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Abstract

Purpose - The main purpose of this paper is to apply a fast analytical model of the acoustic behaviour of pulse-width
modulation (PWM) controlled induction machines (Besnerais, Fasquelle, Hecquet, Lanfranchi & Brochet 2006) to a fractional-
slot winding machine. A second goal is to analytically clarify the interaction between space harmonics and time harmonics in
audible electromagnetic noise spectrum.

Methodology/approach - A multilayer single-phase equivalent circuit calculatesthe stator and rotor currents. Air-gap radial
flux density, which is supposed to be the only source of acoustic noise, is then computed with winding functions formalism.
Mechanical and acoustic models are based on a 2D ring stator model. A method to analytically derive the orders and frequencies
of most important vibration lines is detailed. The results are totally independent of the supply strategy and winding type of
the machine. Some variable-speed simulations are run on a 700 W fractional-slot induction machine in sinusoidal case asa
first validation of theoretical results.

Findings - The influence of both winding space harmonics and PWM time harmonics on noise spectrum is exposed. Most
dangerous orders and frequencies expressions are demonstrated in sinusoidal and PWM cases. For traditional integral windings,
it is shown that vibration orders are necessarily even. When stator slot number is not even, which is the case for fractional
windings, some odd order deflection appear: the radial electromagnetic power can therefore dissipate as vibrations through all
stator deformation orders, leading to a potentially lower noise level at resonance.

Research limitations - The analytical work of this paper does not consider saturation and eccentricity harmonics which can
play a significant role in noise radiation.

Practical implications - The analytical model and theoretical results presented inthis paper help designing low-noise
induction machines, and diagnosing noise or vibration problems.

Originality/value - This paper details a fully analytical acoustic and electromagnetic model of a PWM fed induction machine,
and demonstrate the theoretical expression of main noise spectrum lines combining both time and space harmonics.

Keywords - Induction machine, Magnetic noise, Vibrations, Fractional-slot winding.
Paper type - Research paper.



2

NOMENCLATURE

Electrical notations
f1 Fundamental stator supply frequency
fr

mn Rotor currentn-th time andm-th space harmonic
fs

n Stator currentn-th time harmonic
fmm Magnetomotive force
fR Rotor shaft rotation frequency (fR = (1 − s)f1/p)
Fr, Fs Rotor and stator mmf waves
g Air-gap width
hr,hs Integers involved in rotor and stator mmf

space harmonics expression
irb b-th rotor bar current
isq q-th stator phase current
kr, ks Integers representing the rotor and stator slotting

terms in the permeance Fourier series expansion
lsd Stator tooth width
lse Stator slot opening
lrd Rotor tooth width
lre Rotor slot opening
Ln Force line numbern
m m-th space harmonic induced by stator winding

in rotor bars currents (fundamentalm = p)
n n-th time harmonic generated by PWM supply

(fundamentaln = 1)
p Number of pole pairs
Pr, Ps Rotor and stator slotting permeance waves
qs Number of stator phases
smn Harmonic slip (fundamentalsp1 = s)
Un n-th time harmonic of PWM phase voltage
Zr Number of rotor slots
Zs Number of stator slots
αr Rotor angular position in stator steady frame
αk

r k-th rotor slot angular position
αs Angular position in stator steady frame
αk

s k-th stator slot angular position
βr Rotor slot half angular width
ǫr, ǫs ±1 factor representing rotor or stator

mmf wave direction
ηij ±1 factor resulting from the interaction of fieldsi and j
Λ Permeance per unit area
νs,νr Stator and rotor mmf space harmonics
ωn n-th time harmonic pulsation coming from PWM
θk

r Angular position ofk-th rotor tooth
Ξm Winding factor ofm-th space harmonic
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Mechanical and acoustic notations
Dc Stator outer radius (without frame)
f Exciting force frequency
fm m-th mode natural frequency
hc Height of stator yoke
Lr Rotor stack length
Ls Stator stack length
m m-th circumferential spatial mode
Ra Stator bore radius
Rc Stator mean radius (computed without the teeth)
Re Stator core outer radius
Ri Stator slots bottom radius
Y d

mω Dynamic deflection of orderm at pulsationω
Y s

mω Static deflection of orderm at pulsationω
ξm m-th mode damping coefficient

I. I NTRODUCTION

As acoustic norms become stricter in power electrical transport systems, the understanding and prediction of the noiseof
electromagnetic origin at variable speed is crucial. In fact, the Pulse-Width Modulation (PWM) strategies add many harmonics
to the air-gap Maxwell forces spectrum, leading to possiblyharmful noise and vibrations. Stator windings induce in rotor
currents additional time harmonics which can also significantly enrich the electromagnetic forces spectrum, especially when
running at high slip. Audible electromagnetic noise spectrum therefore results from a complex combination of both PWM time
harmonics and winding space harmonics. Predicting this so-called ”magnetic noise” level requires to precisely model both the
mechanical structure of the machine and its electromagnetic excitation.

