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On multiplication in q-Wiener chaoses

AURÉLIEN DEYA AND RENÉ SCHOTT

Abstract. We pursue the investigations initiated by Donati-Martin [9] and Effros-Popa [10] regarding the
multiplication issue in the chaoses generated by the q-Brownian motion (q ∈ (−1, 1)), along two directions:
(i) We provide a fully-stochastic approach to the problem and thus make a clear link with the standard
Brownian setting; (ii) We elaborate on the situation where the kernels are given by symmetric functions,
with application to the study of the q-Brownian martingales.

1. Introduction: the q-Brownian motion

The object at the center of this study is the so-called q-Brownian motion (q ∈ (−1, 1)), which stands for
one of the most celebrated family of non-commutative processes. For the sake of the clarify, let us thus start
our presentation with a very short reminder on the setting of non-commutative probability theory.

First, we call a non-commutative process any path with values in a non-commutative probability space,
that is a von Neumann algebra A equipped with a weakly continuous, positive and faithful trace ϕ playing
the role of the “expectation” in this framework. Based on this specific structure, we can then define “Lp(ϕ)”-
spaces along the expected procedure, that is by considering the norm

‖X‖Lp(ϕ) := ϕ(|X|p)1/p ( |X| :=
√

XX∗ ) .

When p = 2, this naturally gives rise to a Hilbert space (which will be the main setting of our study),
with scalar product given by 〈X, Y 〉L2(ϕ) := ϕ

(

XY ∗
)

. Now recall that, according to a fundamental spectral
result, any self-adjoint operator X in A can be associated with a probability measure µX on R satisfying the
following property: for any real polynomial P ,

∫

R
P (x)dµX(x) = ϕ(P (X)). In other words, µX and X share

the same “moments”. With this property in mind, self-adjoint operators in A are called (non-commutative)
random variables, and the above measure µX is called the law (or distribution) of X. By extension, we
define the law of a given family {X(i)}i∈I of random variables in (A, ϕ) as the set of all of its joint moments
ϕ

(

X(i1) · · · X(ir)
)

, i1, . . . , ir ∈ I, r ∈ N.

The definition of the q-Brownian can now be introduced along the following combinatorial description:

Definition 1.1. 1. Let r be an even integer. We call a pairing of {1, . . . , r} any partition of {1, . . . , r} into
r/2 disjoint subsets, each of cardinality 2. We denote by P2({1, . . . , r}) or P2(r) the set of all pairings of
{1, . . . , r}.
2. When π ∈ P2({1, . . . , r}), we call a crossing in π any set of the form {{x1, y1}, {x2, y2}} with {xi, yi} ∈ π
and x1 < x2 < y1 < y2. The number of such crossings is denoted by Cr(π).

Definition 1.2. For any fixed q ∈ (−1, 1), we call a q-Brownian motion in a non-commutative probability
space (A, ϕ) any collection {Xt}t≥0 of random variables in (A, ϕ) such that, for every integer r ≥ 1 and all
t1, . . . , tr ≥ 0, one has

ϕ
(

Xt1
· · · Xtr

)

=
∑

π∈P2({1,...,r})

qCr(π)
∏

{p,q}∈π

tp ∧ tq . (1)

The existence issue and the basic stochastic properties of the q-Brownian motion were investigated in a
series of remarkable papers by Bożejko, Kümmerer and Speicher [4, 5, 6]. Using (1), it can be checked in
particular that for all t1, . . . , tr and Y := Xt3

· · · Xtr
, ϕ

(

Xt1
Xt2

Y
)

− ϕ
(

Xt2
Xt1

Y
)

= (1 − q) Pt1,...,tr
(q), for

some polynomial Pt1,...,tr
(q), which, to some extent, illustrates the following idea: the further q to 1, the less
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“commutative” the process. This presentation of the q-Brownian model as a possible way to quantify some
non-commutativity phenomenon can actually be traced back to a paper by Frisch and Bourret [11].

Let us now consider the two following particular situations:

• When letting q tend to 1 in the right-hand side of (1), one recovers the classical Wick description of the
joint moments of the standard (commutative) Brownian motion;

• Taking q = 0, we get that the only terms with non-zero contribution in the right-hand side of (1) are
those for which Cr(π) = 0, i.e. the non-crossing pairings. The 0-Brownian motion thus corresponds to a
so-called semicircular family (see [13, Lecture 8]), and the process in this case actually coincides with the
celebrated free Brownian motion, whose freely-independent increments are known to be closely related to
the asymptotic behaviour of large random matrices (see [16]).

At the level of its distribution, the q-Brownian model can thus be seen as a natural extension of two of the
most central processes in probability theory. It is then natural to examine whether the classical stochastic
properties satisfied by each of these two processes can also be extended to every q ∈ (−1, 1). A first example
in this direction is given by the result of [4, Theorem 1.10] about the marginal-distribution of the process,
that is the law of Xt for fixed t ≥ 0. More interestingly, we can study the robustness of this interpolation
with respect to the general stochastic integration issue. For instance, it has been shown by Donati-Martin in
[9] that one could also define a natural “Itô integral” with respect to the q-Brownian motion, which extends
both the usual Itô integral associated with the standard Brownian and the free Itô integral exhibited by Biane
and Speicher in [3] when q = 0 (see also [8] for a rough-path-type approach to this stochastic integration
issue).

