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Abstract—We consider the MIMO communication channel
impaired by phase noises at the transmitter and receiver. We
focus on maximum likelihood detection for uncoded single-carrier
transmission. We derive an approximation of the likelihood func-
tion, and propose the so-called self-interference whitening (SIW)
algorithm. While the exact ML solution is computationally
intractable, we construct a simulation-based lower bound on
the error probability of ML detection. Numerical experiments
demonstrate that SIW is, in most cases of interest, very close to
optimal with moderate phase noise. Surprisingly, such near-ML
performance can be achieved by applying only twice the nearest
neighbor detection algorithm.

I. INTRODUCTION

We consider the signal detection problem for the following
discrete-time multiple-input multiple-output (MIMO) channel

yyy = diag
(
ejθr,1, . . . , ejθr,nr

)
HHHdiag

(
ejθt,1, . . . , ejθt,nt

)
xxx+zzz, (1)

where HHH ∈ Cnr×nt is the channel matrix known to the re-
ceiver; zzz ∈ Cnr×1 represents a realization of the additive noise
whereas θt,l and θr,k are the phase noises at the l th transmit
antenna and the k th receive antenna, respectively; the input
vector xxx ∈ Cnt×1 is assumed to be carved from a quadratic
amplitude modulation (QAM). The goal is to estimate xxx from
the observation yyy ∈ Cnr×1, with only statistical knowledge on
the additive noise and the phase noises.

When phase noise is absent, the problem is well understood,
and the maximum likelihood (ML) solution can be found using
a nearest neighbor detection (NND) algorithm (see [1] and
references therein). For instance, the sphere decoder [2] is
an efficient NND with low expected complexity dimension
with respect to the dimension nt [3]. Further, there also
exist approximate NND algorithms, e.g., based on lattice
reduction, with near-ML performance when used for MIMO
detection [4].

The presence of phase noise in (1) is a practical, long-
standing problem in communication. In the seminal [5] back
in the 70’s, Foschini et al. used this model to capture the
residual phase jitter at the phase-locked loop of the receiver
side, and investigated both the receiver performance and the
constellation design in the scalar case (nt = nr = 1). In
fact, most communication systems feature phase noise due to
the phase and frequency instabilities in the carrier frequency
oscillators at both the transmitter and the receiver [6]. The
channel (1) is a valid mathematical model when the phase

noise varies slowly as compared to the symbol duration.1

While phase noise can be practically ignored in conventional
MIMO systems, its impact becomes prominent at higher
carrier frequencies since it can be shown that phase noise
power increases quadratically with carrier frequency [6], [9].
The performance degradation due to phase noise becomes
even more severe with the use of higher order modulations
for which the angular separation between constellation points
can be small. At medium to high SNR, phase noise dominates
additive noise, becoming the capacity bottleneck [10], [11]. As
for signal detection, finding the ML solution for the MIMO
phase noise channel (1) is hard in general. Indeed, unlike for
conventional MIMO channels, the likelihood function of the
transmitted signal cannot be obtained in closed form.

In this work, we propose an efficient MIMO detection algo-
rithm which finds an approximate ML solution in the presence
of phase noise. The main contributions of this work are sum-
marized as follows. First we derive a tractable approximation
of the likelihood function of the transmitted signal. While the
exact likelihood does not have a closed-form expression, the
proposed approximation has a simple form and turns out to be
accurate for weak to medium phase noises. Then we propose
a heuristic method that finds an approximate solution by
applying twice the nearest neighbor detection algorithm. The
proposed algorithm, called self-interference whitening (SIW),
has a simple geometric interpretation. Intuitively, the phase
noise perturbation generates self-interference that depends on
the transmitted signal through the covariance matrix. The
main idea is to first estimate the covariance of the self-
interference with a potentially inaccurate initial signal solution,
then perform the whitening with the estimated covariance,
followed by a second detection. From the optimization point
of view, our algorithm can be seen as a (well-chosen) concave
approximation to a non-concave objective function. Finally we
assess the performance of SIW and competing algorithms in
different communication scenarios. Since the error probability
of ML decoding is unknown, we propose a simulation-based
lower bound which we use as a benchmark. Simulation re-

1As pointed out in [7] and the references therein, an effective discrete-
time channel is usually obtained from a waveform phase noise channel after
filtering. When the continuous-time phase noise varies rapidly during the
symbol period, the filtered output also suffers from amplitude perturbation.
See the full version of this paper [8] for further discussion.
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sults show that SIW achieves near ML performance in most
scenarios. In this sense, our work reveals that near optimal
MIMO detection with phase noise can be done as efficiently
as without phase noise.

