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1. Introduction

This research work was motivated by the lack of ob-
jective guidance tools specifically designed for the pre-
diction of TC intensity change in the Southwest Indian
Ocean (SWIO) basin. So far, in the SWIO, there was
no rapid intensification (RI) definition, no formulation
for the empirical maximum potential intensity (MPI),
no basin-wise trained model for the prediction of TC
intensity change or RI of the same ilk as DeMaria and
Kaplan (1994a); Knaff et al. (2005); Knaff and Samp-
son (2009); Kaplan et al. (2010); Gao and Chiu (2012);
Lee et al. (2015); Neetu et al. (2017); Gao et al. (2016).

Our goal is to develop similar capabilites as SHIPS
(DeMaria and Kaplan 1994a) for our Regional Special-
ized Meteorological Center (RSMC) region of respon-
sibility. As a key prerequisite, a 17-yr climatology was
conducted to thoroughly document the SWIO tropical
system activity, tracks, impacts, sizes, and 24-h inten-
sity changes (Leroux et al. 2018); some key results are
included in section 2. The dominant large-scale factors
governing the intensity changes of SWIO tropical sys-
tems were then identified to provide further guidance
to practical storm intensity forecasts and better antic-
ipate rapid intensity (RI) changes. Presented here are
single-lead-time versions of two models dedicated to
predict storm intensity change and RI at short range
over water in the SWIO.
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2. Climatology of Southwest Indian Ocean Tropi-
cal Systems

The climatology was conducted using RSMC La
Réunion best-track (BT) data over the geostationary
satellite era (1999/2000-2015/16) that is considered
homogeneous at the present time. Each year on aver-
age, 9.7 tropical systems develop in the SWIO basin,
among which 9.4 are named as they strengthen into
tropical storms while 4.8 systems go on to become TCs
that are equivalent to a hurricane or a typhoon. This
represents about 11% of global tropical system activ-
ity and almost equals the activity in the North Atlantic
(NA, WMO 2017).

a. Coastal hits and threats

Fig. 1 shows that many countries in the southwest
Indian Ocean are affected by tropical systems on a
regular basis. On average each year, Mozambique is
directly hit by one system while Madagascar, the 4th

biggest island on earth and one of the poorest countries
in the world, is hit (threatened) by two (one) distinct
system(s).

FIG. 1. Tracks of all SWIO tropical systems with a
VMAX observation in the BT dataset and number of distinct
tropical systems that hit (in red) or threatened (in blue) the
coast of each Indian Ocean territory over the 1999 − 2016
period. Any storm hitting a territory several times is only
counted once. ‘Hit” means that the storm center made land-
fall; “Threat” means that the storm center was located on the
sea at less than 100 km from the coast. Letters indicate South
Africa (SA), Mozambique (Mo), Tanzania (T), Kenya (K),
Comoros (Co), Mayotte (My), Madagascar (Ma), Farquhar
(F), Tromelin (T), Seychelles (S), La Réunion (Re), Mau-
ritius (Mr), Agalega (Ag), Saint Brandon (Sb), Rodrigues
(Ro), and the Chagos Archipelago (Ch).

b. Empirical maximum potential intensity (MPI)

The climatology of storm maximum intensity was
examined by looking at the relationship between 10-



min average maximum wind speeds (VMX) from the
BT dataset versus sea surface temperatures (SSTs) ex-
tracted from the OISST dataset (Reynolds et al. 2007)
at storm locations during the 17-year period. The least-
square fit to the maximum wind in the 22◦-29◦C SST
range gives the empirical MPI formulation that dif-
fers from the positive exponential fit MPI = A′ +
B′eC

′(SST−T ′0) previously obtained in the North At-
lantic (e.g., DeMaria and Kaplan 1994b; Zeng et al.
2008) and western North Pacific (Zeng et al. 2007; Gao
et al. 2016).