In our study, we will more specifically be interested in the analysis of the so-called q-Wiener chaos, that
is the “q-analog” of the usual Wiener chaos generated by the standard Brownian motion. The construction
of the chaoses is also due to Donati-Martin (in the aforementionned paper), and it extends the procedure
initiated by Biane and Speicher in the free case (for the sake of completeness, we shall briefly review these
arguments in Section 2.2). Some first results about the multiplication properties prevailing in q-Wiener
chaoses can be found in [9, 10] (let us also quote the q-extension of the fourth-moment phenomenon in [7],
at least for q ∈ [0, 1)). Our aim in these notes is to go deeper into this analysis, with a twofold objective in
mind:

(i) We intend to emphasize the rich combinatorial machinery governing the behaviour of q-Wiener chaoses,
and in the same time offer a fully-stochastic approach to the multiplication issue. Our main result here will
be the exhibition of a full q-Wick product formula for multiple integrals (Theorem 3.1). Although similar
formulas can already be found in the specific q-Fock-space framework (see for instance [10, Theorem 3.3]),
our proof of the result will only rely on probabilistic arguments, i.e. it will only depend on the law of the
process (as given by formula (1)) and not on its representation (just as classical probability theory builds
upon the law of the Brownian motion and not upon its representation). In brief, our strategy can be regarded
as a q-extension of the procedure displayed in [14, Section 1.1.2] for the classical commutative case, which
hopefully will make the proof (and accordingly the result) very accessible to a probabilist audience.

To achieve our purpose, we will be led to rephrase the central concept of contraction in terms of q-
contraction along possibly “incomplete” pairings (see Section 2.1). Thanks to this representation, many of
our arguments can then be conveniently illustrated through basic pictures, and in that sense, our formulation
is somehow related to the nice combinatorial approach developed by Nica and Speicher in the free case [13].

(ii) Our second line of investigations regarding q-Wiener chaoses will consist of a close examination of
the fully-symmetric situation, that is the situation where the integrals involve fully-symmetric kernels. In
this case, it turns out that the coefficients in the product formula can be expressed in terms of classical
q-combinatorial numbers, making the link with the classical commutative case even more clear (Theorem
4.2). We will also provide an explicit description of the stochastic dynamics governing the so-called q-Hermite
martingales (Corollary 4.4), a central family of processes whose definition is based on fully-symmetric kernels.
These procedures will again give us the opportunity to offer a glimpse on the rich combinatorics associated
with the q-Brownian process.

The study is organized as follows. In Section 2, we introduce the main combinatorial ingredients at the core
of our analysis and recall the definition of the q-Wiener chaos. Section 3 is then devoted to the presentation of
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our stochastic proof of the general multiplication formula. The specificities of the fully-symmetric situation
are finally highlighted in Section 4.

Acknowledgements. We are grateful to an anonymous referee for his/her careful reading of these notes.

2. Generalities on q-Wiener chaoses

As a first step of our analysis, let us introduce an alternative and as-graphical-as-possible approach to the
notion of q-contraction, in comparison with the definition provided in [9].

2.1. Arrangement along a partition and q-contraction. We have seen through formula (1) that the
law of a q-Brownian motion can be conveniently described as a sum over pairings. In order to extend
such formulas at the level of the processes (and not only their laws), we will need to involve more general
“incomplete pairings” into the procedure:

Definition 2.1. (i) For n ≥ 1, we denote by P≤2({1, . . . , n}) or P≤2(n) the set of partitions π of {1, . . . , n}
with blocks of one or two elements, and for every 0 ≤ k ≤ n

2 , we denote Pk
≤2 the set of partitions π ∈ P≤2

containing exactly k pairs.

(ii) For n1, . . . , nr ≥ 1, we denote by P≤2(n1 ⊗· · ·⊗nr) the set of partitions π ∈ P≤2(n1 + · · ·+nr) respecting
n1 ⊗ · · · ⊗ nr, i.e., with no pair contained in a same block {1, . . . , n1}, {n1 + 1, . . . , n1 + n2},... We define
P2(n1 ⊗ · · · ⊗ nr) and Pk

≤2(n1 ⊗ · · · ⊗ nr) along the same lines.

(iii) Given π ∈ P≤2(n), a crossing in π is any set of the form {(a1, b1), (a2, b2)} with (ai, bi) ∈ π and
a1 < a2 < b1 < b2, or of the form {(a, b), (c)} with (a, b) ∈ π, (c) ∈ π and a < c < b. We will denote by
Cr(π) the number of crossings in π.

Now observe that any partition π ∈ Pk
≤2(n) can be described in a unique way as

π = {(ai, bi), i = 1, . . . , k, ak < ak−1 < . . . < a1} ∪ {(ci), i = 1, . . . , n − 2k, c1 < c2 < . . . < cn−2k} . (2)

With this notation in mind, and for all s = (s1, . . . , sk) ∈ R
k
+ and t = (t1, . . . , tn−2k) ∈ R

n−2k
+ with

1 ≤ k ≤ n
2 − 1

2 , we define the arrangement π(s, t) ∈ {s, t}n as follows: for l = 1, . . . , n,

π(s, t)l :=

{

si if l = ai or l = bi ,

ti if l = ci .

When k = 0, respectively 2k = n, we naturally extend the latter definition by setting π(t) := t for every

t ∈ R
n
+, respectively π(s)l := si if l = ai or l = bi, for every s ∈ R

n/2
+ .

Example 2.2. Consider the partition π ∈ P4
≤2(14) drawn below, with singletons represented by dashed lines

“extending to infinity” and pairs by continuous lines. Such a representation implies in particular that each
pair (ai, bi) ∈ π satisfying ai < cj < bi, for some singleton (cj) ∈ π, necessarily crosses the “line” (cj). It is
then easy to visualize that in this case π(s, t) = (t1, s4, t2, s3, t3, s2, s4, t4, s1, t5, s1, t6, s3, s2) and Cr(π) = 13.

• • • • • • • • • • • • • •
t1 s4 t2 s3 t3 s2 s4 t4 s1 t5 s1 t6 s3 s2

The suitable definition of a contraction in our setting now reads as follows:
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Definition 2.3. (i) Given f ∈ L2(Rn
+) and π ∈ Pk

≤2(n), we call integral of f along π, and denote by
∫

π
f ,

the function defined for every t ∈ R
n−2k
+ by

[
∫

π

f

]

(t) :=

∫

R
k
+

ds f(π(s, t)) ,

where π(s, t) stands for the above-defined arrangement along π.

