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Abstract. Energy harvesting is a very promising technology to provide low levels of power for small
autonomous systems, which the applicability encompass a very wide range of areas, that spans
from micro/nano sensors in engineering to state of art implants in medicine. The present work
deals with the analysis and detailed characterization of a nonlinear bi-stable piezo-magneto-elastic
energy harvester driven by a periodic external excitation. The dynamical system is studied in depth
through bifurcation diagrams and basins of attraction. The level of chaoticity of the dynamical
system is accessed very efficiently via the 0-1 test for chaos, which allows mapping the presence of
dense regions of chaos without the help of the Lyapunov exponents.

1 Introduction

Energy harvesting technologies are very promis-
ing alternatives for electrical supplying of low
power systems, such as medical implants, micro
electro-mechanical systems (MEMS), nano electro-
mechanical systems (NEMS), etc [1, 2]. Such devices
converts environmental energy, available for free, into
electrical power to be used in the application of in-
terest. Due to the immense possibility of applica-
tions, together with the theoretical challenges asso-
ciated with the analysis of the underlying nonlinear
behavior, these dynamical systems have been object
of study of several recent works [3–8].

The present paper aims to investigate the non-
linear dynamics of the bi-stable piezo-magneto-elastic
energy harvester by Erturk et al. [9]. In particular, it
is of interest to map out whether the system response
is chaotic or regular, since the nature of the response
of the system has great influence on the level of energy
possibly recoverable.

The dynamic system of interest is investigated via
bifurcation diagrams and basins of attraction, where
the latter are computed not in the traditional way,
but with the aid of a binary test for chaos detection.

The rest of this paper is organized as follows. The
second section introduces the harvester device of in-
terest and the mathematical model used to analyze
its dynamic behavior. Bifurcation diagrams are pre-
sented in the third section, while an analysis with 0-1
test for chaos and basins of attraction is conducted in
the fourth section. Finally, the fifth section, summa-
rizes the paper main conclusions and contributions.
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2 Mathematical modeling

2.1 Physical model

A schematic representation of the bi-stable piezo-
magneto-elastic energy harvester studied here is de-
picted on Figure 1. A slim ferromagnetic cantilever
beam, exposed to magnetic fields effects, excites the
piezo-electric material plates placed on its upper edge.
The rigid structure supporting the whole ensemble is
subjected to a periodic movement which drives the
nonlinear system.

Figure 1. Schematic representation of the bi-stable piezo-
magneto-elastic energy harvester by [9].
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2.2 Model equations

The dynamic behavior of physical system in Figure 1
evolves according to an evolution law dictated by the
pair of equations

ẍ + 2 ξ ẋ − 0.5 x (1 − x2) − χ v = f cos (Ω t), (1)

v̇ + λ v + κ ẋ = 0, (2)

where χ and κ represents the specific piezoelectric cou-
pling terms, ξ the mechanical damping ratio, λ a time
constant reciprocal and, finally, f and Ω represent
the excitation amplitude and frequency, respectively.
The beam displacement x, its velocity ẋ and output
voltage v are obtained through the integration of the
initial problem value (IPV) defined by Eqs. (1) and
(2) and appropriate initial conditions, using the val-
ues ξ = 0.01, χ = 0.05, λ = 0.05 and κ = 0.5. All the
aforementioned quantities are dimensionless.

3 Bifurcation diagrams

In order to identify if the dynamic behavior of the bi-
stable harvester device is regular or chaotic, this sec-
tion makes an analysis based on bifurcation diagrams,
where the output voltage is considered as an observ-
able of the dynamical system, which is calculated as
a function of a certain control parameter (excitation
force amplitude f or excitation force frequency Ω).

These diagrams are constructed increasing (for-
ward analysis) or decreasing (backward analysis) the
control parameter in a quasi-static way, plotting on
the vertical axis the number of periods associated
with the current solution. This analysis establishes
an interval of interest for the control parameter ( f
or Ω), which is discretized by an uniform mesh with
1200 points. For all cases under analysis, initial dis-
placement, velocity and voltage are set as (x0, ẋ0, v0) =

(1, 0, 0). Only the last 10% of the time series are con-
sidered in the construction of the diagrams.

3.1 Fixed amplitude, variable frequency

The first analysis considers Ω as the control param-
eter, observing the system dynamics in the interval
0.1 ≤ Ω ≤ 1.4, for a fixed set of forcing amplitude
f ∈ { fn = 0.019 + (n − 1) 0.032, n = 1, · · · , 9}, as can be
seen in Figure 2.

The backward diagram reveals a chaotic dynamic
behavior for higher frequencies in the addressed inter-
val and f ≥ 0.051. Multiple period responses comes
up close to the chaotic regions for f ≥ 0.179. Re-
gions of regular (non-chaotic) dynamics can be seen
between chaotic areas.