II. ASSUMPTIONS AND PROBLEM FORMULATION

Notation: For random quantities, we use upper case letters,
e.g., X , for scalars, upper case letters with bold and non-italic
fonts, e.g., VVV, for vectors, and upper case letter with bold and
sans serif fonts, e.g., MMM, for matrices. Deterministic quantities
are denoted in a rather conventional way with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . The Euclidean
norm of a vector vvv is denoted by ‖vvv‖. The transpose and
conjugated transpose of MMM are MMMT and MMMH , respectively.

We assume a MIMO channel with nt transmit and nr receive
antennas. Let HHH denote the channel matrix, where the (k, l)-
th element of HHH , denoted as hk,l, represents the channel gain
between the l th transmit antenna and k th receive antenna. The
transmitted vector is denoted by xxx = [x1, . . . , xnt ]

T , where
xl ∈ X , l = 1, . . . , nt, X being typically a QAM constellation
with normalized average energy, i.e., 1

|X |
∑
x∈X |x|2 = 1. The

base-band output is the following random vector

YYY = ΛΛΛRHHHΛΛΛT xxx+ ZZZ,

where the diagonal matrices ΛΛΛR := diag
(
ejΘr,1, . . . , ejΘr,nr

)

and ΛΛΛT := diag
(
ejΘt,1 , . . . , ejΘt,nt

)
capture the phase per-

turbation at the receiver and transmitter, respectively; ZZZ ∼
CN (0, γ−1III) is the additive white Gaussian noise (AWGN)
vector, where γ is the nominal signal-to-noise ratio (SNR).
The phase noise ΘΘΘ := [Θt,1 · · · Θt,nt Θr,1 · · · Θr,nr ]

T is
jointly Gaussian with ΘΘΘ ∼ N (0,QQQθ) where the covariance
matrix QQQθ can be arbitrary. This model includes as a special
case the uplink channel in which nt is the number of single-
antenna users. In such a case, the transmit phase noises are
independent. We consider uncoded transmission so that each
symbol xl can take any value from X with equal probability.

Further, we assume that the channel matrix can be random
but is perfectly known at the receiver, whereas such knowledge
at the transmitter side is irrelevant in uncoded transmission.
We also define HHHΘ := ΛΛΛRHHHΛΛΛT and accordingly HHHθ for some
realization of ΘΘΘ = θθθ, thus, HHH0 = HHH . Finally, we ignore the
temporal correlation of the phase noise process and the channel
process, and focus on the spatial aspect of the problem.

With AWGN, we have the following conditional probability
density function (pdf)

p(yyy |xxx,θθθ,HHH) =
γnr

πnr
e−γ‖yyy−HHHθ xxx‖

2

,

and the likelihood function by integrating over ΘΘΘ

p(yyy |xxx,HHH) = ln
(
EΘΘΘ

[
e−γ‖yyy−HHHΘΘΘ xxx‖2

])
+ ln

γnr

πnr
.

The ML detector finds an input vector from the alphabet Xnt

such that the likelihood function is maximized. In practice, it
is often more convenient to use the log-likelihood function as
the objective function, i.e., after removing a constant term,

f(xxx,yyy,HHH, γ,QQQθ) := ln
(
EΘΘΘ

[
e−γ‖yyy−HHHΘΘΘ xxx‖2

])
,

where the arguments γ and QQQθ can be omitted whenever
confusion is not likely. Thus,

x̂xxML(yyy,HHH) := arg max
xxx∈Xnt

f(xxx,yyy,HHH). (2)

From (2) we see two main challenges to compute the optimal
solution. First, the expectation in (2) cannot be obtained in
closed form. A numerical implementation is equivalent to
finding the numerical integral in nt +nr dimensions. This can
be extremely hard in high dimensions. Second, the size of the
optimization space, |X |nt , can be prohibitively large when the
modulation size |X | and the input dimension nt become large.
In the full paper [8], we examine in more details why both of
these issues are indeed challenging.