(ii) For all f ∈ L2(Rm
+ ), g ∈ L2(Rn

+) and π ∈ P≤2(m ⊗ n), we define the contraction of f and g along π by
the formula f ⊗π g :=

∫

π
f ⊗ g. Finally, for all q ∈ [0, 1) and k ∈ {0, . . . , m ∧ n}, we define the q-contraction

of f and g of order k as the sum

f ⊗q
k g :=

∑

π∈Pk
≤2

(m⊗n)

qCr(π)f ⊗π g .

This definition can be seen as a natural q-extension of the standard contracting procedure along a Feynman
diagram (as defined in [12, Section 7.2]). It actually coincides with the notion of a q-contraction introduced
in [9], which can be recovered by comparing [9, Proposition 4.1] with the subsequent Proposition 3.4 and
applying the isometry property (4).

Notation 2.4. Given t = (t1, . . . , tn) ∈ R
n
+, we will denote by t∗ the vector (tn, . . . , t1). We recall that

for every f ∈ L2(Rn
+), the mirror-symmetric of f , denoted by f∗, is the function in L2(Rn

+) defined by

f∗(t) = f(t∗). Besides, given π∗ ∈ Pk
≤2(m ⊗ n), we define the mirror-symmetrized π∗ of π as the element

of Pk
≤2(n ⊗ m) obtained by taking the symmetric of π along a vertical axis between the two blocks {1, . . . , m}

and {m + 1, . . . , m + n}. Otherwise stated, if π is given by (2), then

π∗ := {(m + n + 1 − bi, m + n + 1 − ai), (m + n + 1 − cj)} .

For further use, let us also label the following readily-checked relations between mirror-symmetry and
q-contractions:

Lemma 2.5. For all f ∈ L2(Rm
+ ), g ∈ L2(Rn

+) and π ∈ P≤2(m ⊗ n), it holds that

(f ⊗π g)∗ = g∗ ⊗π∗ f∗ .

Besides, Cr(π∗) = Cr(π) and accordingly (f ⊗q
k g)∗ = g∗ ⊗q

k f∗ for every k ∈ {0, . . . , m ∧ n}.

2.2. Construction of the q-Wiener chaos. With the above “graphical” approach in mind, and also for
the sake of completeness, let us briefly go back here to the definition of the q-Wiener chaos.

From now on and for the rest of the paper, we fix q ∈ (−1, 1) and consider a q-Brownian motion (Xt)t≥0 =

(X(q))t≥0 in some non-commutative probability space (A, ϕ). With the notations of Section 2.1, observe that
the joint moments of (Xt)t≥0 can also be expressed as

ϕ(Xt1
. . . Xtn

) =
∑

π∈P2(n)

qCr(π)
∫

π

(1[0,t1] ⊗ · · · ⊗ 1[0,tn]) . (3)

The construction of the multiple integrals of X, which give birth to the q-Wiener chaoses, can then be
made along a similar procedure as in the classical commutative case (see [14]). Consider first the set Em of
simple functions, that is the set of functions f of the form f =

∑p
i1,...,im=1 λi1,...,im

1Ai1
⊗ · · · ⊗ 1Aim

, for
pairwise disjoint intervals Ai and coefficients λi1,...,im

vanishing on diagonals. For such a function f ∈ Em, we
set naturally Iq

m(f) :=
∑p

i1,...,im=1 λi1,...,im
X(1Ai1

) · · · X(1Aim
), using the convention that for any interval

A := [ℓ1, ℓ2], X(1A) := Xℓ2
− Xℓ1

. With this definition, observe in particular that Iq
m(f)∗ = Iq

m(f∗) for
every f ∈ Em. Then, just as in the commutative case, the extension of Iq

m(f) to any real-valued function
f ∈ L2(Rm

+ ) relies on two ingredients: the density of Em within L2(Rm
+ ) on the one hand, an isometry

property on the other, which, in this setting, reads as follows:

Proposition 2.6. For f ∈ Em and g ∈ En, it holds that

〈Iq
m(f), Iq

n(g)〉L2(ϕ) = δm,n〈f, Pq(g)〉L2(Rn
+) , (4)
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where Pq is the q-symmetrization operator defined for all f ∈ L2(Rm
+ ) and s ∈ R

m
+ by

Pq(f)(s) :=
∑

π∈P2(m⊗m)

qCr(π)f(π(s)m+1::2m) , with π(s)m+1::2m := (π(s)m+1, . . . , π(s)2m) .

In particular, ‖Pq(f)‖L2(Rm
+ ) ≤ m!‖f‖L2(Rm

+ ).

The resulting extension of the integral to any f ∈ L2(Rm
+ ) will still be denoted by Iq

m(f), as usual. It
satisfies the isometry property (4), as well as ϕ(Iq

m(f)) = 0 for m ≥ 1.