This paper presents a simulation tool of the PWM-fed induction machine, DIVA (Ait-Hammouda 2005, Besnerais et al. 2006),
which is able to consider the whole space and time harmonics involved in magnetic noise generation without a prohibitive
computation time. The analytical derivation of main radialforce lines spatial modes and frequencies is exposed, including
the influence of stator winding and rotor bars space harmonics. Finally, some variable-speed simulations are presentedand
analysed on the ground of these theoretical results. The acoustic role of odd spatial modes will be also discussed.

The motor studied in this paper is a 700 W three-phase squirrel-cage induction machine withp=2 pole pairs,Zr=21 rotor
bars andZs=27 stator slots. Its double-layer winding is a fractional-slot winding as its number of slot per pole and per phase
is not an integer.

II. ELECTROMAGNETIC MODEL

A. Currents computation

Supply phase voltage can be either given by experimental data or computed analytically. Then, stator and rotor phase currents
are computed using an extension of the fundamental single-phase equivalent circuit, including all space and time harmonics
(Hubert 2000). As illustrated in Fig. 1, at each time harmonic Un of frequencyfs

n coming from the PWM supply phase voltage
corresponds an equivalent circuit including the influence of m 1 stator winding space harmonics.

Fig. 1. Multi-layer single phase equivalent circuit

The equations of this equivalent circuit consist inn global mesh equations

1We define the space harmonics as the ”spatial frequencies” coming from the Fourier Transform of a function of the mechanical angle, not of the electrical
angle. With such a definition, the space fundamental is the number of pole pairsp and not 1.
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Un = (Rn
1 + jXn

1 )In
1 +

∑

m jXmn
µ Imn

µ
.
= Zn

1 In
1 +

∑

m Zmn
µ Imn

µ (1)

m × n node equations

In
1 = Imn

µ + Imn
2 (2)

andm × n local mesh equations

0 = jXmn
µ Imn

µ − (jXmn
2 + Rn

2 /smn)Imn
2

.
= Zmn

µ Imn
µ − Zmn

2 Imn
2 (3)

Rn
1 and Rn

2 respectively stand for the stator and rotor equivalent resistances which depend on time harmonics because of
skin effect. The detailed expression of this effect can be found for instance in (Matsuse, Hayashida, Kubota & Yoshida 1994).

Xn
1 = ωnL1 = 2πfn

s L1 is the stator total phase reactance,L1 being the corresponding inductance.Xmn
2 = ωnLm

2 is the
rotor total reactance,Lm

2 being the rotor inductance refered to the primary. It depends on space harmonicsm because it is
proportional to the transformation factor which is a function of the winding distribution factorsΞm. The expression of these
distribution factors can be found for instance in (Salminen2004) for both integral and fractional-slot windings.

Xmn
µ = ωnLm

µ is the magnetizing reactance in which we can eventually include a parallel iron losses equivalent resistance.
Lm

µ is a generalization of the fundamental magnetizing inductanceLp
µ (Hubert 2000)

Lm
µ = Lp

µ

(
p

m

Ξm

Ξp

)2

(4)

whereΞm is the winding factor of them-th space harmonic generated by the stator winding.
Imn
2 andIn

1 are the harmonic rotor and stator currents,Imn
µ is the harmonic magnetizing current.smn is the harmonic slip

smn = 1 ± mω1

pωn
(1 − s) (5)

wheres is the fundamental slip and the±1 factor takes into account the propagation direction of harmonic fields induced
by stator currents.

For a given time harmonicn, 2m + 1 equations can be grouped in the following matrix form

Z
n.In = U

n (6)

with

Z
n =





Zn
1 Z

n
µ 0

1 −I −I

0 D
n
µ −D

n
2



 I
n =





In
1

I
n
µ

I
n
2



 U
n =





Un

0

0





where1 is the unitary vector,I the identity matrix,0 the null matrix,Zn
µ theZmn

µ line vector,Dn
µ theZmn

µ diagonal matrix
andD

n
2 the Zmn

2 diagonal matrix,In
2 the Imn

2 column vector andIn
µ the Imn

µ column vector. System (6) is solved for each
non-zero time harmonicUn.

