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a b s t r a c t 

The occurrence of combustion instabilities in high-performance engines such as gas turbines is often 

affected by the thermal state of the engine. For example, strong bursts of pressure fluctuations may occur 

at cold start for operating conditions that are stable once the engine reaches thermal equilibrium. This 

observation raises the question of the influence of material temperature on the response of flames to 

acoustic perturbations. In this study, we assess the influence of the temperature of the flame holder for a 

laminar flame. Both experiments and numerical simulations show that the Flame Transfer Function (FTF) 

is strongly affected by the flame-holder temperature. The key factors driving the evolution of the FTF are 

the flame-root location as well as the modification of the flow, which affects its stability. In the case of 

the cooled flame-holder, the formation of a recirculation zone is identified as the main impact on the FTF. 

1. Introduction

Experimentalists are aware that the wall temperatures of a

combustion chamber affect the thermoacoustic combustion insta- 

bilities which can develop in the combustor [1–4] : a chamber does

not exhibit the same noise and unstable modes when it starts

(and walls are cold) or when it has run for a few minutes (and

walls have reached a higher steady temperature). From the model- 

ing point of view, however, most models assume adiabatic flames

and do not include any interaction between walls and flames. This

is clearly a weak aspect of most Large Eddy Simulation (LES) ap- 

proaches for turbulent burners. Among all the walls found in a

combustion chamber, flameholders play a very specific role: this is

where flames are anchored and where they are the most sensitive

to heat transfer. Any temperature change of the solid in the region

where flames are stabilized can change not only its stabilization

point (the place where it is anchored) but also its dynamics (its

response to acoustic waves as well as its blow-off limits). The MIT

group used DNS to study the stabilization of premixed flames on

square flame holders [5–7] and showed that the location of the

flame roots and the blow-off limits were strongly affected by the

temperature of the flameholder. Kaess et al. [8] proved that the

temperature of a laminar flame stabilized in a dump combustor

controlled the flame response to acoustic waves. Duchaine et al.
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[9] used sensitivity analysis on a DNS to show that the acous- 

tic response of flames stabilized by a backward facing step de- 

pended strongly on the wall temperatures. Mejia et al. [3] demon- 

strated experimentally that controlling the wall temperature of

a 2D triangular laminar flame was sufficient to bring it in and

out of thermoacoustic oscillations. These conclusions, obtained for

laminar flames, have been confirmed for turbulent flames [10,11] .

[10] showed that the thermal conductivity of the backward step

blocks used to stabilize a turbulent flame, controlled the level of

self-sustained instability.

The present work focuses on laminar flames and analyzes the

acoustic response of V-flames stabilized on a two-dimensional

cylinder which can be water cooled to fully control its tempera- 

ture between 300 and 700 K. The setup corresponds to the one

used by Miguel-Brebion et al. [12] : a laminar methane/air flame is

stabilized on a cylinder where the temperature of this cylinder is

controlled by water cooling. Miguel-Brebion et al. [12] described

the different flame topologies and stabilization positions observed

when the flame-holder temperature was changed. When it comes

to describing the capacity of these flames to create self-excited in- 

stability modes, the most useful quantity to consider is the Flame

Transfer Function (FTF) F(ω) which measures the normalized vari- 

ations of the global reaction rate ( q ′ / ̄q ) induced by a normalized

inlet acoustic velocity pulsation ( u ′ / u b ) [2,13,14] :

F(ω) =
q ′ / ̄q

u ′ /u b
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FTF’s can be obtained experimentally or numerically: both meth- 

ods will be used here. The present study focuses on measurements

of FTF in the setup of Miguel-Brebion et al. [12] and shows that the

FTF are extremely sensitive to the flameholder temperature which

appears to be a first-order parameter controlling the FTF in terms

of gain and phase. One of the new results obtained here is that this

effects of the flame holder temperature is due not only to a mod- 

ification of the flame root dynamics, close to the flame holder but

also to a drastic change of the mean flow itself, far downstream

as seen in [15] , but in this case induced by the creation of a large

recirculation zone when the flame holder is cooled.