MPI =
A

1 + e−B(SST−T0)
(1)

with A = 78.29 m s−1, B = 0.3603◦C−1, and
T0 = 22.69◦C. The average error between the com-
puted MPI (Fig. 2, red curve) and the maximum wind
(green curve) is 1.6 m s−1 over the eight SST bins
ranging from 22◦C to 29◦C, against 2.45 m s−1 for a
linear fit (dashed pink line).
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FIG. 2. Scatter diagram of maximum wind speed (m s−1)
versus SSTs (◦C) at storm locations during the 1999 − 2016
period. The green, blue, purple and yellow lines respectively
show the observed maximum intensity and the 99th, 90th,
50th intensity percentiles for each 1◦C SST bin. The red
least-square curve is fitted to the binned maximum intensity
in the 22 − 29◦ SST range and gives the empirical MPI for-
mulation. The dashed pink line shows the linear fit obtained
over the same SST range.

c. 24-h intensity changes (RI, RD)

The distribution of 24-h overwater intensity changes
is also analyzed following the methodology previously
used for the NA and eastern North Pacific systems (Ka-
plan and DeMaria 2003; Kaplan et al. 2010) so that
comparisons can be made between basins. The two
tails of the distribution give statistical definitions for
rapid intensification (RI) and rapid decay (RD) in the

SWIO. Based on the 94.7th (4.6th) percentile of 24-
h intensity changes, RI (RD) can be statistically de-
fined in the SWIO by a minimum increase (decrease)
of 15.4 m s−1 ( 13.9 m s−1) day−1 in the maximum
surface wind speed (10-min mean). The RI threshold
equals the 30-kt official threshold determined for the
NA basin using 1-min sustained winds. It exceeds the
12.9 m s−1 day−1 threshold determined for the WNP
based on maximum 10-min mean winds.

−80−70−60−50−40−30−20−10 0 10 20 30 40 50 60 70
24-h intensity change (kt)

0

20

40

60

80

100

Cu
m

ul
at

iv
e

fre
qu

en
cy

(%
)

Percentile 95 (94.7%) ⇒ 30 kt

Percentile 5 (4.6%) ⇒ −27 kt

All tropical systems
Tropical disturbances
and depressions
Tropical storms
Tropical cyclones

20 30 40
90

95

100

FIG. 3. Cumulative frequency distribution of overwater
24-h intensity changes (∆V24 in knots, 1 kt = 0, 514 m s−1)
stratified by storm intensity at time t = 0 h during the 1999−
2016 period.

It is also found that a 10-min mean maximum wind
speed of 65-75 kt is the most frequent initial storm in-
tensity for RI in the SWIO (Leroux et al. 2018), con-
sistent with the 70-80-kt peak in the maximum intensi-
fication rate of NA storms (maximum 1-min sustained
wind speed; Xu and Wang 2015).

d. RSMC operational forecast errors

Statistics ran on the RSMC operational forecast er-
rors show that, as expected, RI cases represent a chal-
lenge for intensity prediction. The mean absolute er-
ror (MAE) of intensity forecasts at short term range
(within 24 h) is significantly greater for RI than non-
RI cases. At 24-h lead time, MAERI = 10.8 m s−1 �
MAEnon−RI = 4.9 m s−1. This highlights the need to
get additional objective forecast aids for TC intensity
in the SWIO.
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3. A statistical-dynamical model to predict 24-h TC
intensity change

a. Data

A pool of potential predictors was examined. It in-
cludes 6 local variables extracted from the BT data at t,
20 synoptic variables extracted from ERA-Interim re-
analyses along the storm-track over a 24-h period, and
8 cross-term predictors (VMX2, MPI*VMX, MPI2,
VMX*SHR, POT2, POT3, DVMX122).

TABLE 1. List and definitions of the storm (lo-
cal) and environmental (synoptic) variables with their units
(1 PVU ≡ 10−6 m2 K s−1 kg−1). synoptic variables are av-
eraged over a 24-h period following t and over a disk or an
annulus (as indicated in the fourth column, in km) around
the storm center tracked in the corresponding ERA-Interim
analyses.