Proof of Proposition 2.6. Consider the case where

f :=

p
∑

i1,...,im=1

λi1...im
1Ai1

⊗ · · · ⊗ 1Aim
, g :=

p
∑

i1,...,in=1

βi1...in
1Ai1

⊗ · · · ⊗ 1Ain
,

for disjoint intervals (Ai) and coefficients λ, β vanishing on diagonals. Then by (3)

ϕ
(

Iq
m(f)∗Iq

n(g)
)

=
p

∑

i1,...,im=1

p
∑

j1,...,jn=1

λi1...im
βj1...jm

∑

π∈P2(m+n)

qCr(π)
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

. (5)

Now, for pairwise distinct i1, . . . , im ∈ {1, . . . , p} and pairwise distinct j1, . . . , jn ∈ {1, . . . , p}, the integral
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

clearly vanishes for every π ∈ P2(m + n) if n 6= m, and for every π ∈ P2(2n)\P2(n ⊗ n) if n = m. Thus,
∑

π∈P2(m+n)

qCr(π)
∫

π

(

1Aim
⊗ · · · ⊗ 1Ai1

⊗ 1Aj1
⊗ · · · ⊗ 1Ajn

)

= δm,n

∑

π∈P2(m⊗m)

qCr(π)
∫

R
m
+

ds (1Aim
⊗ · · · ⊗ 1Ai1

)(s∗)(1Aj1
⊗ · · · ⊗ 1Ajm

)(π(s)m+1::2m)

= δm,n

∫

R
m
+

ds (1Ai1
⊗ · · · ⊗ 1Aim

)(s) Pq(1Aj1
⊗ · · · ⊗ 1Ajm

)(s) .

Going back to (5), we get the desired conclusion for f ang g, and the general result follows by linearity. �

3. Multiplication formulas in q-Wiener chaoses

With the formalism of Section 2 in hand, we can now state our main result about q-Wiener chaos, namely
the extension, to every q ∈ (−1, 1), of the full Wick product formula:

Theorem 3.1. Let n1, . . . , nr ≥ 1 and for every i ∈ {1, . . . , r}, let fi ∈ L2(Rni

+ ). Then, with the notations
of Section 2.1, it holds that

Iq
n1

(f1) · · · Iq
nr

(fr) =
∑

π∈P≤2(n1⊗···⊗nr)

qCr(π)Iq

(
∫

π

f1 ⊗ · · · ⊗ fr

)

. (6)

By letting q tend to 1 in (6) (at least at some heuristic level), we indeed recover the exact expression of
the classical full Wick product formula for the standard Bm (see [12, Theorem 7.33]). Observe also that, by
combining (6) and the fact that ϕ(Iq

m(f)) = 0 for m ≥ 1, we recover the result of [7, Theorem 2.7]:

Corollary 3.2. In the setting of Theorem 3.1, it holds that

ϕ(Iq
n1

(f1) · · · Iq
nr

(fr)) =
∑

π∈P2(n1⊗···⊗nr)

qCr(π)
∫

π

f1 ⊗ · · · ⊗ fr .

The rest of this section is devoted to the proof of Theorem 3.1, which will consist in a natural three-step
procedure: we first show the formula when (r = 2, n1 = 1, n2 ≥ 1), then extend the result to the case where
(r = 2, n1, n2 ≥ 1), and finally turn to the general situation. At each step, our strategy will actually be
based on the (non-trivial) q-extension of the classical arguments used in the commutative framework.
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Proposition 3.3. For all f ∈ L2(R+) and g ∈ L2(Rn
+), it holds that

Iq
1 (f)Iq

n(g) = Iq
n+1(f ⊗ g) + Iq

n−1(f ⊗q
1 g) . (7)

Proof. For any interval A, let us write X(A) for X(1A). Using bilinearity and a density argument, it is
readily checked that we can focus on the following situation:

f = 1A and g = 1A1
⊗ · · · ⊗ 1Ak−1

⊗ 1B ⊗ 1Ak
⊗ · · · ⊗ 1An−1

,

where k ∈ {1, . . . , n}, the intervals Ai are disjoint and A, B are both intervals disjoint from the Ai’s such
that A = B or A ∩ B = ∅.

If A ∩ B = ∅, then clearly f ⊗q
1 g = 0 and the formula is trivially satisfied, so we assume from now on

that A = B. Then, denoting by µ(A) the length of A, it is easy to see (as in Figure 1) that f ⊗q
1 g =

qk−1µ(A)1A1
⊗ · · · ⊗ 1An−1

and accordingly Iq
n−1(f ⊗q

1 g) = qk−1µ(A)X(A1) · · · X(An−1).

• • • • • • •
A A1 A2 Ak−1 A Ak

Figure 1. The only partition with non-zero contribution in the computation of f ⊗q
1 g.

For ε > 0, pick disjoint intervals B1, . . . , Bl such that A = B1 ∪ . . . ∪ Bl and µ(Bi) < ε. Then write

I1(f)In(g) = X(A)X(A1) · · · X(Ak−1)X(A)X(Ak) · · · X(An−1)

=
∑

i6=j

X(Bi)X(A1) · · · X(Ak−1)X(Bj)X(Ak) · · · X(An−1)

+

l
∑

i=1

{

X(Bi)X(A1) · · · X(Ak−1)X(Bi)X(Ak) · · · X(An−1)

−qk−1µ(Bi)X(A1) · · · X(An−1)
}

+ qk−1µ(A)X(A1) · · · X(An−1)

= Iq
n+1(hε) +

l
∑

i=1

Rε,i + Iq
n−1(f ⊗q

1 g) ,

where we have set hε :=
∑

i6=j 1Bi
⊗ 1A1

⊗ · · · ⊗ 1Ak−1
⊗ 1Bj

⊗ 1Ak
⊗ · · · ⊗ 1An−1

. At this point, observe

that due to (4), one has

‖Iq
n+1(hε) − Iq

n+1(f ⊗ g)‖L2(ϕ) ≤ (n + 1)! ‖hε − f ⊗ g‖L2(Rn+1
+ ) ,

which tends to 0 as ε → 0. Therefore, it remains us to check that ‖ ∑l
i=1 Rε,i‖L2(ϕ) → 0 as ε → 0, and to

this end, decompose ‖ ∑l
i=1 Rε,i‖2

L2(ϕ) as

‖
l

∑

i=1

Rε,i‖2
L2(ϕ) =

∑

i6=j

ϕ
(

R∗
ε,iRε,j

)

+

l
∑

i=1

ϕ
(

R∗
ε,iRε,i

)

. (8)