B. Air-gap radial flux density computation

Radial air-gap flux densityBg is expressed as

Bg(t, αs) = Λ(t, αs)fmm(t, αs) (7)

whereαs is the angular position in the stator steady frame,Λ = µ0/ge is the air-gap permeance per unit area,ge being the
effective air-gap width (detailed in section V-A) andµ0 the air-gap magnetic permeability, andfmm is the total magnetomotive
force (mmf). Applying the Ampere’s law to an appropriate path, one can show (Bossio, Angelo, Solsona, Garcia & Valla 2004)
that

fmm(t, αs) =

qs∑

q=1

isq(t)N
s
q (αs)

︸ ︷︷ ︸

fs
mm

+

Zr∑

b=1

irb(t)N
r
b (t, αs)

︸ ︷︷ ︸

fr
mm

(8)
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Fig. 2. Normalized full-pitch winding distribution function Ns
q (left) and the equivalent normalized coil distribution function (right).
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Fig. 3. Winding functions and total stator magnetomotive force at a given time

whereNs
q is the 2-D turns function (TF) or winding distribution function associated to the statorq-th phase with current

isq, andNr
b is the turns function associated to the rotorb-th bar with currentirb . Note that contrary to stator TFs, rotor TFs are

time-dependent.
Normalized phase TF of a full-pitch winding is represented in FIG. 2 including a linear rise in slots. We can see that it can

be computed summing some equivalent coil turns function weighted with current sign. That decomposition and the winding
function formalism have been chosen to be implemented in DIVA because they allow modelling any type of winding, especially
fractional-slot ones. Phase TFs and the resulting stator mmf of the double-layer fractional-slot test motor are displayed in FIG.
3.

In order to compute the squirrel-cage rotor mmf, one has to consider the rotor cage as an equivalentZr-phase circuit with
Zr loop currents (Henao, Razik & Capolino 2005, Joksimovic, Djurovic & Penman 2001). In that case, the turns functions
can still be used but with an equivalent number of turns of 1.

Stator and rotor mmf of our test motor as well as their space harmonic content are shown in FIG. 4 in sinusoidal on-load
case, with a 3.05% slip. We can see that the rotor mmf wave tends to counterbalance the stator mmf wave as predicted by
the Lenz law. Besides fundamental atνr = p, rotor mmf contains main space harmonicsνr = 19 and 23 corresponding to
νr = Zr ± p. The same analysis can be carried with stator mmf which containts the main space harmonicsνs = Zs ± p.
Spectral content of stator and rotor mmf is detailed later insection V-B.

C. Validation

Radial air-gap flux density has been compared to finite element method (FEM) simulations for different shorted-pitch
machines, supply frequencies and voltages. Motor torque and phase current were also validated with FEM and experimentsin
on-load case (Besnerais et al. 2006).
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Fig. 4. Rotor and stator mmf as a function of mechanical angle andtheir normalized space harmonic content at a given time.

III. M ECHANICAL MODEL

A. Exciting force computation

Neglecting the tangential component of the Maxwell tensor and the magnetostrictive effect, the exciting pressurePM

responsible for magnetic noise can be approximated by

PM =
B2

g

2µ0
(9)

B. Stator deflections computation

Fig. 5. Shape of circumferential spatial modesm = 0, m = 1, m = 2 andm = 4.

The mechanical model assumes that the stator is 2D ring with free-free boundary conditions. Therefore, only the in-plane
circumferential spatial modesm are considered (see FIG. 5). However, we will see that the third dimension is taken into
account through the rotor bending motion. Static deflections Y s

mω are first computed in function of the complex amplitudes
Pmω of the 2-D discrete Fourier transform of radial pressurePM . Their amplitudes are found using the theory for a simply
supported beam carrying a sinusoidally ditributed load (Jordan 1950). Form = 0,

Y s
0ω = P0w

RcRa

Echc
(10)

wherehc is the thickness of the stator back,Rc is the mean stator radius (computed without considering theteeth),Ra

is the stator bore radius andEc is the stator Young modulus.Y s
1ω is generated by the force per unit areaP1ω which excites

the rotor (cf. FIG. 5), it corresponds to a bending motion in longitudinal direction. Such a deflection can be approximated
considering the rotor as a simply supported beam loaded withpressureP1ω:

Y s
1ω = P1ω

4Ral3shLr

3EshD4
sh

(11)

whereLr stands for rotor length,Esh for rotor shaft Young modulus,Dsh for its diameter andlsh for the distance between
bearings. Finally, for ordersm ≥ 2,

Y s
mω = Pmω

12RaR3
c

Ech3
c(m

2 − 1)2
(12)
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Then, dynamic deflectionsY d
mω are computed as

Y d
mω = Y s

mω[
(
1 − f2/f2

m

)2
+ 4ξ2

mf2/f2
m]−1/2 (13)

where ξm is the modal damping coefficient, andfm is the m-th mode natural frequency.ξm can be computed using the
experimental law established by (Yang 1981)

2πξm = 2.76 × 10−5fm + 0.062 (14)

In (13) the second order magnification factor comes from the fact that any excited system motion is ruled by a second
order differential equation. The damping coefficient quantifies how much kinetic energy decays through Coulomb and viscous
frictions, which mainly occur in lamination, windings and insulation (Verma & Balan 1998). This filter also models the
resonance phenomenon: a dynamic deflection of modem is the highest when the exciting frequencyf is the closest from the
natural frequencyfm. At the resonance, the dynamic deflection is given by