In a conventional MIMO channel, finding the ML solution
is reduced to solving the following problem

x̂xx0
ML(yyy,HHH) := arg min

xxx∈Xnt
‖yyy −HHH0 xxx‖2, (3)

which is also called the minimum Euclidean distance detection
or nearest neighbor detection. Although the search space
in (3) remains large, the expectation is gone. Furthermore,
since the objective function is the Euclidean distance, efficient
algorithms (e.g., sphere decoder [2] or lattice decoder [1])
exploiting the geometric structure of the problem can be
applied without searching over the whole space Xnt . Indeed,
the sphere decoder has a polynomial average complexity with
respect to the input dimension nt when the channel matrix is
drawn i.i.d. from a Rayleigh distribution [3].

In practice, one may simply ignore the existence of phase
noise and still apply (3) to obtain x̂xx0

ML which we refer to as
the naive ML solution hereafter. While this can work relatively
well when the phase noise is close to 0, it becomes highly
suboptimal with stronger phase noise which is usually the
case in high frequency bands with imperfect oscillators. In
this paper, we provide a near ML solution by circumventing
the two challenges mentioned earlier. We first propose an
approximation of the likelihood function. Then we propose an
algorithm to solve approximately the optimization problem (2).

III. PROPOSED SCHEME

A. Proposed Approximation of the Likelihood Function

We derive an approximation of the likelihood when the
phase noise is small. Indeed, in practice, the standard deviation
of the phase noise is typically smaller than 10 degrees ≈ 0.174
rad. For stronger phase noises, it is not reasonable to use QAM
and the problem should be addressed differently. Consider the
following approximation:

ΛΛΛHR yyy −HHHΛΛΛTxxx = [−HHHDDDx DDDy]

[
ejθθθt

e−jθθθr

]

≈ (yyy −HHHxxx)− j[HHHDDDx DDDy]θθθ, (4)

with DDDx := diag(x1, . . . , xnt), DDDy := diag(y1, . . . , ynr),
and θθθ :=

[
θθθTt θθθTr

]T
; (4) is from the linear approximation2

2Here we use, with a slight abuse of notation, ejθθθ to denote the vector
obtained from the element-wise complex exponential operation. Similarly, the
little-o Landau notation o(θθθ) is element-wise.
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(a) 4-QAM, f = f̂ = −10. (b) 64-QAM, f = f̂ = −1.6.

Fig. 1: Proposed approximate likelihood in the scalar case:
γ = 30dB and phase noise has standard deviation 3◦.

ejθθθ = 1 + jθθθ + o(θθθ). Thus the Euclidean norm has the
real approximation ‖yyy − ΛΛΛRHHHΛΛΛTxxx‖2 ≈ ‖AAAθθθ + bbb‖2 where
AAA ∈ R2nr×(nt+nr) and bbb ∈ R2nr×1 are defined as

AAA :=

[
=[HHHDDDx] =[DDDy]
−<[HHHDDDx] −<[DDDy]

]
, bbb :=

[
<[yyy −HHHxxx]
=[yyy −HHHxxx]

]
. (5)

The above approximation leads to the following result.

Proposition 1. LetAAA and bbb be defined as in (5). Then we have
the following approximation of the log-likelihood function
ln
(
EΘΘΘ

[
e−γ‖yyy−HHHθ xxx‖

2
])
≈ f̂(xxx,yyy,HHH, γ,QQQθ) with

f̂(xxx,yyy,HHH) := −γ bbbTWWW−1
xxx bbb− 1

2
ln det (WWWxxx) , and (6)

WWWxxx := III + 2γAAAQQQθAAA
T. (7)

Hence, the proposed approximate ML (aML) solution is

x̂xxaML(yyy,HHH) := arg min
xxx∈Xnt

{
γ bbbTWWW−1

xxx bbb+
1

2
ln det (WWWxxx)

}
. (8)

Proof. The proof is straightforward after applying the above
approximation. Details can be found in the full paper [8].

