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STOCHASTIC DEFLATOR FOR AN ECONOMIC SCENARIO GENERATOR WITH FIVE FACTORS

In this paper, we implement a stochastic deflator with five economic and financial risk factors: interest rates, market price of risk, stock prices, default intensities, and convenience yields. We examine the deflator with different financial assets, such as stocks, zero-coupon bonds, vanilla options, and corporate coupon bonds. We find required regularity conditions to implement our stochastic deflator. Our numerical results show the reliability of the deflator approach in pricing financial derivatives.

INTRODUCTION

The Arrow-Debreu model of general equilibrium introduced the existence of an equilibrium in which the allocation of consumption and production is Pareto optimal with a system of prices for contingent commodities. 1 Their works have inspired tremendous research in fields of macroeconomics, financial economics, and asset pricing theory. Based on the concept of Arrow-Debreu securities, researchers had developed the fundamental theorems of asset pricing, which the second theorem tells us that an arbitrage-free market is complete if and only if the equivalent martingale measure is unique. 2 In the case of Brownian diffusion, the Girsanov's Theorem enables us to change probability measure from a physical world to a risk-neutral world. Under risk-neutral measure, we have a closed-form solution for Black-Scholes options pricing model. However, we wouldn't always have analytical solutions for various classes of stochastic processes, which motivates us to study numerical methods for approximating solutions. In this paper, we investigate stochastic deflator approach for pricing of life insurance contracts.

Due to the complicatedness of life insurance contracts and interactions among economic and financial risk factors, a reliable tool for asset/liability management (ALM) and calculations of reserves would be demanded. In practice, "economic scenario generators" assist insurers in pricing insurance contracts and managing long-term risk 3 .

The usual pricing scheme is as follows. Usually, economic scenarios are computed under a risk-neutral measure; the actualization process involving risk-free rate is quite simple, numerically speaking. However, we like to point out that many "unusual" scenarios occur (e.g. 10-year rate  50%) under risk-neutral measure, which increases the difficulty to justify the calibration of "reaction functions" embedded in the ALM-projection model used to compute cash flows.

For example, the lapse rate is often a function of the difference between the revalorization rate of the contract and a reference rate; the parameters are calibrated 1 See, for example, [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF], [START_REF] Geanakoplos | Arrow-Debreu Model of General Equilibrium[END_REF][START_REF] Mas-Colell | Microeconomic theory[END_REF] Chapter 19. 2 See, for example, [START_REF] Harrison | Martingales and arbitrage in multiperiod securities markets[END_REF], [START_REF] Harrison | Martingales and stochastic integrals in the theory of continuous trading[END_REF], [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF], and [START_REF] Shreve | Stochastic calculus for finance II: Continuous-time models[END_REF] Chapter 5.4. 3 See, for example, [START_REF] Varnell | Economic scenario generators and Solvency II[END_REF]), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016). observing "usual" values of economic parameters but may become difficult later to justify for atypical values of economic risk factors. We could use a stochastic deflator to address this problem, using only scenarios under physical measure 4 . The numerical calculations become tedious due to the complexity of the deflator, which involves a riskfree rate process and a change of measure between physical and risk-neutral measure. But the benefit is that we could calculate the deflator separately and multiply the deflator with projected cash flows for pricing insurance contracts.

In this paper, we adopt the deflator approach initiated by [START_REF] Dastarac | Les Déflateurs stochastiques: quelle utilisation en assurance?[END_REF] and include the processes of default and convenience yield from [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF] to calculate prices for financial derivatives. We compare the values calculated from the deflator approach with the values suggested by analytical formulas in simple cases. We find required regularity conditions to implement our stochastic deflator. Also, our numerical results show the reliability in statistics of the deflator approach for quite simple financial derivatives. Our goal is then to use this deflator to compute best estimates for a life insurance contract.

The remainder of the paper is organized as follows. Section 2 shows the deflator approach. Section 3 discusses the implementation of time discretization. Section 4 presents the numerical results. Section 5 concludes.

DEFLATOR APPROACH

Before discussing and deriving the general form of deflator, we need to generate correlated Brownian motions for the stochastic processes in our model. In our model, we consider the processes of interest rates, market prices of risk, stock prices, default intensities and convenience yields. Sections 2 and 3 discuss the technical details of implementations of the deflator and time discretization. Readers who are familiar with stochastic deflator and time discretization could directly skip to numerical results in Section 4.

GENERATE CORRELATED BROWNIAN MOTIONS

Let the Brownian motion part of each process 
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Let ( ) ( )

e f t  - and 
( ) t  
are the 8 One more benefit for matrix is that we could do some analyses on the coefficient matrix, e.g. eigenvalues and eigenvectors of the coefficient matrix.