Y d
mω =

Y s
mω

2ξm
(15)

Thus, the more there are damping materials, the lower vibrations occur. From (10) and (12) it can be also deduced that

Y d
mω

Y d
0ω

∝ Pmω

P0ω

R2
c

h2
c

(16)

Therefore,Rc/hc ratio sizes the ability of the stator to radiate vibrations :the higherRc is and the lowerhc is, the larger
and the thinner the stator is, and the more it plays the role ofsound box. Nevertheless, decreasingRc at constanthc does not
necessarily decrease noise because stator radiation efficiency increases withLf/Rf ≈ Ls/Rc ratio.

Analytical prediction offm natural frequencies is a difficult task. In our case, the winding and teeth effects are taken into
account by modifying =stator mass densityρc, defining

ρ′c = ks
Mt + Mc

πLs(R2
c − R2

a)
(17)

whereks is the stator stacking factor,Mt the teeth mass,Mc the stator yoke mass,Ls the stator length,Re the stator core
outer radius andRi the stator slots bottom radius. Windings and insulation mass was therefore neglected, which might be only
applicable to small machines. Zero-th mode order natural frequency is

f0 =
1

2πRc

√

Ec

ρ′c
(18)

Mode number 1 natural frequency can be approximated treating the rotor and its shaft as a simply supported beam with a
ring (Maliti 2000). Shaft stiffness is

Ksh =
3πEshDsh

4l3sh

(19)

Modal massMr equals rotor ring mass plus half shaft mass. We obtain:

f1 =
1

2π

√

Ksh

Mr
(20)

This is a very simple model as it does not consider rotor lamination stiffness and assumes that the bearings are rigid.m-th
mode natural frequency (m ≥ 2) is

fm = f0Γ
m(m2 − 1)√

m2 + 1
Γ =

hc

2
√

3Rc

(21)

Finally, in order to take into account the three-dimensional effects, these frequenciesfm are mutiplied by additional factors
Km (Cremer, Heckl & Ungar 1988):K2 = 1.14, K3 = 1.04 andK4 = 1.02.

Notice that
fm ≈ 1

Rc

hc

Rc
=

hc

R2
c

(22)

Thus, increasinghc/Rc ratio in order to limit vibrations will also increase statornatural frequencies.
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TABLE I

RESULTS OF DIFFERENT METHODS FOR STATOR NATURAL FREQUENCIESCOMPUTATION (HZ). OR: OUT OF RANGE, ND: NON DEFINITE.

m Analytical 2-D FEM Shock Method Sinus Method

0 14859 14656 OR OR
1 1100 ND 1200 1273
2 2478 2364 2400 2423
3 6396 6473 6100 6210
4 12028 11898 11700 OR

C. Validation

Induction machine natural frequencies have been calculated by 2-D FEM, and measured by shock and sinus methods
(Hubert & Friedrich 2002). Comparison with the analytical method are presented in Table I. There is a good agreement
between analytical results and experiments, because test motor geometry is rather simple (thin circular frame). The analytical
computation of mode 1 natural frequency is the most inaccurate, as bearings stiffness is not considered and the measurement
of bearings distance was not very precise.

IV. A COUSTIC MODEL

A. Sound power level computation

Vibration velocity of orderm is thenvmω = Y d
mω2πf . Sound power radiated by the vibrations of modem and frequency

f is

Wm(f) =
1

2
ρ0c0Scσm(f) < v2

mω > (23)

whereSc is the stator outer surface,ρ0 the air density,c0 the speed of sound, andσm the modal radiation efficiency.σm

is approximated using either its pulsating sphere expression or its infinite cylinder expression according to stator dimensions
(Timar & Lai 1994).1/2 factor in (23) takes into account bakeward and forward-travelling vibration waves.

Sound power level at frequency f is

Lw(f) = 10 log10(
∑

m

Wm(f)/W0), W0 = 10−12W (24)

A-weighted total sound power level is finally obtained as

LwA = 10 log10




∑

f

100.1(Lw(f)+∆LA(f))



 (25)

where∆LA(f) shift is a function of human’s ear sensitivity.

B. Validation
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Fig. 6. Comparison between experimental and simulated acceleration spectra atfs = 75 Hz ands = 5.6 % in sinusoidal case.

FIG. 6 compares simulated and experimental stator frame acceleration spectra at supply frequencyfs = 75 Hz, and slip
s = 5.6 %, in sinusoidal case. High differences appear under 500 Hz,which mainly come from mechanical vibrations that are
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not considerer in the model. We can see that the simulation tool correctly predicts main vibration lines. There expression can
be found with analytical results of section V: for instance,the 2800 Hz line (number 3) is of order1 = 3Zs − 4Zr + 2p and
frequencyf1(4(1− s)Zr

p − 2), and the 900 Hz line (number 2) is of order2 = Zs −Zr − 2p and frequencyf1((1− s)Zr

p +2).

