and the function JK are defined recursively as follows:

Simple terms: For all t ∈ T , we have t ∈ LT . We define JtK := t. For example, the
person Emmanuel Macron is in T , and JEmmanuel MacronK = Emmanuel Macron.

Triples: For all s, o ∈ LT and all p ∈ P, we have 〈s, p, o〉 ∈ LB. We define J〈s, p, o〉K :=
[〈JsK, p, JoK〉 ∈ K]. For example, the triple 〈France, president, Emmanuel Macron〉
is in LB, and its evaluation is true if Macron is the president of France in K.

Introduction of variables: For all variables v ∈ V, and for all representations φ ∈ LB,
the formula ∃v.φ is in LB. We define J∃v.φK := true iff there exists t ∈ T such that
Jφ[t/v]K = true. For example ∃o.〈France, president, o〉 is a logical representation
that states that there is a president o in France, and its evaluation will be true if
there is indeed such an o in K.

Sets defined by a boolean formula: For all φ ∈ LB with free variables v1, . . . , vn ∈ V,
we have {(v1, . . . , vn) | φ} ∈ L. We define J{(v1, . . . , vn) | φ}K := {(t1, . . . , tn) |
Jφ[t1/v1] · · · [tn/vn]K}. For example, {x | 〈x, work in, Paris〉} is the set of all
people working in Paris.

Elements in a set: For all {(vb1, . . . , vbn) | φ} ∈ L and vf1 , . . . , v
f
n ∈ V, we have

((vf1 , . . . , v
f
n) ∈ {(vb1, . . . , vbn) | φ}) ∈ LT . We define J(vf1 , . . . , v

f
n) ∈ {(vb1, . . . , vbn) |

φ}K = Jφ[vf1/v
b
1] · · · [f

f
n/vbn]K. For example, we could state that Emmanuel Macron

works in Paris with Emmanuel Macron ∈ {x | 〈x, work in, Paris〉}.

4

Conjunction: For all φ, ψ ∈ LB, we have φ ∧ ψ ∈ LB. We define Jφ ∧ ψK := [JφK ∧ JψK].
For example, we can represent the birth place of the president of France as {l |
∃p.〈France, president, p〉 ∧ 〈p, birth place, l〉}

Disjunction: For all φ, ψ ∈ LB, we have φ∨ψ ∈ LB. We define Jφ∨ψK := [JφK∨JψK]. For
example, we can represent the set of presidents of France and the United States as
{p | 〈France, president, p〉 ∨ 〈United States, president, p〉}.

Negation: For all φ ∈ LB, we have ¬φ ∈ LB. We define J¬φK := [¬JφK]. For instance,
the president of France was not born in Germany: ∃p.〈France, president, p〉 ∧
¬〈p, born in, Germany〉.

Comparisons: For all a, b ∈ LT , we have [a = b] ∈ LB. We define J[a = b]K := [JaK = JbK].
The same goes for the operators 6=,≥,≤, <,>. For example [1 > 2] is a valid logical
representation, and its evaluation is true.

Arithmetic operations: For all t1, t2 ∈ LT , we have t1 + t2 ∈ LT . We define Jt1 +
t2K := Jt1K + Jt2K. The same goes for the other arithmetic operators −, ∗, /. For
example, the double of the population of Lyon can be written as {v | [v = 2 ∗ p] ∧
〈Lyon, population, p〉}.

Our system can simplify these expressions in some cases. For example:

• If dom(p) and range(p) are the domain and range(s) of the property p ∈ P, then
for all s, o ∈ T if s 6∈ dom(p) or o 6∈ range(p) then J〈s, p, o〉K = false.

• The expression (vf1 , . . . , v
f
n) ∈ {(vb1, . . . , vbn) | φ} can be simplified to

φ[vf1/v
b
1] · · · [f

f
n/vbn].