When i 6= j, it turns out that ϕ
(

R∗
ε,iRε,j

)

= 0, as a consequence of the following readily-checked relations
(see Figure 2 for an illustration of the first one):

ϕ
(

[X(An−1) · · · X(Ak)X(Bi)X(Ak−1) · · · X(A1)X(Bi)]·
[X(Bj)X(A1) · · · X(Ak−1)X(Bj)X(Ak) · · · X(An−1)]

)

= q2(k−1)µ(Bi)µ(Bj)µ(A1) · · · µ(An−1) , (9)

ϕ
(

[X(An−1) · · · X(Ak)X(Bi)X(Ak−1) · · · X(A1)X(Bi)] · [X(A1) · · · X(An−1)]
)

= qk−1µ(Bi)µ(A1) · · · µ(An−1) ,
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and ϕ
(

[X(An−1) · · · X(A1)] · [X(A1) · · · X(An−1)]
)

= µ(A1) · · · µ(An−1). As for the second summand in (8),

it is easy to see that ϕ
(

R∗
ε,iRε,i

)

≤ c µ(Bi)
2, so 0 ≤ ∑l

i=1 ϕ
(

R∗
ε,iRε,i

)

≤ c εµ(A), which, by letting ε tend to
zero, completes the proof of our statement.

�

• • • • • • • • • • • • • •
A5 A4 Bi A3 A2 A1 Bi Bj A1 A2 A3 Bj A4 A5

Figure 2. The only partition with non-zero contribution in (9) (here, k = 4, n = 6).

Let us now extend (7) to any function f ∈ L2(Rm
+ ), m ≥ 1:

Proposition 3.4. For all f ∈ L2(Rm
+ ) and g ∈ L2(Rn

+), it holds that

Iq
m(f)Iq

n(g) =

m∧n
∑

k=0

Iq
m+n−2k(f ⊗q

k g) . (10)

The key ingredient towards (10) is the following recursion formula satisfied by q-contractions:

Lemma 3.5. Fix m ≤ n − 1 and let g ∈ L2(Rn
+), f1 := 1A1

, f2 := 1A2
⊗ · · · ⊗ 1Am+1

, for disjoint intervals
(Ai). Then the following relations hold true:

(f1 ⊗ f2) ⊗q
m+1 g = f1 ⊗q

1 (f2 ⊗q
m g),

and for every k = 1, . . . , m,

(f1 ⊗ f2) ⊗q
k g = f1 ⊗ (f2 ⊗q

k g) + f1 ⊗q
1 (f2 ⊗q

k−1 g) .

Proof. Given t := (t1, . . . , tn) ∈ R
n
+ and ℓ ≤ m ∈ {1, . . . , n}, let us set tℓ::m := (tℓ, tℓ+1, . . . , tm). Using this

notation, one has, for all k ∈ {0, . . . , m} and t ∈ R
m+n−2k−1
+ ,

[f1 ⊗q
1 (f2 ⊗q

k g)](t) =

m+n−2k
∑

ℓ=1

qℓ−1
∫

R+

ds f1(s)(f2 ⊗q
k g)(t1::ℓ−1, s, tℓ::m+n−2k−1)

=
m+n−2k

∑

ℓ=1

∑

π∈Pk
≤2

(m⊗n)

qℓ−1+Cr(π)
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) .

Since f1 and f2 have disjoint supports, it is easy to see that if ℓ ∈ {1, . . . , m−k} then for every π ∈ Pk
≤2(m⊗n),

∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) = 0 ,

and accordingly the above formula reduces to

[f1 ⊗q
1 (f2 ⊗q

k g)](t) =

m+n−2k
∑

ℓ=m−k+1

∑

π∈Pk
≤2

(m⊗n)

qℓ−1+Cr(π)
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) . (11)

Now observe that there is a one-to-one correspondance between pairs (ℓ, π) ∈ {m − k + 1, . . . , m + n − 2k} ×
Pk

≤2(m ⊗ n) and partitions π′ ∈ Pk+1
≤2 ((m + 1) ⊗ n) not containing the singleton (1). Namely, given such a

pair (ℓ, π), we can construct π′ along the following two-step procedure (see Figure 3):

• let the k interactions between the blocks {2, . . . , m + 1} and {m + 2, . . . , m + n} be governed by π;

• connect the point 1 with the ℓ-th unpaired point of {2, . . . , m + n + 1}, when counting from the left to
the right (in particular, the right-end point of this pair necessarily belongs to {m + 2, . . . , m + n + 1} due to
ℓ ≥ m − k + 1).
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With these notations, it is readily checked (see again Figure 3) that Cr(π′) = Cr(π) + (ℓ − 1) and
∫

R+

ds f1(s)(f2 ⊗π g)(t1::ℓ−1, s, tℓ::m+n−2k−1) = [(f1 ⊗ f2) ⊗π′ g](t) .

Going back to (11), we deduce that

f1 ⊗q
1 (f2 ⊗q

k g) =
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g . (12)

When k = m, (12) reduces to

f1 ⊗q
1 (f2 ⊗q

m g) =
∑

π∈Pk+1
≤2

((m+1)⊗n)

qCr(π)(f1 ⊗ f2) ⊗π g = (f1 ⊗ f2) ⊗q
m+1 g ,

which corresponds to the first claim of our statement. Then, for k ∈ {0, . . . , m − 1}, one has

(f1 ⊗ f2) ⊗q
k+1 g =

∑

π∈Pk+1
≤2

((m+1)⊗n)

qCr(π)(f1 ⊗ f2) ⊗π g

=
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)∈π

qCr(π)(f1 ⊗ f2) ⊗π g +
∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g

= f1 ⊗ (f2 ⊗q
k+1 g) +

∑

π∈Pk+1
≤2

((m+1)⊗n)

(1)/∈π

qCr(π)(f1 ⊗ f2) ⊗π g ,

and we can conclude by using (12) again. �

• • • • • • • • • • •

• • • • • • • • • •

s t1 s2 t2 s1 t3 t4 s1 s s2 t5

ℓ

rs rs rs rs

Figure 3. Construction of π′ (second line) from π and the ℓ-th unpaired position (first
line). Here, m = 4, n = 6, r = 2 and ℓ = 5.