Local variable Units Definition

VMX m s−1 Initial maximum 10-min mean wind speed
LAT ◦N Storm center latitude
LON ◦E Storm center longitude
SPD m s−1 Storm motion speed
HDG ◦ Storm motion heading

DVMX12 m s−1 Previous 12-h wind speed change
Synoptic variable Units Definition Averaging area

SST ◦C Sea surface temperature 0-200
MPI m s−1 Maximum Potential Intensity
POT m s−1 Intensification potential: MPI - VMX
SHR m s−1 850-200-hPa vertical wind shear 200-800

DIV200 10−6 s−1 200-hPa divergence 200-800
DIV250 10−6 s−1 250-hPa divergence 200-800

U200 m s−1 200-hPa zonal wind 200-800
V200 m s−1 200-hPa meridional wind 200-800

RHLO % 850-700-hPa mean relative humidity 200-800
RHMD % 700-500-hPa mean relative humidity 200-800
RHHI % 500-300-hPa mean relative humidity 200-800

RHMID % 700-400-hPa mean relative humidity 200-800
RV850 10−6 s−1 850-hPa relative vorticity 0-1000

THETA K 2-PVU potential temperature 200-800
PV200 PVU 200-hPa potential vorticity 200-800
PV300 PVU 300-hPa potential vorticity 200-800
PV400 PVU 400-hPa potential vorticity 200-800

PVT330 PVU 330-K potential vorticity 200-800
PVT350 PVU 350-K potential vorticity 200-800
PVT370 PVU 370-K potential vorticity 200-800

b. Method

A non-parametric regression technique called Mul-
tivariate adaptive regression splines (MARS Milbor-
row 2011) was used. It can be seen as an extension of
linear models that automatically models nonlinearities
and interactions between variables. The final model
is built on the full sample of 18 years (1999/2000-
2016/17) using 10-fold 10-cross validation, after re-
moving 3 outliers. The optimum number of terms cor-
responds to the maximum mean out-of-fold R2. The
automatic variable selection is based on statistics that
estimate the model generalization performance.

c. Final model

To form normalized coefficients, all of the predic-
tors, as well as the predictand (∆VMX24) are nor-

malized before they are incorporated in the regression
equation. Subtracting the population mean and divid-
ing this result by the population standard deviation ac-
complishes the normalization. The 4 predictors re-
tained by the model are: the variation in VMX over
the past 12 h (DVMX12), the mean relative humidity
in the 500-300-hPa layer ( RHHI), the intensification
potential (POT), and the cross-term VMX*SHR. The
model equation is:

∆VMX24 = 0.6+

4∑
i=0

Ai ∗max(0, Xi − Ci) + Bi ∗max(Ci −Xi, 0)

(2)

with normalized coefficients listed in table 2. MARS
uses hinge functions that come in pairs or not to take
account non-linearities. For example, Fig. 4 shows
that the tendency of the maximum wind in the next
24 h will follow that of the past 12 h but compared
to previous studies, the MARS model here reverses
the tendency after a 1.5 threshold of the normalized
DVMX12 variable (see the kink in the predicted y),
taking into account decays observed after large inten-
sification rates or during eyewall replacement cycles.

TABLE 2. Normalized coefficients in the MARS model
(equation 2).

Variable (X) A B C
DVMXM12 -0.31 -0.35 1.5

RHHI 0.24 0 -1.5
POT -0.072 -0.75 -0.66

VMX x SHR -0.26 0 -0.8

FIG. 4. Relationships between the normalized predictand
(∆VMX24) and the 4 predictors in the model.
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d. Model performance

The regression fit to the data explains 48% of the
variance. The mean average error on the developmen-
tal data is MAEtrain = 4.7 m s−1 versus MAEtrain =
9 kt for SH-STIPS (Knaff and Sampson 2009) and and
outperforms the persistence of initial conditions with
a 28% skill (MAEPER = 6.7 m s−1). The use of a
multi-linear regression model yields a 5.05 m s−1 av-
erage error, showing that the MARS method is more
skillful.

We don’t have a seperate test set yet (the 2017−2018
season) to verify the model performance against an in-
dependent dataset. Therefore, similar 18 MARS mod-
els were built on a 17-year subsample and assessed on
the 18th independent year. Plotted in Fig. 5 is the mean
average error for each verification year. The average
performance of the 18 MARS models is 5.05 m s−1

versus 6.7 m s−1 for the persistence of initial condi-
tions which gives a model skill of 23% with a low bias
of −0.12 m s−1.