The paper combines experimental measurements and direct nu- 

merical simulation (DNS) results to analyze the FTF’s of a lean pre- 

mixed laminar methane/air flame. Simulations are performed in

dual mode: the flow is computed with DNS using a 19 species ki- 

netic scheme for CH 4 /air flames [16] while the temperature in the

solid is computed with a heat transfer solver, coupled to the flow

solver. The experiment uses a multi-microphone technique and hot

wire measurements to quantify u ′ as well as unsteady CH ∗ chemi- 

luminescence and high speed imaginary to evaluate ˙ q ′ .

The paper is organized as follows: the configuration is briefly

described in Section 2 . The experimental set-up used to measure

the FTF’s is described in Section 3 . The DNS tools used to compute

the FTF of the flames are described in Section 4 . Finally a discus- 

sion of the results obtained experimentally and numerically is pre- 

sented in Section 5 .

2. Configuration

The experimental bench consist of a lean premixed methane–

air V-flame stabilized in the wake of a steel cylindrical bluff body

(diameter d = 8 mm). The burner has a constant cross section

of h = 34 mm by l = 94 mm so that the flame remains two- 

dimensional, allowing faster DNS ( Section 4 ). The Reynolds num- 

ber based on the bluff-body diameter Re cyl ≈ 500 is low enough

to ensure laminar flow. The reactants are premixed in a one-meter

long injection tube and equally distributed to six injectors placed

at the bottom of the injection chamber. The flow is laminarized

by an array of small glass balls and one honeycomb panel and

passes through the cooled plenum to ensure a constant fresh-gases

temperature. Finally, it enters the combustion chamber where the

bluff-body is located. The lateral sides of the combustion chamber

are water cooled to impose the wall temperature. The plenum has

three pressure plugs and one loudspeaker plug at each side. The

combustion chamber has three optical accesses: one at the front

to allow a direct view of the flame and one 3 mm slot on each for

the laser sheet.

Two different bluff-bodies are used to stabilize the flame. The

first, called CBB (Cooled Bluff-Body), is a steel water-cooled cylin- 

der ( Fig. 2 , left). Drilled holes at the end of the feeding line allow

the water to flow to the 6 mm outer line, where it is evacuated.

The cooling system is designed to maintain temperatures around

285 K in the bluff-body walls. The second flame holder, called UBB

(Uncooled Bluff-Body) is a full, solid, steel cylinder, with the same

external diameter as the cooled one ( Fig. 2 , right). Its temperature

is not controlled and depends on the flame shape. It can reach up

to 700 K.

The operating condition is the same for all cases (Table 1 ). For

this regime and this geometry of the chamber, there is no com- 

bustion instabilities (CI) so that the flame is steady. The burner

power is 7 kW for an equivalence ratio 8 = 0 . 75 and a bulk ve- 

locity u b = 1 . 07 ms −1 . The flame holder temperature is measured

with a K-type thermocouple: T UBB 
cyl 

= 670 ± 40 K. In the CBB case,

the temperature elevation of the water used for cooling is equal

to 1T = 0 . 15 ± 0 . 05 K so that the cooling water temperature can

be assumed to be constant. The total flux taken from the flame is
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Table 1 

Operating conditions. 

Name Quantity Value 

8 Equivalence ratio 0.75 

u b Bulk velocity 1.07 ms −1 

s l Laminar flame speed 0.24 ms −1 

T u Injection temperature 292 K 

T adia Adiabatic flame temperature 1920 K 

Table 2 

Thermal properties of the flame-holder steel. The 

emissivity ǫ ranges from 0.2 for polished surfaces to 

0.9 for oxidized surfaces. 