In Fig. (1), we illustrate the proposed approximation for 4-
and 64-QAM, we plot for each constellation point a level set
of the likelihood function with respect to “yyy” in solid line.
The level sets of the approximated likelihood function are
plotted similarly in dashed line. While the likelihood function
is evaluated using numerical integration, the approximation is
in closed form given by (6). In this figure, we observe that the
approximation is quite accurate, especially for signal points
with smaller amplitude. Further, the resemblance of the level
sets for the approximate likelihood to ellipsoids suggests that
the main contribution in the right hand side of (6) comes from
the first term −γ bbbTWWW−1

xxx bbb. We shall exploit this feature later
on to construct the proposed algorithm.

While the proposed approximation simplifies significantly
the objective function, the optimization problem (8) remains
hard when the search space is large. For instance, with 64-
QAM and 4 × 4 MIMO, the number of points in Xnt is
more than 107! Therefore, we need further simplification by
exploiting the structure of the problem.

B. The Self-Interference Whitening Algorithm

The difficulty of the optimization (8) is mainly due to the
presence of the matrix WWWxxx that depends on xxx. Let us first
assume that the WWWxxx corresponding to the optimal solution
x̂xxaML were somehow known, and is denoted by WWWx̂xx. Then
the optimization problem (8) would be equivalent to

x̂xxaML(yyy,HHH) = arg min
xxx∈Xnt

{
γ bbbTWWW−1

x̂xx bbb+
1

2
ln det (WWWx̂xx)

}

= arg min
xxx∈Xnt

bbbTWWW−1
x̂xx bbb

= arg min
xxx∈Xnt

∥∥∥WWW−
1
2

x̂xx (ỹyy − H̃HHx̃xx)
∥∥∥

2

, (9)

where WWW−
1
2

x̂xx is any matrix such that
(
WWW
− 1

2

x̂xx

)H

WWW
− 1

2

x̂xx = WWW−1
x̂xx ;

x̃xx :=

[
<[xxx]
=[xxx]

]
, ỹyy :=

[
<[yyy]
=[yyy]

]
, H̃HH :=

[
<[HHH] −=[HHH]
=[HHH] <[HHH]

]
.(10)

Note that for a given WWWx̂xx, (9) can be solved with any
NND algorithm. Unfortunately, without knowing the optimal
solution x̂xxaML, the exact WWWx̂xx cannot be found. Therefore, the
idea is to first estimate the matrix WWWx̂xx with some suboptimal
solution x̂xx, and then solve the optimization problem (9) with
a NND. We call this two-step procedure self-interference
whitening (SIW). For instance, we can use the naive ML
solution x̂xx0

ML as the initial estimate to obtain WWWx̂xx, and have
x̂xx′aML(yyy,HHH) = arg minxxx∈Xnt

∥∥WWW−
1
2

x̂xx0
ML
ỹyy −WWW−

1
2

x̂xx0
ML
H̃HHx̃xx
∥∥2
.

Remark 1. The intuition behind the SIW scheme is as follows.
From the definition of WWWxxx in (7) and AAA in (5), we see that WWWxxx
depends on xxx only through HHHDDDx. First, the column space of
HHHDDDx does not vary with xxx since DDDx is diagonal. Second, a
small perturbation of xxx does not perturb WWWxxx too much. Since
the naive ML point x̂xx0

ML is close to the actual point xxx in the
column space of HHH , it provides an accurate estimate of WWWxxx.
This can also be observed on Fig. (1b), where we see that the
ellipsoid-like dashed lines have similar sizes and orientations
for constellation points that are close to each other.

Remark 2. Another possible initial estimate is the naive linear
minimum mean square error (LMMSE) solution. As the naive
ML, the naive LMMSE ignores the phase noise and returns

x̂xx0
LMMSE(yyy,HHH) := arg min

xxx∈Xnt
‖HHHH(γ−1III +HHHHHHH)−1yyy − xxx‖2.