3.2 Analyzer 1: Grammatical analyzer

The main analyzer of Platypus is the grammatical analyzer. It takes as input a natural
language question, and translates it into a logical representation. For this purpose, it
first parses the question with standard tools, yielding a dependency path. We use the
CoNLL-U format [24] based on the Universal Dependencies parts-of-speech (POS) and
dependency tag sets. For example the sentence “Where was the inventor of dynamite
born?” becomes:

5

Where/ADV

was/VERB inventor/NOUN

the/DET dynamite/DET

of/ADP

born/NOUN

cop subj

det nmod

case

nmod

From this tree, we want to build the following logical representation:

{y | ∃x 〈dynamite, inventor, x〉 ∧ 〈x, birthPlace, y〉}

This transformation is achieved by rules that use two functions, parset and parser.
parset is the main parsing function, which parses a dependency tree in order to re-
turn its logical representation. For example, for the parse tree corresponding to
the sentence “the inventor of dynamite”, it returns the logical representation {x |
〈dynamite, inventor, x〉}.
parser is a utility function that parses properties. For example, for the parse tree

corresponding to the words “birth place”, the function returns the logical representation
{(x, y) | 〈x, birthPlace, y〉}.
We give here some examples of transformation rules:

• If x ∈ T is an entity that could be represented by the lexeme X, then parset(X) =
{p | [p = x]}. For example, “Paris” could represent the capital of France, and
hence parset(Paris) = {p | [p = Paris]}.

• If p ∈ P is a property that could be represented by lexeme R, then parsep(R) =
{(s, o) | 〈s, r, o〉}. For example, parsep(author) = http://schema.org/author.

• parset

Where

X

nsubj

 =
{
p | ∃x. x ∈ parset(X) ∧ 〈x, located in, p〉

}

• parset

P

of

case

S

nmod

 =
{
o | ∃s. s ∈ parset(S) ∧ (s, o) ∈ parser(P)

}

6

We give here some examples of simple sentence analyses:

parset

Where

is

cop

Paris

nsubj

 =

{
p

∣∣∣∣∣∃x. x ∈ parset(Paris)∧〈x, located in, p〉

}

= {p | 〈Paris, located in, p〉}

parset

Father

of

case

Obama

nmod

 =

{
o

∣∣∣∣∣∃s. s ∈ parset(Obama)∧
(s, o) ∈ parser(father)

}

= {o | 〈Obama, father, o〉}
When several rules can be applied, the analyzer returns several results. Hence, parset
does not return a single logical representation but a set of possible representations. We
will discuss in Section 3.4 how to filter out the wrong representations.

3.2.1 Multilingual Parsing.

Our rules depend only on the set of POS tags and the set of dependency tags – and not
on the input language. Both tag sets are language independent. The only rules that
have to be adapted to the input language are those that contain relation words such as
“of” and “in”, or question markers such as “when” or “where”. These words can either
express a relation (as in “Where is London?”) or modify a relation (as in “Where was
Alfred Nobel born?”). In the latter case, we have to combine both “where” and “born”
to find the relation “birth place”.

For example, the parse tree for the translation of “Where was the inventor of dynamite
born?” in French (“Quand est né l’inventeur de la dynamite?”) is:

Quand/ADV

est/VERB né/NOUN inventeur/NOUN

l’/DET dynamite/DET

de/ADP la/DET

cop nmod subj

det nmod

case det

We can apply the same analysis to the French question “Où est Paris” as to its English
translation “Where is Paris”:

7

Table 1: Examples of annotated training set for the template analyzer.

logical representation template training samples

{o | 〈 s , birth date, o〉} When was Georges Washingtons born?

birth year Obamas

{o | 〈 s , p , o〉}
Pariss populationp

placep ofp birthp of Alberts Einsteins

What is the nicknamep of News Yorks ?

{v | [v = m ∗ o] ∧ 〈 s , p , o〉} Twicem the populationp of Franceo

halfm Billo Gateso wealthp

parset

Où

est

cop

Paris

nsubj

 =
{
p
∣∣∃x. x ∈ parset(Paris) ∧ 〈x, located in, p〉

}

= {p|〈Paris, located in, p〉}

3.3 Analyzer 2: Template analyzer

The second Platypus analyzer is based on templates. A template is a logical representa-
tion with free variables, annotated with natural language questions. In these questions,
the entities are tagged with the free variables of the template. Table 1 shows some
examples.
We discuss in Section 5 how to obtain these templates from previous work. Our analyzer
uses these templates in order to find the logical representation of a given natural language
question. For this purpose, the analyzer first finds the template that best matches the
question. This is done using a classifier. We encode the question by the average of the
word embeddings of its words, and classify them with a linear support vector machine.
After this, the analyzer fills the logical representation slots. We use conditional random
fields [17] to recognize entities in the input sentence, and we match them with the
knowledge base entities using the same techniques as in the grammatical analysis.