Material ρc p [K −1 m −3 ] λ [W/m/K] ǫ

35NCD16 3.5 10 6 32 0.9 

8xp 
s → w = ˙ m Cp1T = 24 W. The thermal properties of the steel used

in both UBB and CBB cases are given in Table 2 . In this configu- 

ration, Miguel-Brebion et al.. have shown that radiation form the

flame holder is a key factor to predict the temperature of the UBB

case. In the present experiments, bluff-bodies are oxidized so that

an emissivity of ǫ = 0 . 9 is retained.

3. Experimental strategy

The determination of the FTF ( cf. Eq. 2 ) requires the knowledge

of the heat release rate fluctuations. For a perfectly premixed mix- 

ture at a given equivalence ratio, the heat release rate ˙ q is propor- 

tional to the flame surface, A , and to the light emission, I , from

free radicals CH ∗ [17–19] , and it is possible to determine the trans- 

fer function from one of the following expressions:

F(ω) =
˙ q ′ (t) / ̄̇q

u ′ (t) /u b 
=

A ′ (t) / Ā

u ′ (t) /u b 
=

I ′ (t) / ̄I

u ′ (t) /u b
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To reduce the error due to experimental noise the flame trans- 

fer function may be calculated by:

F(ω) = 
S uq (ω)

S uu (ω)
(3)

Where, S uq is the cross power spectral density between the u 
′ ( t )/ u b

and I ′ (t) / ̄I signals and S uu is the power spectral density of the ve- 

locity signal, u ′ ( t )/ u b . The flame is excited with a pure sinusoidal

acoustic signal, and the Fourier transform of the input and output

signal is calculated at exactly the forcing frequency. The gain is de- 

fined as the magnitude of F(ω) , G = |F(ω) | while the phase is its

argument, ϕ = arg [ F(ω)] .

3.1. Experimental measurements

Measuring the complex number F(ω) , requires a stable config- 

uration that can be pulsated over the range of frequencies where

the flame is sensitive to acoustic perturbations. Two loudspeakers

placed at the bottom of the plenum are used to send phased planar

harmonic acoustic waves towards the flame. Light emission from

CH ∗ free radicals, I ′ and velocity fluctuations u ′ are recorded si- 

multaneously by the photomultiplier (PM) and the hot-wire probe

(HW) represented in Fig. 3 , respectively. The HW is placed at the

center of the plenum through a pressure plug located at (x, y, z) =

(0 , 0 , −61 mm ) and it is oriented to measure the velocity compo- 

nent u z . The PM axis is aligned with the cylinder centreline axis

( x ) and it collects the 2D line-of sight integrated flame CH ∗ light

emission.

Durox et al. [20] showed that for these flames, the gain of the

FTF strongly depends on the amplitude of the velocity fluctuations,

even for low amplitudes (5–10% of the bulk velocity). In order to

avoid non linear-effects, the amplitude of the velocity perturbation

is kept as low as possible, while preserving a good signal to noise

ratio (SNR). Without modulation, the rms velocity fluctuations are

less than 0.4% of the bulk velocity: a velocity modulation ampli- 

tude of 1% of the bulk velocity is enough to have at least a SNR of

2. Figure 4 is an example of the time traces, over three acoustic pe- 

riods, of the normalized velocity and heat release rate, for an exci- 

tation frequency of f ex = 100 Hz and an amplitude of u ′ /u b = 0 . 01 .

The FTF corresponds to the mean value of four runs at each

frequency. The gain and the phase of the FTF for the two cases CBB

and UBB are presented in Fig. 5 . In both cases the gain G(ω) starts

from unity at low frequencies, reaches a maximum around f ex =

100 Hz and returns to zero at high frequencies above f ex > 250 Hz.

The amplitude of the peaks, however, varies considerably from one

case to another. In UBB case, the peak amplitude is close to G ≈

2.5 while for the cooled case CBB it reaches values close to 4.0.

Phases ( ϕ = arg [ F(ω) ] ) increase linearly for both cases. How- 

ever, the slope of ϕ( ω), which corresponds to the time delay
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Fig. 4. Experimental results: time traces of normalized velocity ( ) and heat 

release rate ( ) for a frequency of f ex = 100 Hz and a modulation amplitude of 

u ′ /u = 0 . 01 in the UBB configuration. 