(11)

The SIW algorithm is described in Algorithm 1. Here, the
complex function NND(yyy,HHH,X ) finds among the points from
the alphabet X the closest one to yyy in the column space of
HHH; the function realNND(ỹyy, H̃HH, X̃ ) is the real counterpart of
NND. The function “complex(x̃xx′)” embeds the real vector
x̃xx′ to the complex space by taking the upper half as the
real part and the lower half as the imaginary part. The SIW
outputs the newly obtained point only if it has a higher
approximate likelihood value than the naive ML point does.
An example of the scalar case using 256-QAM is shown in
Fig. (2). The transmitted point is x and the received point is
y. The solid line is the level set of the likelihood function. If
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Algorithm 1 Self-interference whitening

Input: yyy, HHH , γ, QQQθ
Find x̂xx0

LMMSE from (11)
Find x̂xx0

ML ← NND(yyy,HHH,X )
if f̂(x̂xx0

LMMSE, yyy,HHH, γ,QQQθ) > f̂(x̂xx0
ML, yyy,HHH, γ,QQQθ) then

x̂xx← x̂xx0
LMMSE

else
x̂xx← x̂xx0

ML

end if
Generate WWWx̂xx from x̂xx using (5) and (7)
Find WWW

1
2

x̂xx using the Cholesky decomposition
Generate ỹyy and H̃HH according to (10)
x̃xx′ ← realNND(WWW

− 1
2

x̂xx ỹyy,WWW
− 1

2

x̂xx H̃HHx̃xx, X̃ )
x̂xx′ ← complex(x̃xx′)
if f̂(x̂xx′, yyy,HHH, γ,QQQθ) > f̂(x̂xx,yyy,HHH, γ,QQQθ) then

x̂xx′aML ← x̂xx′

else
x̂xx′aML ← x̂xx

end if
Output: x̂xx′aML

the likelihood function were computed for each point in the
constellation (this is computationally hard), one would recover
x from y successfully. While Euclidean detection outputs the
wrong point x̂, SIW can “correct” the error by first estimating
the unknown matrix WWWxxx, and then computing the matrix WWWx̂xx
which is represented by the red dashed ellipse around x̂. The
estimateWWWx̂xx is very close to the correct valueWWWxxx, given by the
actual x (blue dashed line). Then, SIW searches for the closest
constellation point to y in the coordinate system generated by
WWWx̂xx, so that x is recovered successfully. Also, computationally
efficient NND algorithms can be used to perform the search.

The complexity of the SIW algorithm is essentially twice
that of the NND algorithm used, since the other operations in-
cluding the LMMSE detection have at most cubic complexity
with respect to the dimension of the channel. The complexity
of the NND algorithm depends directly on the conditioning of
the given matrix. If the columns are close to orthogonal, then
channel inversion is almost optimal. However, in the worse
case, when the matrix is ill-conditioned, the NND algorithm
can be slow and its complexity is exponential in the problem
dimension. There exist approximate NND algorithms, e.g.,
based on lattice reduction, that can achieve near optimal
performance with much lower complexity.

IV. NUMERICAL EXPERIMENTS

We now compare the performance3 of SIW to ML and other
baseline schemes: i) the naive LMMSE (11), ii) the naive
ML (3), and iii) the selection between the two where the
receiver outputs the one whose approximate likelihood value
is higher. We derive a lower bound on the performance of

3Our performance metric is the vector detection error rate: detection is
considered successful only when all the symbols in xxx are recovered correctly.

1

23

y

x̂ = x̂0
ML

x

WWWx̂

y

x
x̂ = x̂0

ML

Fig. 2: SIW in the scalar case: 256-QAM, PN 2◦. Dashed lines
are the ellipses defined by WWWx̂ (in red) and WWWx (in blue).

ML detection since it is hard to implement. A scheme mini-
mizing (6) admits the following performance lower bound:

P aML
e ≥ P

{
f̂(XXX,YYY,HHH) < max

xxx∈Xnt
f̂(xxx,YYY,HHH)

}
(12)

≥ P
{
f̂(XXX,YYY,HHH) < max

xxx∈L⊆Xnt
f̂(xxx,YYY,HHH)

}
, (13)

where (12) holds by definition and (13) by monotonicity.
While (13) holds for all L, one has equality if L contains all
the points in Xnt that have a higher approximate likelihood
value than XXX does. Here, we consider a large set around XXX to
compute the lower bound (13), but do not study its tightness.
Similarly, for ML detection, we have

PML
e ≥ P

{
f(XXX,YYY,HHH) < max

xxx∈Xnt
f(xxx,YYY,HHH)

}
(14)