3.4 Ranking Logical Representations

As our analyzers may return several logical representations for the same input sentence,
we must rank interpretations by likelihood. For example, we want to return first the
birth date of George Washington the US president, and not of George Washington the
inventor of an early version of instant coffee. For this purpose, we assume a ranking
function on the entities. For Wikidata, the entity ranking is done by counting the
number of languages in which the entity has a Wikipedia article. In the future, this

8

function could be adapted for different use cases. For example, a shopping assistant
could use the distance between a shop and the user to do its ranking.

The ranking score of a logical representation is then computed as the maximum of
the ranking score of each entity mentioned in the representation, minus a penalty for
the complexity of the representation. The complexity of the representation is the num-
ber of constructors used in the representation (without set definition and conjunction
operators). For example, the complexity of {v | [v = m ∗ o] ∧ 〈s, p, o〉} is 2 because the
expression contains one product and one triple. Penalizing complex representations is
useful for dealing with cases such as the movie title “Who Framed Roger Rabbit”. This
movie title could be interpreted either simply as the movie title, or as an actual question
asking for the person who framed the entity “Roger Rabbit”.

After ranking the representations in this way, we execute them one after the other,
and return the results of the first query whose results are not empty. This allows us to
cope gracefully with wrong parsings or empty results.

Compared to [34], our ranking function is quite simple. This is because most of
the wrong representations that our analyzers generate do not return any results on the
knowledge base anyway. Therefore, we can stay with a very compact ranking function.

4 Implementation

Our approach is largely independent of the actual knowledge base. For example, for
our evaluation, we have implemented the approach for both Wikidata [36] and Freebase.
This is possible because the interaction with the knowledge base is abstracted into an
interface. This interface provides methods 1) to retrieve entities and properties from a
label and optionally a class, 2) to execute logical representation against the knowledge
base and 3) to do entity formatting. For Wikidata, our implementation of the interface
uses a specialized service to perform fast entity-lookup with support of edit distance
and type constraints. We also developed a converter between our logical representation
and the SPARQL query language4. In order not to overload the Wikidata SPARQL
endpoint, Platypus has its own data storage. To keep our answers accurate, we perform
a daily replication of Wikidata to include updates. Wikidata lends itself for Platypus
for two reasons. First, Wikidata provides a large set of lexical representations for its
properties, in numerous languages [16] (e.g., “was born in”, “has the birthplace”, and
“est né à” for bornIn). Second, Wikidata is one of the largest general purpose knowledge
bases on the Semantic Web – especially since Freebase was merged into Wikidata [26].

Our grammatical parsing is also abstracted into an interface. It takes as input a
natural language question, and returns as output a Universal Dependencies parse. We
implemented this interface for the parsers CoreNLP [8], SyntaxNet [2], and Spacy [15].

The grammatical analyzer is implemented in Python. It uses dictionaries of connection
words (such as “in” or “from”) and question words (such as “where” or “when”). We have
developed dictionaries for English, French, which allows Platypus to answer questions in

4http://www.w3.org/TR/sparql11-query/

9

Figure 2: Platypus web user interface

these two languages. The support of Spanish and German is currently in development.
Language detection is done using a Python port of [30].

The template analyzer is implemented using RasaNLU [5]. We used the Glove [27]
word vectors trained on Common Crawl provided by Spacy and the RasaNLU entity
extractor based on the CRFsuite library [25].

Our system can be accessed in three ways. First, there is a simple REST API that
takes a question string as input, and returns a set of RDF graphs as result. Each graph
is annotated with its score and the the logical representation used to retrieve it. This
API is available at https://qa.askplatyp.us. The second access method is a Web
interface, which is available at https://askplatyp.us. Finally, in order to experiment
with different interactions, we also implemented a Twitter bot. The bot replies to tweets
sent to this account. We take advantage of the mapping of 100k Twitter accounts to
Wikidata items (as of January 2018) to mention the relevant Twitter accounts in replies.
The bot is available at https://twitter.com/askplatypus.

10

Figure 3: Platypus Twitter bot

5 Evaluation

For evaluating the template analyzer (see Section 3.3), we use the SimpleQuestions
dataset [6]. It was introduced in 2015, and has been used to evaluate a significant
number of question answering systems [14, 39, 33]. The dataset is split into training,
validation, and test parts, with 75,910 questions in the training part, 10,845 in the
validation part, and 21,687 in the test part. The dataset has been converted to Wiki-
data [10]. It provides 34,374 training questions, 4,867 validation questions, and 9,961
test questions. In both versions, each question is annotated with a knowledge base triple
〈s, p, o〉, so that SELECT ?o WHERE { s p ?o . } is the SPARQL query that should
be run in order to retrieve answer o to the query. For example, in the Freebase ver-
sion of the datset, the question “When was Barack Obama born” is annotated with
〈/m/02mjmr, /people/person/date of birth, "1961-08-04"〉. Here, /m/02mjmr is the
Freebase identifier for Obama.