Fig. 5. Experimental results: gain ( top ) and phase ( bottom ) of the FTF for both CBB 

( ) and UBB ( ) cases, for excitation frequency of f ex = 100 Hz and an amplitude 

of u ′ /u b = 0 . 01 .

( τ = ϕ/ω) between the acoustic perturbation and the heat release
rate response, is different. The time delay τ decreases with the

flame holder temperature, it goes from 45 ms in the CBB case to

35 ms for the UBB case.

Figure 5 brings up two important results:

• The change of temperature of the flame holder has a major ef- 

fect on both gain and phase of the FTF.

• The absolute values of gain are very large for these flames

(from 2.5 to 4). Such values have already been reported for con- 

ical ”V” flames [20,21] . They are due to the 2D nature of the

flames and are analyzed in the next section where the DNS of

the same flames are performed.

4. Numerical strategy

To capture the effects of flame holder cooling on the FTF, a cou- 

pled DNS of the flow and of the temperature field within the flame

holder is performed. The choice of a 2D configuration allows the

use of high order schemes and complex chemistry to properly de- 

scribe the near wall chemistry.

4.1. Fluid and solid solver

The compressible Navier Stokes equations are solved with the

AVBP solver using a third-order scheme for spatial differencing on

a two-dimensional hybrid mesh combined with an explicit two- 

step scheme for time advancement [22,23] . The NSCBC formulation

[2,24] is used for the boundaries while the molecular transport de- 

scription is based on the Hirshfelder Curtis approximation [25] . A

multistep analytical mechanism, referred to as LU19 is used to de- 

scribe the chemical kinetics of the methane–air combustion [16] . 1

1 This chemical mechanism was used instead of the 13-species schemes used in 

Miguel-Brebion et al. [12] because it provides better results for the flame position 

[26] : this is consistent with the fact that it takes into account more species and 



The resolution of the heat transfer equation in the bluff-body

relies on an implicit [27] first-order forward Euler scheme for time

integration and a second-order Galerkin scheme [28] . Local heat

fluxes φs are imposed in the solid solver at the boundary shared

between the solid and the fluid domains. The solid solver then

sends skin temperatures back to the DNS code for the next iter- 

ation.

4.2. Coupling strategy

The DNS code (around the cylinder) and the heat transfer solver

(in the cylinder) are coupled with a software called OpenPALM

[29] which exchanges heat fluxes and temperatures on the cylin- 

der skin. The local temperature obtained by the solid solver on

the cylinder surface solver is applied through an isothermal NSCBC

boundary condition [24] in AVBP whereas the local heat flux is

given by AVBP to solid solver. The characteristic flow time τ f is

of the order of 50 ms while the solid characteristic time τ s is of

the order of 100 s. The simulation of the flame for several τ s is

impractical but it is not needed since the bluff-body temperature

changes very slowly and only the steady-state temperature field

is relevant here. Therefore, the coupling strategy to accelerate the

convergence towards steady state is that each domain (flow and

solid) is advanced at its own characteristic time using a time step

αf τ f for the fluid and αs τ s for the solid with α f = αs [9] . This is

sufficient to obtain steady state values of the cylinder temperature.

This temperature is almost constant when flames are acoustically

forced so that only the flow solver is running when computing the

FTF’s.

Moreover, radiative heat losses from the flame holder must be

accounted for when relatively high temperatures are reached. They

are taken into account in the local flux condition imposed on in

the solid solver by adding a radiative flux φrad :

φrad = σǫ(T 4 − T 4 ext ) (4)

where σ is the Boltzmann constant, ǫ is the emissivity coeffi- 

cient of the bluff-body surface and T is its local temperature. Ra- 

diation from the gas (H 2 O, CO 2 ) and from the hot walls down- 

stream of the combustion zone is neglected. Furthermore, walls

at the same height of the flame holder are assumed to have a

temperature close to the fresh gas and to behave as black bodies:

T ext = T u = 300 K. This simple coupling strategy has been already

used in several studies with good results [12,30] .