Proof of Proposition 3.4. Assume that formula (10) holds true for all m ≤ n, f ∈ L2(Rm
+ ) and g ∈ L2(Rn

+).
Then for m ≥ n, it holds that

Iq
m(f)Iq

n(g) =
(

Iq
n(g∗)Iq

m(f∗)
)∗

=
(

m∧n
∑

k=0

Iq
n+m−2k(g∗ ⊗q

k f∗)
)∗

=
m∧n
∑

k=0

Iq
m+n−2k(f ⊗q

k g) ,

where we have used Lemma 2.5 to derive the last equality.

Therefore, we can stick to an induction procedure on m ≥ 1 for n ≥ m. If m = 1, then (10) is nothing but
the result of Proposition 3.3. Assume that the decomposition holds true for some m ≥ 1 and every n ≥ m,
and let n ≥ m+1. By a density argument, we can take f ∈ L2(Rm+1

+ ) of the form f = f1 ⊗f2 with f1 = 1A1
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and f2 = 1A2
⊗ · · · ⊗ 1Am+1

, for disjoint intervals (Ai). Then Iq
m+1(f) = Iq

1 (f1)Iq
m(f2) and by the induction

hypothesis

Iq
m+1(f)Iq

n(g) = Iq
1 (f1) ·

[

Iq
m(f2)Iq

n(g)
]

=

m
∑

k=0

Iq
1 (f1)Iq

m+n−2k(f2 ⊗q
k g) ,

which, by Proposition 3.3, yields that

Iq
m+1(f)Iq

n(g) =
m

∑

k=0

[

Iq
m+n+1−2k

(

f1 ⊗ (f2 ⊗q
k g)

)

+ Iq
m+n−1−2k

(

f1 ⊗q
1 (f2 ⊗q

k g)
)]

= Iq
m+n+1(f1 ⊗ f2 ⊗ g)

+
m

∑

k=1

Iq
m+n+1−2k

(

f1 ⊗ (f2 ⊗q
k g) + f1 ⊗q

1 (f2 ⊗q
k−1 g)

)

+ Iq
n−m−1

(

f1 ⊗q
1 (f2 ⊗q

m g)
)

.

The conclusion immediately follows from the two identities exhibited in Lemma 3.5.
�

We can finally turn to the proof of the general formula.

Proof of Theorem 3.1. We proceed by induction on r ≥ 1. For r = 1, the result only amounts to saying that
qCr(π)

∫

π
f1 = f1 when π = {(1), . . . , (n1)}, which is obvious. Assume that the relation holds true up to r − 1

and let fi ∈ L2(Rni

+ ) for i = 1, . . . , r. Then, using Proposition 3.4, we have

Iq
n1

(f1) · · · Iq
nr

(fr) =

n1∧n2
∑

k=0

∑

π1∈Pk
≤2

(n1⊗n2)

qCr(π1)Iq(f1 ⊗π1
f2)Iq

n3
(f3) · · · Iq

nr
(fr)

=

n1∧n2
∑

k=0

∑

π1∈Pk
≤2

(n1⊗n2)

∑

π2∈P≤2((n1+n2−2k)⊗n3⊗···⊗nr)

qCr(π1)+Cr(π2)Iq
(

∫

π2

[f1 ⊗π1
f2] ⊗ f3 ⊗ · · · ⊗ fr

)

. (13)

At this point, and in a similar way as in the proof of Lemma 3.5, observe that there is a one-to-one
correspondance between the set of triplets (k, π1, π2) in the above sum and the set of partitions π ∈ P≤2(n1 ⊗
· · · ⊗ nr). Namely, given such a triplet (k, π1, π2), we can construct π along the following 2-step procedure
(see Figure 4):

• the first two blocks {1, . . . , n1} and {n1 + 1, . . . , n1 + n2} are connected by k pairs, and these interactions
are described through π1;

• then π2 governs the interactions between the n1 + n2 − 2k unpaired points of {1, . . . , n1 + n2} and the set
{n1 + n2 + 1, . . . , n1 + · · · + nr}.

With these notations, it only remains to observe (see Figure 4 again) that Cr(π) = Cr(π1) + Cr(π2) and
∫

π2

[f1 ⊗π1
f2] ⊗ f3 ⊗ · · · ⊗ fr =

∫

π

f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fr .

Going back to (13), we get the desired conclusion. �

4. Multiplication in the fully-symmetric case

Let us now elaborate on the specific situation where the kernels involved within the multiple integrals
under consideration are given by fully-symmetric functions. Recall that a function f : Rn

+ → R is said to be
fully-symmetric if for all times t1, . . . , tn ∈ R+ and every permutation σ of {1, . . . , n}, one has f(t1, . . . , tn) =
f(tσ(1), . . . , tσ(n)).

It is important to notice here that, contrary to the classical commutative case (with multiple integrals
generated by a standard Bm), the fully-symmetric assumption must be regarded as highly restrictive in the
non-commutative situation. Otherwise stated, considering any generic function f ∈ L2(Rn

+) (n ≥ 2) and

its symmetrization f̃(t1, . . . , tn) := 1
n

∑

σ∈Sn
f(tσ(1), . . . , tσ(n)), there is no reason in general for the two

multiple integrals Iq
n(f) and Iq

n(f̃) to be equal.
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• • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

rs rs

rs

rs

rs rs

rs rs

rs

rs

rs rs

Figure 4. Construction of π (third line) from π1 (second line) and π2 (first line).