V. A NALYTICAL EXPRESSION OF MAIN RADIAL FORCE SPECTRUM LINES

This part aims at characterizing the electromagnetic noisespectral content which is the same for noise and vibration. The
electromagnetic force spectrum results from the interaction of permeance and mmf spectra, which can be determined using
Fourier series. However, airgap flux density is not computedin DIVA on the base of these Fourier series because they are
computationally costly.

A. Permeance orders and frequencies

The Fourier series of permeance per unit area is (Brudny 1997, Hesse 1992)

Λ = Λ0 +

∞∑

ks=1

Λks
cos(ksZsαs) +

∞∑

kr=1

Λkr
cos (krZr(αs − αr)) +

1

2

∞∑

ks=1

∞∑

kr=1

Λkskr
{cos((ksZs − krZr)αs + krZrαr)

+ cos((ksZs + krZr)αs − krZrαr)} (26)

where
Λ0 = µ0A

0 Λks
= 2µ0A

sf(ks) Λkr
= 2µ0A

rf(kr) Λkskr
= 4µ0A

srf(ks)f(kr)

and

f(ks) =
sin(πksr

s
d)

2ks
f(kr) =

sin(πkrr
r
d)

2kr

A0 =
1

gM

(

1 +
pf

s rs
d

gr
+

pf
r rr

d

gs
+ (1 +

gM

g
)
pf

s rs
d

gr

pf
r rr

d

gs

)

As =
2pf

s

πgMgr

(

1 + (1 +
gM

g
)
pf

r rr
d

gs

)

Ar =
2pf

r

πgMgs

(

1 + (1 +
gM

g
)
pf

s rs
d

gr

)

Asr =
4pf

r pf
s

π2gMgsgr
(1 +

gM

g
)

gM = g + pf
s + pf

r gs = g + pf
s gr = g + pf

r

g is the minimal effective air-gap width whereasgM is the maximal effective air-gap width.αr is the angular position of
rotor bar number 1 in stator steady frame:

αr(t) =
ω1

p
(1 − s)t + α0

r (27)

pf
s andpf

r are the stator and rotor fictitious slot depths, their valuesare fixed as suggested by (Brudny 1997) proportionally
to rotor and stator slot openings (lre/5 and lse/5). rs

d andrr
d are stator and rotor slotting ratios

rs
d = lsd/(lsd + lse) rr

d = lrd/(lrd + lre)

Expression (26) allows to easily identify permeance waves orders and frequencies. They are reported in Table II where notation
fR = f1(1− s)/p is used. When two waves of frequencies and orders(f1,m1) and(f2,m2) are multiplied, they generate two
aditionnal waves(f1+f2,m1+m2) and(f1−f2,m1−m2). These new waves can be represented by(f1+η12f2,m1+η12m2)

2,
where the symbolη12 can either take the value 1 or -1. Using that symbol instead of±1 makes it easier to associate a given
frequency to its spatial order.

In Table II, P0 stands for the mean permeanceΛ0, whereasPs andPr represent the stator and rotor slotting contributions,
andPsr their interaction. In this work,Psr waves will not be considered for readability purpose. Saturation and eccentricity
harmonics could be added in this table.

2Using that notation, the waves(m, f) and (−m,−f) are the same.
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TABLE II

PERMEANCE WAVES FREQUENCIES AND SPATIAL ORDERS

Name/Amplitude Spatial orders Frequencies Comments

P0 0 0
Ps ksZs 0 kr, ks ≥ 1

Pr krZr −krZrfR

Psr ksZs + ηkrZr −ηkrZrfR

B. Stator mmf orders and frequencies

The same analysis can be carried with mmfs. Stator mmf is the product of stator currents of frequenciesfs
n with stator TFs.

Stator TFs do not depend on time, and therefore only bring space harmonicsνs. Their expression could be obtained from the
Fourier expansion of the stator turn functionNs

0 illustrated in FIG. 2, as it is going to be done for rotor in section V-C:

Ns
k(αs) =

∞∑

ns=1

2

n2
sβs(π − βs)

sin(nr(αs − αk
s )) (28)

whereαk
s is thek-th slot angular position:

αk
s = α0

s + (k − 1)
2π

Zs
(29)

However, we are here going to use the work of WACH (Wach 1998) who detailed the space harmonic content of any fractional-
slot winding. As the studied machine is double-layer wound,the number of coils per pole and phasemc equals the number
of slots per pole and phasems

ms = mc =
Zs

2pqs
=

27

12
=

9

4
= 2 +

1

4

.
= Ic +

i

h
(30)

whereIc is the integer part ofms reduced improper fraction. Ash = 4 is even, space harmonicsνs generated by stator TF
are given by (Wach 1998)