4.3. Simulated domain and mesh

The computation of realistic flame dynamics responses must

take into account the interaction between the flame and the exter- 

nal walls. Thus, the whole flame must be calculated. The simulated

domain used to calculate FTFs has been specifically adapted: the

plenum has been kept as short as possible while the chamber was

kept identical to the experimental one ( Fig. 6 ). The mean veloc- 

ity profile has been measured experimentally 35 mm upstream of

the cylinder and is imposed at the DNS inlet while the combustion

chamber walls are cooled. Cooling the external walls simplifies the

set-up of the DNS because a simple isothermal boundary condition

is imposed at the DNS side walls.

An unstructured hybrid mesh, [12] , is used to accurately capture

the conjugate heat transfer between the solid and the reactive flow

[31,32] . Five layers of quad elements are used outside of the cylin- 

der boundary (flow region) and ten are used inside (solid region).

The remaining parts of the geometries are meshed with triangles

( Fig. 6 ). The meshes for solid and fluid domains are not coincident

reactions and predicts a more precise flame velocity. The 19-species scheme also 

provides a better description of low-temperature chemistry near the cylinder. 

Fig. 6. Comparison between the experiment and computational domain. With a 

zoom on the mesh. The stream lines show that the recirculation zone is well cap- 

tured by the hybrid mesh. 

Fig. 7. Comparison between the experimental and simulated flames for the CBB 

and UBB cases. 

on the flame holder skin and a second-order in space interpolation

is performed to transfer information between the two solvers. The

mesh is refined along the flame front and close to the bluff-body.

A convergence study was performed in a stationary flame [12] and

a mesh resolution of 70 µm is retained providing at least 8 cells

in the flame region.

In order to validate the choices made above a comparison be- 

tween the experimental and the simulated stationary flame is

shown in Fig. 7 , for the CBB and UBB cases. The experimental flame

corresponds to a line of sight integrated CH ∗ field.

In both cases, the flame shape and the flame anchoring position

are well reproduced by the DNS. To first order, the FTF is controlled

by the stationary flame shape [33,34] , determined by the flame an- 

gle α (Table 7 ), for long flames α ≈ tan −1 s l 0 /u b . A good agreement

is found between experiments and DNS (Table 3 ). Another impor- 

tant aspect controlling the FTF is the flame anchoring mechanism.

The flame stand-off distance, ψ 0 , is defined as the distance be- 

tween the flame holder and the flame root ( Fig. 7 ). Recent studies

have shown that small changes ψ 0 can have significant impact on

the flame dynamics [3,14,35,36] . Figure 7 and Table 3 show good

agreement for ψ 0 between experiments and DNS.



Table 3 

Comparison between the flame stationary parameters 

of the flame shape for CBB and UBB cases. ψ 0 is the 

flame stand off distance and α is the flame angle. 

Parameters CBB UBB 

Exp. DNS Exp. DNS 

α [rad] 0.09 π 0.07 π 0.08 π 0.07 π

ψ 0 [1/ D ] 0.95 0.94 0.64 0.52 

Fig. 8. Flame Transfer Function (FTF) for the two configurations in DNS CBB ( ) 

and UBB ( ) along with the previous experimental results CBB ( ) and UBB 

( ). 

This steady-state analysis allows to conclude that the essential

parameters, α and ψ 0 , controlling the FTF, are well reproduced by

the DNS. Therefore we can proceed to calculate the numerical FTF.

4.4. Flame transfer function calculation

There are two main methods to measure Flame transfer func- 

tions for a linear invariant system. [37–40] :

• Forcing with a single frequency to obtain both FTF [41,42] or

FDF [39,43–45] .

• Forcing with a broadband signal and using Wiener-Hopf system

inversion [40,46–48] to retrieve the FTF.