4.1. Multiplication formula. Given two fully-symmetric functions f1 ∈ L2(Rn1
+ ), f2 ∈ L2(Rn2

+ ) and a
parameter k ∈ {1, . . . , n1 ∧ n2}, it is readily checked that the contraction f1 ⊗π f2 (see Definition 2.3) does
not depend on the choice of π ∈ Pk

≤2(n1 ⊗ n2): we denote by f1 ⊗k f2 this common value. For q ∈ (−1, 1),

the q-contraction of f1 and f2 (see again Definition 2.3) is then equal to f1 ⊗q
k f2 = C

(k)
n1,n2(q)f ⊗k g, where

C(k)
n1,n2

(q) :=
∑

π∈Pk
≤2

(n1⊗n2)

qCr(π) .

We propose to show that the latter coefficients can be conveniently expressed in terms of standard q-
binomial coefficients. To this end, let us first recall the definition of the classical coefficients associated with
q-combinatorics: [n]q := 1 + q + · · · + qn−1, [n]q! := [n]q[n − 1]q · · · [1]q,

(

n
k

)

q
:=

[n]q!

[k]q! [n − k]q!
,

(

n
n1, . . . , np

)

q

:=
[n]q!

[n1]q! · · · [np]q!
,

for all n1, . . . , np ≥ 0 such that n1 + · · · + np = n.

Proposition 4.1. For all m, n ≥ 0 and k ∈ {0, . . . , m ∧ n}, it holds that

C(k)
m,n(q) = [k]q!

(

n
k

)

q

(

m
k

)

q

. (14)

Injecting (14) into (10) immediately gives rise to the following combinatorial description of the product
of any two multiple integrals build upon fully-symmetric kernels. Note that, when compared for instance
with [14, Proposition 1.1.3], this formulation makes the transition with the classical commutative case even
more clear.

Theorem 4.2. Let f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ) be fully-symmetric functions. Then it holds that

Iq
n(f)Iq

m(g) =
n∧m
∑

k=0

[k]q!

(

n
k

)

q

(

m
k

)

q

Iq
n+m−2r(f ⊗k g) .

Proof of Proposition 4.1. Observe that any partition π ∈ Pk
≤2(m ⊗ n) can be entirely described through two

elements (see Figure 5):

• the positions {m + 1 − ik < . . . < m + 1 − i1} in {1, . . . , m} (resp. {m + j1 < . . . < m + jk} in
{m + 1, . . . , m + n}) corresponding to the left-end (resp. right-end) points of the pairs in π;

• the interactions in π between these paired points, which can be summed through a unique π′ ∈ P2(k ⊗ k).

Setting i := (i1, . . . , ik) and j := (j1, . . . , jk), the difference Cr(i, j) := Cr(π) − Cr(π′) is then given by the
number of crossings between a pair and a singleton in π. We can easily compute this quantity as follows (see
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again Figure 5):

Cr(i, j) =
[

k × (i1 − 1) + (k − 1) × (i2 − i1 − 1) + · · · + 1 × (ik − ik−1 − 1) + 0 × (m − ik)
]

+
[

k × (j1 − 1) + (k − 1) × (j2 − j1 − 1) + · · · + 1 × (jk − jk−1 − 1) + 0 × (n − jk)
]

,

which in fact reduces to Cr(i, j) =
∑k

l=1(il + jl) − k(k + 1). As a consequence,

∑

π∈Pk
≤2

(m⊗n)

qCr(π) =

(

∑

π′∈P2(k⊗k)

qCr(π′)
)

·
(

∑

1≤i1<...<ik≤m
1≤j1<...<jk≤n

qCr(i,j)
)

= q−k(k+1)
(

∑

π′∈P2(k⊗k)

qCr(π′)
)

·
(

∑

1≤i1<...<ik≤m

qi1+···+ik

)

·
(

∑

1≤j1<...<jk≤n

qj1+···+jk

)

.

It now remains us to apply Corollary 1.2 and Corollary 1.4 of [1, Section 1.6], i.e. the respective classical
formulas

∑

1≤i1<...<ik≤n

qi1+···+ik = q
k(k+1)

2

(

n
k

)

q

and
∑

π∈P2(n⊗n)

qCr(π) =
∑

σ∈Sn

qinv(σ) = [n]q! ,

where Sn refers to the group of permutations of {1, . . . , n} and inv(σ) to the number of inversions in σ.
�

• • • • • • • • • • • • •

• • • • • •

rs

rs

Figure 5. A partition π ∈ P3
≤2(6×7) (first line) with its associated partition π′ ∈ P2(3⊗3)

(second line). With the notations of the proof, the positions of the pairs in π correspond to
i1 = 2, i2 = 3, i3 = 5, and j1 = 2, j2 = 4, j3 = 7.

4.2. Stochastic dynamics of the q-Hermite martingales. A well-known example of multiple integrals
involving fully-symmetric kernels is provided by the sequence of the q-Hermite martingales

M (q)
n (t) := Iq

n

(

1⊗n
[0,t]

)

, n ≥ 1 ,

which corresponds to the q-analog of the classical sequence of Hermite martingales derived from Hermite

polynomials. The study of the martingale properties of M
(q)
n , as well as its connections with the q-Hermite

polynomials, can be found in [4, Proposition 2.9 and Corollary 4.7].