νs = k
2p

h
= k k ∈ N

∗ (31)

Finally, as the number of phasesqs = 3 is prime and odd, the total sum of phase TFs does not contain space harmonics
multiple of qs. Space harmonics brought by the stator mmf in the air-gap arethen

νs = 1, 2, 4, 5, 7, ... = |p + ǫsqshs| ǫs = ±1, hs ∈ N (32)

These theoretical results agree with the simulation presented in Fig. 4. In that figure, the real Fourier transform is used
which does not allow to distinguish the propagation direction of space harmonic fields. For instance, the space harmonic
νs = |p− qs| = 1 for hs = 1 rotates backward whereas the stator mmf fundamental space harmonic given byνs=p=2 for hs=0
rotates forward. Integral windings only bring space harmonics of the form|ǫsp + 2pqqhq| = p, 5p, 7p, 11p....

C. Rotor mmf orders and frequencies

Rotor mmffr
mm is the product of the rotor currents with rotor turns functions Nr

k :

fr
mm(t, αs) =

Zr∑

k=1

∑

m,n

Ir
mn sin

(

smnωnt − mk
2π

Zr
+ φr

mn

)

Nr
k (t, αs) (33)

wherem = νs stands for the stator winding space harmonics induced in rotor bars (Henao et al. 2005),Ir
mn is the maximum

rotor bars current computed by the aid of the equivalent circuit described in section II-A andφr
mn its phase angle. Rotor TF

spectrum is more complex than stator one because it brings both time and space harmonics. TF associated to a single bar is
plotted in Fig. 7 in stator steady frame.

In a rotor tooth centered frame, this function is even and itsFourier series is

Nr
0 (αs) =

βr

2π
(

1

Zr
− 1

2
) +

∞∑

nr=1

Anr
cos(nrαs) (34)

where

Anr
=

2

nrπ

(
2

βrnr
sin(

nrπ

Zr
) sin(nrβr) − sin(nr(

π

Zr
+ βr))

)
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Fig. 7. Single rotor bar turns function (TF) in function ofαs angle, including a linear rise in rotor slot of angular width2βr .

andβr is the half rotor slot angular opening. The term in1/n2
r comes from the linear rise in slots, it vanishes whenβr → 0.

Note that the mean valueβr

2π ( 1
Zr

− 1
2 ) will disappear when summing on rotor bars in rotor mmf expression (33). The angular

position of thek-th barαk in the stator steady frame can be written under the form

αk
r (t) = αr(t) + (k − 1)

2π

Zr
(35)

k-th rotor tooth positionθk
r is then given by

θk
r (t) =

1

2
(αk+1

r (t) + αk
r (t)) = αr(t) + (2k − 1)

π

Zr
(36)

Finally, thek-th bar turns function is expressed as

Nr
k (t, αs) = Nr

0 (αs − θk
r (t)) (37)

In (34), it seems that rotor TF brings all the space harmonicsnr = 1, 2, 3.... However, when multiplying by rotor currents
and summing on rotor bars mmfs, only the space harmonicsnr = hrZr ± νs = νr have a non-zero contribution. In (33), one
can see that the rotor currents of frequencyfr

νsn = sνsnωn combine with the rotor TF frequenciesνrf1(1 − s)/p and spatial
ordersνr. The resulting spectrum, as well as stator’s one, is summarized in Table III.

TABLE III

ROTOR AND STATOR MMF FREQUENCIES AND ASSOCIATED SPATIAL ORDERS

Name/Amplitude Spatial orders Frequencies Comments

Fs νs = p + ǫsqshs ǫsfs
n hs ≥ 0

Fr νr = hrZr + ǫrνs νrfR + ǫrfr
νsn hr ≥ 0

D. Flux density orders and frequencies

Air-gap flux density is the product of permeance waves of typeP0, Ps and Pr with mmf waves of typeFs and Fr, its
spectrum is given by their 6 possible combinations (Table IV).

TABLE IV

FLUX DENSITY FREQUENCIES AND ASSOCIATED SPATIAL ORDERS

Name/Amplitude Spatial orders Frequencies

P0Fs η0sνs η0sǫsfs
n

P0Fr η0rνr η0r(νrfR + ǫrfr
νsn)

PsFs ksZs + ηssνs ηssǫsfs
n

PsFr ksZs + ηsrνr ηsr(νrfR + ǫrfr
νsn)

PrFs krZr + ηrsνs −krZrfR + ηrsǫsfs
n

PrFr krZr + ηrrνr −krZrfR + ηrr(νrfR + ǫrfr
νsn)
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E. Radial force orders and frequencies

Finally, to obtain the electromagnetic force spectrum, onehas to multiply all the flux density waves of Table IV one with
another. Resulting lines are presented in Table V where highspatial order lines (e.g. the interaction of wavePsFs with itself
which leads to a2ksZs ± 2νs order3) and redundant lines like the interactionsPsFsPrFr andPsFrPrFs have been removed.
As these main lines are expressed in function of stator and rotor space harmonicsνs andνr, their expressions are general and
can be applied to any stator and rotor winding.