For both diagrams, forward and backward, a
spread region with discontinuities emerges on low fre-
quencies interval, for amplitudes between f = 0.083
and 0.211. Regular dynamics can be observed for an

Figure 2. Bifurcation diagrams of the output voltage as
function of the excitation frequency, for several values of
excitation force amplitude. Forward analysis are presented
blue tones, while backward analysis appear in red tones.

entire interval of frequencies only when f = 0.019, de-
spite of non-zero values been registered for Ω ≥ 0.8 on
the forward diagram.

A general analysis suggests that negative regular
voltages appears, in the forward diagram, spread on
high frequencies interval, and at the central region
on both diagrams, specially for f ≥ 0.179. Positive
response predominates for all f interval on higher fre-
quencies values over Ω = 0.8, with some of then also
presenting chaotic patterns.

3.2 Fixed frequency, variable amplitude

In the second analysis f is taken as control parameter,
observing the system dynamics in the interval 0.05 ≤
f ≤ 0.3, for a set of fixed forcing frequencies Ω ∈ {Ωn =

0.1+(n−1)0.1, n = 1, · · · , 9}, as can be seen in Figure 3.

It is possible to see that regular behavior domi-
nates the lower portion of f interval, for frequencies
smaller than Ω = 0.8, in both diagrams (forward and
backward). Although, the same analysis reveals that
voltage reaches zero on both cases, for frequencies
Ω < 0.5. Regular negative values, indicating poles
inversion on piezoelectric terminals, can be noted on
backward diagrams for Ω ≥ 0.6, for almost all ampli-
tudes analyzed.

Chaotic dynamics have a strong presence for low
frequencies until Ω = 0.5 on both diagrams, even for
amplitude from f ≥ 0.119. Forward diagrams shows
chaotic patterns emerging on the middle portion of
f interval for frequencies as Ω = 0.8 and Ω = 0.9,
while backward diagrams remains regular, presenting
a similar profile since Ω = 0.6.
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Figure 3. Bifurcation diagrams of the output voltage
as function of the excitation force amplitude, for several
values of excitation frequency. Forward analysis are pre-
sented blue tones, while backward analysis appear in red
tones.

Other regular results are obtained for Ω = 0.7,
where backward diagrams reveals negative voltages
for f ≥ 0.03, and in the forward diagrams for f =≥

0.11.
The two diagrams reveal the coexistence of stable

solutions for the dynamic system of interest, depend-
ing on the configuration of parameter adopted for the
external excitation.

4 Basins of attraction

Another tool used here to characterize the system dy-
namic behavior of the bi-stable harvester is the 0-1
test for chaos by Gottwald and Melbourne [10]. This
statistical test uses a binary classifier K ∈ {0, 1} to
identify the regime of the dynamics — K = 0 means
regular dynamics, while K = 1 stands for chaotic
behavior. The classifier is constructed with basis
on an extension of the dynamical system to a two-
dimensional Euclidean group, that (asymptotically)
behaves likes a Brownian motion, in case of chaotic
dynamics, and generates limited trajectories for de-
terministic dynamics. A time series of the dynami-
cal system is projected into an extended space and
undergoes a sequence of transformations, to generate
the classifier, that depends on a parameter randomly
c. The test is repeated hundreds of times, each time
with a new value of c, and the final classifier is given
by the median of the several samples of K previously
generated. Further details about this test can be seen
in [10, 11].

Figure 4 shows the projection of a basins of attrac-
tion in the displacement vs velocity plane, obtained
from the 0-1 classifier, for excitation amplitude and
excitation frequency values equal to f = 0.083 and

Ω = 0.8, respectively. It is seen that chaos and regu-
larity have well-defined regions, with blue represent-
ing chaotic responses and red regular ones.

Figure 4. Projection of the basins of attraction in the
displacement vs velocity plane, obtained with the 0-1 test
for chaos, for f = 0.083 and Ω = 0.8.

In Figure 5 it is shown the projection of the basin
of attraction in displacement vs velocity plane, for
f = 0.083 and Ω = 0.9. The results display a behavior
very similar to the previous case, although regular re-
sponses appear embedded in previous chaotic regions.

Figure 5. Projection of the basins of attraction in the
displacement vs velocity plane, obtained with the 0-1 test
for chaos, for f = 0.083 and Ω = 0.9.
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5 Final remarks

This paper addresses the nonlinear dynamic behavior
of a bi-stable piezoelectric energy harvester regard-
ing chaos incidence over system output voltage pro-
file. Bifurcation diagrams and basins of attraction
(obtained with aid of 0-1 test for chaos) are employed
to distinguish the dynamic behavior of the system be-
tween regular and chaotic. The analyzes reveal a very
rich dynamic behavior, with the coexistence of stable
solutions and dense regions of chaos.

This work is one more in a series where the authors
explore in detail the dynamics of the system of interest
aiming to better know their physics to optimize the
energy recovery process. In a next step, the authors
intend to analyze the effect of parameter uncertainties
on the system dynamic behavior.
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