9 Different from [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF],  in our model could be negative. 
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General form of deflator

We are now able to derive the general form of deflator. First, let 
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We could rewrite the general form of deflator ( )

Dt as follows. 11 ( ) ( ) ( ) ( ) ( ) ( ) r dD t D t r t dt D t t dW t  = - - (5) ( ) ( ) ( ) ( ) ( ) ( ) 2 0 0 0 1 0 2 t t t r D t D r s ds s ds s dW s   = - - -      exp ( 6 
)
10 We will show later that one more regularity condition is required for the diffusion term of stock price in our model, but the deflator remains the same as shown in equation ( 5).
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to derive the deflator, the regularity conditions will be different.

IMPLEMENTATION OF TIME DISCRETIZATION

From equations (3) and ( 5) with regularity conditions required in Section 2.2.2, 
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To implement the deflator approach, we need to discretize time steps for each process.

We discuss the time discretization here. We adopt the Euler method, the Milstein method, and the simplified Second Milstein method for time discretization in our model.12 Denote a stochastic process ( )
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SIMPLIFIED SECOND MILSTEIN METHOD

We advance to multi-dimensional case in this sub-section. Let t X be multi-dimensional stochastic processes with the dynamics 
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We approximate t X by t Y discretely by simplified Second Milstein method, where 
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                                          - =              -   - - -     -    

NUMERICAL RESULTS

We implement the deflator approach with three methods for time discretization and adopt CIR interest rate model for short-term saving. 13 In addition, we also incorporate parallel computing with a variance technique, antithetic sampling in our algorithm. 14 In . 15 The dynamics of ( )

t  is ( ) ( ) ( ) ( ); , , 0 d t a b t dt t dW t a b             = - +    .
In CIR interest rate model, the price of zero coupon bond of no risk with maturity T , ( ) ( ) 

,, P t T r t , is equal to ( ) ( ) ( ) ,, PP r t C t T A t T e -- where ( ) ( ) ( ) ( ) ( ) ( ) ( ) sinh , 1 cosh sinh 2 CIR P CIR CIR r CIR Tt C t T T t b T t     - = -+ - , 22 1 2 2 CIR r
( ) ( ) ( ) ( ) ( ) 0 0, 0, 0, , 0 PP r C T A T P T r e -- = . 16
To calculate the option price for stock under CIR interest rate process analytically, we use the formula proposed by [START_REF] Kim | Option pricing under stochastic interest rates: an empirical investigation[END_REF], which we leave the technical detail in Appendix 5 of Supplementary materials. 17 In addition, notice that the drift term of stock prices in [START_REF] Kim | Option pricing under stochastic interest rates: an empirical investigation[END_REF] is a constant, which is different from our model in which

( ) ( ) ( ) ( ) S S rS t r t t t     =+ .
Thus, our numerical results could be different from the value suggested by the formula in [START_REF] Kim | Option pricing under stochastic interest rates: an empirical investigation[END_REF].

We present the approximations of ( ) rt, ( )

t  , ( ) ( ) 
,, P t T r t in matrix by the Euler method and the Milstein method as follows.

First, we rewrite the dynamics of ( ) rt, ( ) 

t  , ( ) ( ) ,, P t T r t in matrix. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 ,, 0 ,, r r r r r r r r r a b
                -+       = -         +       (14) 18
Then,

1 1, 1, ,, 0 0 0 i ii i i r r i i r i r i i i i i i r i ii i i r t r i i r t r i r r a b r r r t a b W P P W Pr P r P r                + + +   - +            = + -               +       
by the Euler method; and ( ) ( )

2 2 1 , 2 1 , 2 , 1 , , , 0 0 1 0 + 0 4 0 0 0 i i i i i r r i i r i r i i r r i i i i i i r i ii ii i i r t r i i r t r i r r a b r r r t Wt a b W Wt P P W Pr P r P r                    + + +     - +        -          = + -              -         +          
by the Milstein method.