TABLE V

MAIN RADIAL FORCE LINES FREQUENCIES AND SPATIAL ORDERS. FOR INSTANCE, ǫr = −ǫs = 1, νs = νr = p, kr = ks = 1 AND ηrr = −ηss = 1

GIVE A FORCE LINEL3 OF ORDERZs − Zr − 2p = 2 AND FREQUENCY(Zr − p)fR + f1 − sf1 = Zrf1(1 − s)/p.

Name/Amplitude Spatial orders Frequencies

L1 = PsFsPsFr ηssνs − ηsrνr ηssǫsfs
n1

− ηsr(νrfR + ǫrfr
νsn2

)

L2 = PsFsPrFs ksZs − krZr + νsηss − ν′

sηrs krZrfR + fs
n1

ǫsηss − fs
n2

ǫ′sηrs

L3 = PsFsPrFr ksZs − krZr + ηssνs − ηrrνr (krZr − ηrrνr)fR + ǫsηssfs
n1

− ǫrηrrfr
νsn2

L4 = PsFrPrFr ksZs − krZr + ηsrν′

r − ηrrνr fR(krZr + ηsrν′

r − ηrrνr) + ǫrηsrfr
νsn1

− ǫ′rηrrfr
νsn2

L5 = PrFsPrFr ηrsνs − ηrrνr ηrsǫsfs
n1

− ηrr(νrfR + ǫrfr
νsn2

)

L6 = P0FsP0Fs η0sνs − η′

0sν′

s ǫsη0sfs
n1

− ǫ′sη′

0sfs
n2

L7 = P0FrP0Fr η0rνr − η′

0rν′

r fR(η0rνr − η′

0rν′

r) + ǫrη0rfr
νsn1

− ǫ′rη′

0rfr
νsn2

L8 = P0FrP0Fs η0rνr − η0sνs η0r(νrfR + ǫrfr
νsn1

) − ǫsη0sfs
n2

*

In sinusoidal case,fs
n = f1, and as a consequence linesL1, L5, L6, L7 andL8 have low frequencies (typically2f1 ≤ 200

Hz) and might be covered by mechanical noise. Other lines associated to the fundamental mmfs (νs = νr = p, ǫs = −1,
ǫr = 1 andfr

νs1 = sf1) have all the following form:

F2,3,4 = f1((1 − s)
krZr

p
± |20) (38)

They are associated to spatial orders of the form

M2,3,4 = ±ksZs ∓ krZr ± |2p
0 (39)

Among these lines, the most important ones areL2 because they do not involve rotor mmf waves of amplitudeFr ≪ Fs.
These lines are mostly responsible for electromagnetic noise in sinusoidal case, because they are associated to low spatial orders
(Jordan 1950). Notice that such lines, as they are caused by fundamental current, generally remain in case of a non-sinusoidal
supply.

In non-sinusoidal case, the force linesL1, L5, L6, L7 andL8 can be located at high frequencies and therefore significantly
contribute to acoustic noise. We can see that they are necessarily associated to orders

M1,5,6,7,8 = 0 or 2p (40)

when considering the mmf space fundamentals. Among them, the lines of highest amplitude are of the formL6 and occur at
frequenciesF6 = | ± f1 ± fs

n|. LinesL7 may be neglictible as they involve the square amplitude of rotor mmf waves and low
frequencies. Other important lines in PWM case are thereforeL1 and L5, which have exactly the same form of orders and
frequencies, andL8. Among them, the main lines are obtained taking the fundamental time harmonic of rotor current, and the
corresponding frequencies are therefore also of the form (Lo, Chan, Zhu, Xu, Howe & Chau 2000)

F1,5,6,8 = | ± f1 ± fs
n| (41)

VI. SIMULATION RESULTS

A. Simulated spectra

A first simulation was run at nominal frequencyf1 = 50 Hz, without considering the stator space harmonics inducedin
rotor currents. The corresponding A-weighted noise spectrum on the whole audible range [0 Hz, 20 kHz] is displayed in Fig.
8. Note that such a precise and wide spectrum could not be obtained with finite element (for vibrations) and boundary element
methods (for sound pressure). These numerical methods can hardly compute a noise spectrum up to 3200 Hz, and with a
prohibitive computational time of several hours, whereas the analytical model of DIVA runs in a few seconds on a 2GHz
laptop.