≥ P {f(XXX,YYY,HHH) < f(XXX′,YYY,HHH)} , ∀XXX′ ∈ Xnt(15)
= P {XXX 6= XXX′, f(XXX,YYY,HHH) < f(XXX′,YYY,HHH)} , (16)

where (14) holds by definition and (16) holds since XXX 6= XXX′

is a consequence of f(XXX,YYY,HHH) < f(XXX′,YYY,HHH). Also, (15)
holds for any XXX′ ∈ Xnt , with equality if XXX′ is the exact ML
solution. Since the ML solution is unknown, one may use
any suboptimal solution instead and to obtain a lower bound.
Indeed (16) is much easier to evaluate than (14), as the latter
requires to minimize over Xnt . Intuitively, if XXX′ is a near ML
solution, then the lower bound should be tight enough. We
need to perform twice the numerical integration only when
xxx′ 6= xxx. If xxx′ 6= xxx with small probability, evaluating (16) can
be done quickly.

In Fig. (3a) we consider point-to-point Rayleigh fading
single-antenna, i.e., single-input single-output (SISO), chan-
nels. We consider 1024-QAM with phase noise of standard
deviation 1◦ at both the transmitter and receiver sides. Here
the naive ML scheme is in fact a simple threshold detection
for the real and imaginary parts. First, we see that ignoring the
existence of phase noise incurs a significant performance loss.
Second, if exhaustive search is done with the proposed likeli-
hood approximation, then it achieves the ML performance,
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(a) SISO, 1024-QAM, PN 1◦. (b) 4× 4 LoS-MIMO, 1024-QAM, PN 1◦. (c) 4× 4 Uplink, 256-QAM, PN 2◦.

Fig. 3: Simulation results for different communication scenarios.

since the simulation-based lower bound overlaps with the
curve with exhaustive search. This confirms the accuracy of the
approximation (6) in the SISO case. Even more remarkably,
the SIW algorithm almost achieves the ML performance
without exhaustive search.

In Fig. (3b) we consider point-to-point line-of-sight (LoS)
MIMO, commonly deployed as microwave backhaul
links [10], [12], [13]. We assume that the channel is constant
over time but each antenna is driven by its own oscillator.
This is the worst-case assumption, and motivated in practice
by the fact that the communication distance is large and
thus the distance between antenna elements is increased so
that the channel matrix is well conditioned [12], [13]. We
use the model of [13] with two transmit and two receive
antennas each with dual polarizations, effectively a 4 × 4
MIMO channel. The optimal distance between the antenna
elements at each side can be derived as a function of the
communication distance [12], for which the channel matrix
is unitary. As above we consider 1024-QAM with phase
noise of standard deviation 1◦. As in the SISO case, phase
noise mitigation substantially improves the performance and
the proposed likelihood approximation remains accurate as
shown by the comparison between the exhaustive search (8)
and the lower bound on ML detection.

In Fig. (3c) we consider the uplink cellular communication
channel with four single-antenna users and one multi-antenna
base station receiver. We assume i.i.d. phase noises at the
users’ side with standard deviation 2◦ and no phase noise at
the receiver side. This is a reasonable assumption since the
oscillators at the base station are usually of higher quality
than those used by mobile devices. We assume i.i.d. Rayleigh
fading. Unlike in the previous scenarios, the naive ML is
(surprisingly) dominated by the naive LMMSE at high SNR.
Indeed, without receiver phase noise, inverting the channel
yields spatial parallel channels. Although this incurs a power
loss in general, phase noises across the parallel sub-channels
are independent, so the demodulation only suffers from a
scalar self-interference. On the other hand, naive ML suffers
from the aggregated perturbation from all the phase noises.
So naive LMMSE beats naive ML detection at high SNRs

where phase noise dominates the additive noise. If both the
transmitter and receiver have comparable phase noises, this
does not occur, as channel inversion amplifies the receiver
phase noises. The gain of SIW over the other schemes is clear.

V. CONCLUSIONS

We have studied the ML detection problem for uncoded
MIMO phase noise channels, and proposed an approximation
of the likelihood function that has been shown to be accurate
in the regimes of practical interest. More importantly, using
the geometric interpretation of the approximate likelihood
function, we have designed SIW, an efficient approximate
algorithm requiring only two nearest neighbor detections.
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