Harmonic forcing can be CPU intensive since one simulation per

frequency is required. Nevertheless, it is possible to pulsate at dif- 

ferent amplitudes, allowing to explore the flame response in both

linear and non-linear regime. On the other hand, the broadband

noise forcing method can be more frugal since one can obtain the

FTF for the whole range of frequencies in one run. However, broad- 

band is only suitable in the linear regime when the heat release

perturbation remains small. Here, we use the broadband method

[48] to obtain the FTF’s in the linear regime for the two cases 2 .

The FTF was calculated for the CBB and UBB configurations. The

amplitude of the velocity fluctuations is kept under 1% of the bulk

velocity ( u ′ / u b < 0.01).

The gains and phases of the FTFs from experiments and sim- 

ulations are presented in Fig. 8 along with the FTF experimental

results. The agreement is very good for the phase and confirms

the influence of the flame holder temperature seen in the exper- 

iments. In the UBB case, the agreement on the gain is also fair,

however, past the peak that is around 80 Hz, the gain decreases

faster in the experiment than in the DNS. In the CBB case, how- 

ever, the agreement in the gain is less satisfactory: The value of the

maximum gain obtained by the DNS exceeds by a factor of two the

2 The harmonic response method was used, to validate the results of the broad- 

band noise, for a single excitation frequency of f ex = 100 Hz and a velocity fluctua- 

tion amplitude of u ′ /u b = 0 . 01 . No difference was found between the two methods.

one found in the experiments. This discrepancy is due to the fact

that, unlike the stationary flame that fits in the visualization win- 

dow, the pulsated flame sometimes leaves the field of view of the

PM. During some part of the acoustic cycle, the flame tip leaves the

domain, making impossible for the PM to capture the total heat re- 

lease rate fluctuation. This is not the case in the UBB case, because,

as seen in Fig. 7 , the flame is closer to the cylinder and the tip of

the flame remains inside the field of view of the PM during the

whole acoustic cycle. Globally, experiments and simulations show

the same trend and a simple conclusion arises: as the tempera- 

ture of the bluff-body decreases (UBB → CBB), the gain and the

delay of the FTF both increase. The changes of the FTF are large

and the maximum gain of F(ω) can change by a factor of two (in

the simulations) when the bluff-body temperature goes from 300

to 700 K.

5. Discussion

5.1. Flame front fluctuations

We propose to investigate the discrepancy between the FTF

gains for the CBB configuration by tracking the instantaneous flame

front fluctuations. Here the flame was pulsated at f ex = 100 Hz,

in both experiments and DNS, and the acoustic velocity ampli- 

tude was set to a sufficiently high value ( u ′ /u b = 0 . 05 ) for the two

cases in order to magnify the flame surface displacement. It is well

known that V-shape flames are very sensitive to non linearities,

increasing the amplitude of the acoustic perturbation usually de- 

creases the gain of the FTF ( [20] ). However, for this flame, it was

checked that at 100 Hz, the influence of flame-holder cooling is

similar at 1% and 5% pulsation amplitude, therefore validating the

increase for the flame front study.

In the experiments the flame images were recorded with a 1280

× 800 pixels Phantom V1210 high-speed camera equipped with a

700 nm low-pass infrared filter (to eliminate the burnt gases emis- 

sion, and increase the contrast) and a Nikkor lens (focal length

200 mm/aperture 4). Li et al. [19] showed that it is not necessary

to operate with an interference filter (CH ∗ or OH ∗ for example)

in front of the camera to examine heat release rate fluctuations

of laminar premixed flames from hydrocarbon fuels submitted to

flowrate disturbances when the equivalence ratio, 8, is lower than

1.2. The camera is triggered by the velocity signal, it starts record- 

ing at a rate of 50 0 0 fps when the velocity fluctuation at the ref- 

erence point reaches its first maximum (the amplitude of the ve- 

locity fluctuation is fixed to 1% of the bulk velocity). The camera

records during 4 s which give us 20,0 0 0 images. Then the images

are averaged to obtain one image, which is the average of 40 0 0

images, every 1/50 of the period. In the DNS the flame front is

tracked as an isocontour of heat release rate set at 20% of the max- 

imum reaction rate in the corresponding freely propagating lami- 

nar flame.