Simulated sound power level reaches 58 dBA: as it was observed during tests, the machine is not very noisy because no
magnetic line really emerges from the spectrum at this particular speed and in sinusoidal case.

3A high νs and a lowks, e.g.ks = 1, could result in a low spatial order. However, the higherνs is, the lower the amplitude of stator mmf waveFs is.
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Fig. 8. Simulated A-weighted audible electromagnetic noiseLwA (dBA) in on-load sinusoidal case (f1= 50 Hz,s = 3.05 %)

In order to properly interpretate these lines, it can be useful to find their associated spatial order. It can be done usingthe
analytical results of previous section, but numerically itis also possible to compute each spectrum line without taking into
account the acoustic power radiated by a particular spatialmode, and then quantify the contribution of each spatial mode to
each spectrum line. This contribution is plotted in Fig. 9 inthe range [500 Hz, 3000 Hz] where the highest vibration lines
appear.
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Fig. 9. Simulated vibration velocity spectrum with spatial mode contribution of each line (f1= 50 Hz,s = 3.05 %). The numbers indicate the spatial orders
of vibration lines.

We can see that the main lines have mode numbersm=1,2 and 3. For instance, a line of order 1 occurs at 1935 Hz. Order
number 1 can be obtained with1 = 3Zs − 4Zr +2p i.e. kr = 4. We can see that the 1935 Hz frequency precisely corresponds
to the formF2 = f1(4(1 − s)Zr

p − 2) for ηss=1 andηrs=-1. In the same way, a line of order2 = Zs − Zr − 2p occurs at
610 Hz which corresponds toF2 = f1((1 − s)Zr

p + 2) Hz (kr=4, ηss=-1 andηrs=1). Finally, a line of order3 = 4Zs − 5Zr

occurs at 2550 Hz of the formF2 = f1(5(1−s)Zr

p ) (kr=5, ηss=ηrs=1). These few examples show how the simulations results
correctly fit to previous analytical results.

Modal contribution analysis can be also carried with sound power levelLw at variable speed (Fig. 10), that is to say during
a motor speed ramp at constant flux. Sound power level is computed by simulating nearly one rotor turn, so if the speed do
not significantly vary during this turn (which is a reasonable assumption in our case), the variable-speed level can be obtained
by computing the sound power level at each speed step.

Such a graph allows for instance to see that around supply frequencyf1 = 30 Hz it is modem = 1 which radiate the most,
whereas atf1 = 45 Hz it is m = 2. The 30 Hz resonance comes from the match between the magnetic line f1(4(1−s)Zr/p−2)
which has been previously pointed out and the 1200 Hz mode number 1 natural frequency.

Previous simulations show that some odd spatial modes (m=1,3) play an important role in noise radiation. Usually, induction
machines have even slot numbers: consequently,Zr = Zs = 0 (n stands for the congruence modulo 2 operator, i.e.n = 0 if
n is even andn = 1 otherwise). In that case, winding is integral andνs = p(2qshs + ǫs) so thatνs = ±p. Therefore, all the
deflection modes parity are given by

M = ±ksZs ∓ krZr ± |νs±νr

0
= 0 (42)
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Fig. 10. Variable-speed simulation with spatial orders contribution to total sound power levelLw (dB). The numbers indicate the spatial orders.

which means that the only spatial modes that are excited by electromagnetic vibration are even. When using odd numbers of
rotor and stator slots, which necessarily impose a fractional-slot winding asZs/(2pqs) cannot be integral, we do not necessarily
haveM = 0: the electromagnetic power brought by Maxwell air-gap pressure can dissipate as vibrations through all the stator
deflection modes. Therefore, acoustic power is more uniformly distributed in spatial modes and if a resonance occur, it will
be smaller than in traditonal even slot number combination machines. However, it also means that electromagnetic pressure
can excite some odd modes natural frequency. This it is not a matter of windings but of slot number parity.

VII. C ONCLUSION

An analytical noise-predictive model of the induction machine and its converter was presented. The expression of main
noise spectrum lines frequencies and spatial orders, including stator winding and rotor bars space harmonics, as well as PWM
time harmonics, was derived analytically. These theoretical results were favorably compared to simulations and expriments in
on-load sinusoidal case.

Saturation and eccentricity effects have not been discussed in that article, although they are taken into account in DIVA .
Saturation modify the air-gap flux density shape, which addsnew harmonics in Maxwell forces spectrum and modify noise
spectrum. This new harmonic content can be modelled by adding saturation permeance waves (Maliti 2000). Dynamic and
static eccentricities also change permeance waves, and canbe easily taken into account (Toliyat & Arefeen 1996) without
increasing computational cost.

Future work will address the effect of PWM on magnetic noise generation, and detail other experimental validations of the
developed simulation tool.
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