FIG. 5. MAE for the train and test data of 18 MARS mod-
els, compared to that of the persistence of initial intensity
(PER).

Splitting the verification into RI and non-RI cases
indicates that the MARS model is not suited to predict
extreme 24-h wind changes such as RI: MAEtestRI

=
13.1 m s−1 � MAEtestnon−RI

= 4.4 m s−1, hence
the need of a decision tree for RI prediction.

4. TC intensity change classification for RI predic-
tion

a. Data and Method

Our database is imbalanced because the RI cases
(209) represent 5% of the population while there are
2977 non-RI cases. Therefore, the synthetic minority
oversampling technique (SMOTE; Chawla (2003)) is
used to oversample the cases in the RI class and avoid
biased results, as in Gao et al. (2016). The 26 pre-
dictors (6 local and 20 large-scale variables) listed in

Table 1 are considered.
The Classification and Regression Tree (CART,

Breiman et al. 1984) is used. It is a binary decision
tree that is constructed by splitting a node into two
child nodes repeatedly, beginning with the root node
that contains the whole learning sample. To determine
the optimal number of nodes, we built 18 trees trained
on 17-yr subsamples and assessed them on the 18th in-
dependent year. The mean accuracy is optimized for a
number of 3 nodes on average (81%).

b. Final decision tree

The final model built on the full sample of 18 years
(1999/2000-2016/17) using 10-fold cross validation.
Automatic variable selection is based on preset thresh-
olds to avoid overfitting: a minimum leaf size of 100,
and a complexity parameter cp = 0.02: any split that
does not increase the overall R-squared by a factor of
cp is not attempted.

FIG. 6. The decision tree for the prediction of RI (class la-
beled YES) at 24-h lead time constructed from the potential
predictors in Table 1. Also shown are the number of mis-
classified samples / the total number of samples from both
classes fulfilling the conditions of each tree path.

Fig. 6 shows 3 rules. Rule 1 states that RI generally
will not happen if the wind increase in the past 12 h is
lower than 1.5 m s−1. Rule 2 states that if the wind in-
crease in the past 12 h is higher than 1.5 m s−1 but the
POT is lower than 25 m s−1 then a TC will not rapidly
intensify. Rule 3 adds a third condition for RI to hap-
pen: the PV at 200 hPa in the environment of the TC
must be close to neutral or not too cyclonic (i.e. there
must not be a Rossby wave breaking event associated
with possible shear nearby).

c. Model evaluation

The prediction accuracy of the model is 81% (Ta-
ble 3), with a high probability of dectection (POD
= 1275/1463 = 87%) and a low false alarme rate

4



(FAR = 390/1665 = 23%). We did not run an inde-
pendent verification yet.

TABLE 3. Confusion matrix from 10-fold cross validation
of the decision tree shown in Fig. 6.

Classified Total
RI non-RI

Observed RI 1275 188 1463
non-RI 390 1114 1504

Total 1665 1302 2967

Summary & future plans

A 17-year climatology of tropical system activity,
tracks, impacts, sizes, and 24-h intensity changes was
produced in an effort to thoroughly document the
southwest Indian Ocean and provide further guidance
to practical storm intensity forecasts. A first formula-
tion of the empirical maximum potential intensity of
SWIO tropical systems was derived. Based on the ex-
amination of a total of 26 potential predictors (includ-
ing the MPI), statistical-dynamical tools of the same
ilk as those developed in other basins have been de-
signed to predict TC intensity change or RI at short
range. The single-lead-time versions of the two mod-
els look suitable as operational TC intensity forecast
tools for use at RSMC La Réunion and will be tested
over the next TC seasons to assess their actual real-
time performance. A degradation of the performance
is expected since the models were built using a perfect
prognosis approach (with BT data and reanalyses). In
real-time, the ECMWF model forecast fields will be
used to derive the large-scale environmental predictors
along the RSMC TC track forecast, which includes
additional sources of intensity forecast errors not ac-
counted for in the developmental data. In the near fu-
ture, we will investigate the need to develop prediction
models for other lead-times and the relevance of deriv-
ing a MARS regression model based on only RI cases
(which should highlight different key predictors).
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