Figures 9 and 10 show the experimental and numerical instan- 

taneous flame fronts for four different excitation phases for the

CBB and UBB cases, respectively. In both cases, wrinkles are prop- 

agated along the flame front at the convective speed u b . These

wrinkles are created in the vicinity of the flame holder, where

the flame is attached. The agreement between experiments and

simulations is very good for both cases and the amplitude of the

wrinkles is well reproduced by the DNS. One can also notice that

the flame is anchored closer to the flame holder in the UBB case,

which is consistent with the results of [12] . Figures 9 and 10 show

that for the same amplitude, the wrinkles are more pronounced in

the cooled case. This is coherent with the higher FTF gain for the

CBB configuration ( Fig. 5 ).

A proper framework to analyse the wrinkles observed in

Fig. 9 and 10 is the G-equation approach [33,49] . Figure 11 is a



Fig. 9. Experimental and numerical instantaneous flame front during one acoustic 

period of excitation for the CBB case at a frequency of 100 Hz and an amplitude of 

5% of the bulk velocity. The black arrow represents the instantaneous direction of 

the acoustic velocity fluctuation at the reference velocity location ( z = −61 and z = 

−20 mm upstream of the cylinder for the experiments and the DNS respectively). 

Fig. 10. Experimental and numerical instantaneous flame front during one acoustic 

period of excitation for the CBB case at a frequency of 100 Hz and an amplitude 

of 5% of the bulk velocity. The black arrow represents the instantaneous direction 

of the acoustic velocity fluctuation at the reference velocity location ( z = −61 and 

z = −20 mm upstream of the cylinder for the experiments and the DNS respec- 

tively). 

schematic representation of the perturbed flame front with the

laboratory ( z, y ) and the steady flame ( Z, Y ) reference frames, α
corresponds the steady flame angle with respect to the mean flow

direction. The instantaneous flame front position relative to the

steady flame is given by ξ ( Y, t ). The amplitude of the flame front
fluctuation normal to the steady flame front ˜ ξZ is shown in Fig. 12
for both cases CBB and UBB. Experiments and DNS provide very

consistent results. Figure 12 shows that flame wrinkles are linearly

amplified along the flame front as already described in [50] . In

the CBB case the growth rate of the amplification is larger than in

the UBB case. The flame holder temperature is the only parameter

varying in the two different cases and all other parameters such

as bulk velocity, equivalence ratio, external wall temperature and

fresh gases temperature remain constant.

Additional information can be obtained by looking at the flame

root trajectories ( Fig. 13 ). In the UBB case the flame root goes back

and forth along a single line, induced by the acoustic forcing. On

Fig. 11. Schematic representation of the perturbed flame front in the G-equation 

framework. 

Fig. 12. Experimental and numerical amplitude of the flame front fluctuation nor- 

mal to the steady flame front ˜ ξZ , for both cases CBB and UBB.

Fig. 13. DNS flame root trajectories in the ( y, z ) plane for the two configurations 

CBB ( ) and UBB ( ). 

the other hand, the CBB flame root moves in a circular pattern

suggesting the presence of a vortex in the stabilization region as

discussed in the next section.

5.2. Mean flow field

Figure 12 shows that the growth rate of the flame wrinkles is

larger for the CBB than for UBB. This suggests a modification of the

mean velocity field downstream the cylinder caused by the flame

holder temperature difference between the two cases. Figure 14

shows a comparison between the two mean DNS axial velocity

fields for the CBB and UBB flames. Upstream of the cylinder, the

mean velocity field is not affected by the cylinder temperature.



Fig. 14. DNS mean axial velocity fields for CBB and UBB configurations. White lines 

represent iso-contours of mean axial velocity u . 

Fig. 15. DNS mean axial velocity profiles for both configurations, CBB ( ) and 

UBB ( ) and four different axial positions z/D = 0, 1, 2 and 3. 