We converted these datasets to our template analyzer format as follows: We first built
one logical form template {o | 〈s, p, o〉} for each relation p in the dataset. We joined to
these patterns all the questions annotated by the given property. Then, we annotated
the questions with the missing s slots. To do so, we retrieved all the labels and aliases
of the expected value of slot s and we looked in the question for the longest occurrence
of one of these labels or aliases, while allowing a short edit distance (2 at most) to take
care of capitalization and pluralization differences. If we find such an occurrence, we tag
it as the expected value of slot s, if not we prune out the question.

11

Table 2: Evaluation results on SimpleQuestions

system precision (%) recall (%)

MemNN [6] 63.9 100
Char-level CNN [14] 70.9 100

Attentive max-pooling [39] 76.4 100
RNN-QA [33] 88.3 100

Platypus (Freebase) 64.1 89.5

Platypus (Wikidata) 73.9 87.1

For both Freebase and Wikidata, we use the train and evaluation parts of this dataset
to train the template analyzer, and we evaluated it on the test part. We then proceed
to the same evaluation as [6]: we consider a prediction correct if the subject and the
predicate are correctly extracted (i.e., if the logical representation is valid). In this way,
our evaluation measures only the correctness of the interpretation of the question, and
it does not depend on the completeness of the knowledge base.
Table 5 shows the evaluation results of Platypus on both Freebase and Wikidata. For
comparison, we also show the performance of the state of the art systems on the Freebase
version of SimpleQuestions. For systems that perform differently on different variants
of Freebase, we give the best score obtained on either the FB2M or FB5M Freebase
subsets.

Our results show that Platypus performs roughly comparably to the state of the art
on Freebase. At the same time, it is the only one of the systems that can also work on
Wikidata.

6 Conclusion

In this paper, we have introduced Platypus, a multilingual natural language question
answering system for Wikidata. Platypus can work with both a grammatical analyzer
and a template-based analyzer to parse natural language questions. These algorithms
can be adapted easily to other languages. Platypus can be tried out online in English,
German, French, and Spanish on our Web page https://askplatyp.us.

Acknowledgments

We thank the contributors of the first version of the Platypus project, namely Marc
Chevalier, Raphaël Charrondière, Quentin Cormier, Tom Cornebize, Yassine Hamoudi,
Valentin Lorentz.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon.

12

References

[1] Alan Akbik, Laura Chiticariu, Marina Danilevsky, Yunyao Li, Shivakumar
Vaithyanathan, and Huaiyu Zhu. Generating high quality proposition banks for
multilingual semantic role labeling. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL, pages 397–407, 2015.

[2] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-
based neural networks. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL, 2016.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In The Semantic
Web, 6th International Semantic Web Conference, ISWC, pages 722–735, 2007.

[4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing
on freebase from question-answer pairs. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, EMNLP, pages 1533–1544,
2013.

[5] Tom Bocklisch, Joey Faulker, Nick Pawlowski, and Alan Nichol. Rasa: Open source
language understanding and dialogue management. CoRR, 2017.

[6] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale
simple question answering with memory networks. CoRR, 2015.

[7] Elena Cabrio, Julien Cojan, Alessio Palmero Aprosio, Bernardo Magnini, Alberto
Lavelli, and Fabien Gandon. Qakis: an open domain QA system based on relational
patterns. In Proceedings of the ISWC 2012 Posters & Demonstrations Track, 2012.

[8] Danqi Chen and Christopher D. Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP, pages 740–750, 2014.

[9] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret. Core techniques
of question answering systems over knowledge bases: a survey. Knowledge and
Information Systems, Sep 2017.

[10] Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and Pierre Maret.
Question answering benchmarks for wikidata. In Proceedings of the ISWC 2017
Posters & Demonstrations and Industry Tracks co-located with 16th International
Semantic Web Conference ISWC, 2017.

13

[11] Dennis Diefenbach, Kamal Singh, and Pierre Maret. Wdaqua-core0: a question
answering component for the research community. ESWC, 7th Open Challenge on
Question Answering over Linked Data (QALD-7), 2017.