We propose here to use the results of the previous sections (and especially identity (14)) so as to complete

the program initiated in [9, Section 4.2] regarding the stochastic dynamics of the sequence (M
(q)
n ). Let

us first recall that in the classical commutative framework, the sequence (M
(1)
n ) of Hermite martingales is

known to be governed by the formula (denoting by X(1) the standard Bm)

M
(1)
n+1(t) = (n + 1)

∫ t

0
M (1)

n (s) dX(1)
s , (15)

while in the free situation, that is when q = 0, the following relation can be found in [2]

M
(0)
n+1(t) =

∑

0≤k≤n

∫ t

0
M

(0)
k (s) dX(0)

s M
(0)
n−k(s) . (16)
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In order to express our interpolation result between these two formulas, let us consider the family of
kernels defined for ℓ, m ≥ 1 and t, s1, . . . , sℓ ≥ 0 as

hℓ
m,t(s1, . . . , sℓ) := 1⊗ℓ

[0,t](s1, . . . , sℓ)
∏

i6=m

1{si<sm}

Proposition 4.3. For all m, n ≥ 0 and t ≥ 0, it holds that

Iq
m+n+1

(

hm+n+1
m+1,t

)

=

m∧n
∑

ℓ=0

(−1)ℓq
ℓ(ℓ+1)

2 C(ℓ)
m,n(q)

∫ t

0
sℓM

(q)
m−ℓ(s) dX(q)

s M
(q)
n−ℓ(s) , (17)

where the integral in the right-hand side is understood in Itô’s sense (see [9, Corollary 3.2]).

To see that identity (17) indeed provides us with the desired interpolation between (15) and (16), it
suffices to observe that, on the one hand,

M
(1)
n+1(t) = I1

n+1

(

1⊗n+1
[0,t]

)

= (n + 1)I1
n+1

(

hn+1
1,t

)

,

which gives (15) by applying (17) with m = 0. On the other hand, by writing

M
(q)
n+1(t) = Iq

n+1

(

1⊗n+1
[0,t]

)

=

n
∑

k=0

Iq
(n−k)+k+1

(

h
(n−k)+k+1
k+1,t

)

and then applying (17) to each summand, we immediately recover (16) for q = 0, and more generally:

Corollary 4.4. For all n ≥ 0 and t ≥ 0, it holds that

M
(q)
n+1(t) =

n
∑

k=0

k∧(n−k)
∑

ℓ=0

(−1)ℓq
ℓ(ℓ+1)

2 C
(ℓ)
k,n−k(q)

∫ t

0
sℓ M

(q)
k−ℓ(s) dX(q)

s M
(q)
n−k−ℓ(s) ,

where the integral in the right-hand side is understood in Itô’s sense.

Proof of Proposition 4.3. For the sake of clarity, we fix q and t for the whole proof and drop the dependence

on these two parameters in the notation, that is we write C
(k)
m,n for C

(k)
m,n(q), hℓ

m for hℓ
m,t, and so on. Besides,

let us set, for all ℓ, p ≥ 0, m, n ≥ 1 and s1, . . . , sℓ ≥ 0,

hℓ,p
m (s1, . . . , sℓ) := sp

m1⊗ℓ
[0,t](s1, . . . , sℓ)

∏

i6=m

1{si<sm} , Jℓ
m,n :=

∫ t

0
sℓMm(s) dXs Mn(s) ,

noting in particular that hℓ
m = hℓ,0

m . With these notations in hand, a straightforward application of [9,
Proposition 4.2] yields that

Jp
m,n = Im+n+1

(

hm+n+1,p
m+1

)

+
m∧n
∑

ℓ1=1

qℓ1C(ℓ1)
m,nIm+n+1−2ℓ1

(

hm+n+1−2ℓ1,p+ℓ1

m+1−ℓ1

)

.

Therefore,

Im+n+1
(

hm+n+1
m+1

)

= J0
m,n −

m∧n
∑

ℓ1=1

qℓ1C(ℓ1)
m,nIm+n+1−2ℓ1

(

hm+n+1−2ℓ1,ℓ1

m+1−ℓ1

)

= J0
m,n −

m∧n
∑

ℓ1=1

qℓ1C(ℓ1)
m,n

[

Jℓ1

m−ℓ1,n−ℓ1
−

(m∧n)−ℓ1
∑

ℓ2=1

qℓ2C
(ℓ2)
m−ℓ1,n−ℓ1

Im+n+1−2(ℓ1+ℓ2)
(

h
m+n+1−2(ℓ1+ℓ2),ℓ1+ℓ2

m+1−(ℓ1+ℓ2)

)

]

and by repeating the procedure, we end up with

Im+n+1
(

hm+n+1
m+1

)

= Jm,n +

m∧n
∑

ℓ=1

qℓJℓ
m−ℓ,n−ℓ

ℓ
∑

p=1

(−1)p

∑

ℓ1+···+ℓp=ℓ
ℓi≥1

[

C(ℓ1)
m,nC

(ℓ2)
m−ℓ1,n−ℓ1

· · · C
(ℓp)
m−(ℓ1+···+ℓp−1),n−(ℓ1+···+ℓp−1)

]

.
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Now, using identity (14), it is readily checked that for all ℓ1, . . . , ℓp ∈ {1, . . . , m ∧ n} with ℓ1 + · · · + ℓp = ℓ,

C(ℓ1)
m,nC

(ℓ2)
m−ℓ1,n−ℓ1

· · · C
(ℓp)
m−(ℓ1+···+ℓp−1),n−(ℓ1+···+ℓp−1) = C(ℓ)

m,n

(

ℓ
ℓ1, . . . , ℓp

)

q

,

and thus we obtain

Im+n+1
(

hm+n+1
m+1

)

= J0
m,n +

m∧n
∑

ℓ=1

qℓJℓ
m−ℓ,n−ℓC

(ℓ)
m,n

ℓ
∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

(

ℓ
ℓ1, . . . , ℓp

)

q

.

It only remains us to apply the q-combinatorial identity

ℓ
∑

p=1

(−1)p
∑

ℓ1+···+ℓp=ℓ
ℓi≥1

(

ℓ
ℓ1, . . . , ℓp

)

q

= (−1)ℓq
ℓ(ℓ−1)

2 ,

the proof of which is left to the reader as an exercise. �
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