However, downstream of the cylinder, the CBB flow exhibit a large

recirculation zone with negative axial velocity ( Fig. 14 left ). This

negative velocity zone is not present in the UBB case ( Fig. 14 right ).

This information is confirmed by looking at the mean axial ve- 

locity profiles for both configurations and four different axial po- 

sitions z/D = 0, 1, 2 and 3 ( Fig. 15 ). The velocity profiles at the

center of the cylinder ( z/D = 0 ) are the same for the CBB and UBB

case. However, downstream of the cylinder ( z/D = 1, 2 and 3) the

velocity profiles are very different: the CBB case exhibits negative

velocities at z/D = 1 and still differs from its UBB counterpart far

downstream: obviously, this also induces different hydrodynamic

stability curves and perturbations which are more amplified for the

CBB case. At z/D = 1 , for example the CBB flow field still exhibits

a backflow zone and therefore, a higher hydrodynamic sensibility

to perturbations. This may explains why flame perturbations grow

faster for the CBB than they do for the UBB case ( Fig. 12 ). This re- 

sult confirms that the influence of the flame holder temperature is

not limited to its immediate vicinity. When the flame holder tem- 

perature is brought down from 700 K (case UBB) to 300 K (CBB), it

affects the flame response in two ways. First, the flame root posi- 

tion is pushed away from the bluff body ( Fig. 7 ). Even though this

effect is the most obvious, it is not the most important one. The

second effect is that the whole flow field downstream of the cylin- 

der is changed: a large recirculation zone appears in the CBB case

( Fig. 15 ), leading to a flow which is more hydrodynamically unsta- 

ble and which amplifies flame front perturbations more strongly

as revealed by Fig. 12 . This indicates a global effect of the flame

holder temperature on the whole flow field and not only a local

effect on the flame root location in the vicinity of the bluff body.

6. Conclusion

This paper describes a study of the flame holder temperature

influence on the response of laminar premixed flames to acoustic

oscillations. Experiments and DNS are used to calculate the FTF’s

for two different configurations, a cooled flame holder, CBB case,

with a temperature of 285 K, and an uncooled flame holder, UBB

case with a temperature of 700 K. The experiments and DNS show

consistent results: the flame holder temperature has a large im- 

pact on the FTF’s of these flames, for both gain and phase. The CBB

configuration shows a stronger response for the same amplitude of

velocity fluctuations. This effect is also seen in the instantaneous

flame front fluctuations ( Fig. 9 ). Far downstream of the cylinder

the flame wrinkles are much larger for the CBB case than for the

UBB case.

The amplitude of the flame wrinkles created in the near wake

of the cylinder are of the same order of magnitude for both flames

but the growth of these wrinkles is much larger for the CBB case

than it is for the UBB case ( Fig. 12 ). This growth is observed far

downstream of the cylinder and is due to the fact that the mean

velocity fields in the UBB and the CCB cases differ not only close

to the cylinder but also far downstream. The flame presence close

to the cylinder in the UBB case completely destroys the recircula- 

tion zone observed in the CBB case where the flame is stabilized

further away from the cylinder ( Fig. 15 ). The velocity profile in the

CBB case exhibits negative velocities and still differs from its UBB

counterpart far downstream: obviously, this also induces different

hydrodynamic stability curves and perturbations which are more

amplified for the CBB case. This result confirms that the influence

of the flame holder temperature is not limited to its immediate

vicinity. It affects both the flame position and the mean velocity

field so that the flame wrinkles are affected in two ways: (1) the

flame root position is shifted downstream when the flame holder

is cold and (2) the mean flow is also changed everywhere down- 

stream: the CBB case exhibits a strong recirculation zone and a

stronger growth rate for flame perturbations.

These results demonstrate that the temperature of the flame

holder play a major role on the flame position and the mean flow

as well as on the flame dynamics where it controls the FTF’s to

a large extent. Studing flames stabilized on bluff bodies should in- 

clude their flame holder temperature as a major control parameter.
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