[12] Matt Gardner and Jayant Krishnamurthy. Open-vocabulary semantic parsing with
both distributional statistics and formal knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, pages 3195–3201, 2017.

[13] Sherzod Hakimov, Soufian Jebbara, and Philipp Cimiano. AMUSE: multilingual
semantic parsing for question answering over linked data. In The Semantic Web,
16th International Semantic Web Conference, ISWC, pages 329–346, 2017.

[14] Xiaodong He and David Golub. Character-level question answering with attention.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP, pages 1598–1607, 2016.

[15] Matthew Honnibal and Mark Johnson. An improved non-monotonic transition
system for dependency parsing. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pages 1373–1378, 2015.

[16] Lucie-Aimée Kaffee, Alessandro Piscopo, Pavlos Vougiouklis, Elena Simperl, Leslie
Carr, and Lydia Pintscher. A glimpse into babel: An analysis of multilinguality in
wikidata. In Proceedings of the 13th International Symposium on Open Collabora-
tion, OpenSym, pages 14:1–14:5, 2017.

[17] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference on Machine Learning ICML,
pages 282–289, 2001.

[18] Jens Lehmann and Lorenz Bühmann. Autosparql: Let users query your knowledge
base. In The Semantic Web: Research and Applications - 8th Extended Semantic
Web Conference, ESWC, pages 63–79, 2011.

[19] Percy Liang. Lambda dependency-based compositional semantics. 2013.

[20] Percy Liang, Michael I. Jordan, and Dan Klein. Learning dependency-based com-
positional semantics. Computational Linguistics, 39(2):389–446, 2013.

[21] Vanessa López, Christina Unger, Philipp Cimiano, and Enrico Motta. Evaluating
question answering over linked data. Journal of Web Semantics, 21:3–13, 2013.

[22] Anca Marginean. Question answering over biomedical linked data with grammatical
framework. Semantic Web, 8(4):565–580, 2017.

[23] Richard Montague. The proper treatment of quantification in ordinary english. In
Philosophy, language, and artificial intelligence, pages 141–162. 1973.

14

[24] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Ha-
jic, Christopher D. Manning, Ryan T. McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1: A
multilingual treebank collection. In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC, 2016.

[25] Naoaki Okazaki. Crfsuite: a fast implementation of conditional random fields. 2007.

[26] Thomas Pellissier Tanon, Denny Vrandecic, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher. From freebase to wikidata: The great migration. In Pro-
ceedings of the 25th International Conference on World Wide Web, WWW, pages
1419–1428, 2016.

[27] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pages 1532–1543, 2014.

[28] Eric Prud’hommeaux, Andy Seaborne, et al. SPARQL query language for RDF.
2006.

[29] Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steedman, and Mirella Lapata.
Universal semantic parsing. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pages 89–101, 2017.

[30] Nakatani Shuyo. Language detection library for java, 2010.

[31] Daniil Sorokin and Iryna Gurevych. End-to-end representation learning for ques-
tion answering with weak supervision. ESWC, 7th Open Challenge on Question
Answering over Linked Data (QALD-7), 2017.

[32] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th International Conference on World
Wide Web, WWW, pages 697–706, 2007.

[33] Ferhan Türe and Oliver Jojic. No need to pay attention: Simple recurrent neural
networks work! In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP, pages 2856–2862, 2017.

[34] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo,
Daniel Gerber, and Philipp Cimiano. Template-based question answering over RDF
data. In Proceedings of the 21st World Wide Web Conference WWW, pages 639–
648, 2012.

[35] Lucy Vanderwende, Arul Menezes, and Chris Quirk. An AMR parser for english,
french, german, spanish and japanese and a new amr-annotated corpus. In NAACL
HLT 2015, The 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 26–30, 2015.

15

[36] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communication of the ACM, 57(10):78–85, 2014.

[37] Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang,
Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. Universal decomposi-
tional semantics on universal dependencies. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP, pages 1713–1723,
2016.

[38] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath, Volker
Tresp, and Gerhard Weikum. Natural language questions for the web of data.
In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, EMNLP-CoNLL,
pages 379–390, 2012.

[39] Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and Hinrich Schütze. Simple
question answering by attentive convolutional neural network. In Proceedings of the
26th International Conference on Computational Linguistics, COLING, Technical
Papers, pages 1746–1756, 2016.

[40] John M. Zelle and Raymond J. Mooney. Learning to parse database queries using
inductive logic programming. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelli-
gence Conference, AAAI, pages 1050–1055, 1996.

16