The details of implementation of simplified Second Milstein method is provided in the Appendix 6 of Supplementary materials. 16 See, for example, Shreve (2004) Chapter 6. 17 For references of option pricing under stochastic interest rates, see, for example, [START_REF] Shreve | Stochastic calculus for finance II: Continuous-time models[END_REF] Chapter 9, and [START_REF] Brigo | Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit[END_REF] Chapter 3 and Appendix B. 18 For process of ( ) ( ) 

,, P t T r t , plug ( ) ( ) ( ) ( ) ( ) ( )

AN NUMERICAL EXAMPLE WITH CIR MODEL

The following is the settings describing the dynamics of each process in our example. 19 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
                 = - + =     = - + =    = + + =     = + + =  = - = 1, 0.01, 0.6, 0.7, 0.5, 0.1, 0.3, 0.1 rS r r S S Tt                   =  = = = = = = = Let ( ) 0 D
equal 1 in equation ( 10). The deflator approach tells us that for a nonnegative random variable ( )

Xt, we would have

( ) ( ) ( ) ( ) E t X t E D t X t  =         Q . 4.1.1.

Zero-coupon bond of no risk with maturity T

The price of a zero-coupon bond of no risk with maturity T at time period T is equal to 1. (

0 0 0 0 0 Q , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

T r P T r E T P T T r T E D T P T T r T

E D T        = = = =       (15) 
Tables 1 shows the numerical results. Figures 2,3,4,5,[START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF]7,8,and 9 show the convergence of approximations to expected values, i.e.

( ) ( ) 0, , 0 P T r , and the differences between approximations and expected values. In general, we could see that the simplified Second Milstein method provides better approximations and converges faster than the Euler method and the Milstein method do. This could be explained by convergence order in which the simplified Second Milstein method has larger weak order of convergence. 20 4.1.2. Corporate coupon bond [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF] assumed the independence among interest rate, default intensity, and convenience yield. Thus, we let 21 To accommodate the three risk factors (interest rate, default intensity, and convenience 19 Here we provide a numerical example for the model, in which the chosen values for model settings could be different. In our example, there are strong positive correlations between interest rates and other factors (i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each two of stock prices, default densities, and convenience yields. Note that the Feller condition holds in our numerical examples, e.g. 20 The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6. 21 We let 0 i j dW dW = here, i.e. pairwise independence.

0 r  = , 0 r  = , 0 S   = , 0 S  = , and 
0   = .
yield) with deflator, we let 22 In addition, notice again that the formula provided in [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF] is not directly applicable after we require regularity conditions in our model, which we leave technical detail of the formula in [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF] in Appendix 7 of Supplementary materials.

( ) ( ) ( ) ( ) ( ) dB t B t r t t t dt  = + +   .
To implement the deflator, we look at the original definition of ( )

,, CB c T  . ( ) ( ) ( ) ( ) ( )   ( ) ( ) ( ) ( )   ( ) ( ) ( ) ( ) ( )   0 0 0 0 0 , , exp exp 1 exp T t T T t t CB c T E c r s s s ds dt E r s s s ds E r s s s ds dt              = - + + + - + +           + - - + +          (16) 
For the time period t when a bond holder receives a coupon or a fraction of the par value of the bond (because of default), the payoff at that time period t is equal to c or ( )

1  -
multiply the par value of the bond respectively. Thus, we could implement the deflator as follows, the details of implementation of time discretization is provided in Appendix 8 of Supplementary materials.

( ) ( ) ( ) ( ) ( ) ( ) ( ) 00 0 , , 1 TT D CB c T E D T cE D t dt E t D t dt        = + + -            (17) 23
Tables 2 shows the numerical results. Figures 10,11,12,and 13 show the convergence of approximations and the differences between approximations and expected values.

ONE MORE REGULARITY CONDITION REQUIRED FOR THE DIFFUSION TERM IN STOCK PRICE

Up to Section 4.1, we successfully implement the deflator approach for zero-coupon bond of no risk with maturity T and corporate coupon bond. However, we notice that one more regularity condition is required for the diffusion term in stock price. As illustrative examples, Figures 14 and15 show the instability of the deflator approach corresponding to stock price in Second Milstein method with 10000 simulations after projecting longer than 15 years.

Recall that we would have

( ) ( ) ( ) ( ) E t X t E D t X t  =         Q for a nonnegative random variable ( ) Xt.
We calculate the price of Put option of ( )

ST with strike K equalling to 2, and expect the following equations to hold.

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 1 D S S E T S T E D T S T  = = = =         Q (18) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0, 0 , , 0, 0 , , D Put S T K Put S T K E T K S T E D T K S T  + +     = = - = -     Q ( 19 
)
22 Recall that ( ) From equations ( 6) and ( 18), we derive one more regularity condition 

W W W W W W                                            ==    -           - - - - +  == - - W (20)
From equations ( 3) and ( 5) with regularity conditions required in Section 2.2.2 and here (i.e. 

                                         -         +     =     +       - +      - -     - - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 r r t dt dW t dW t dW t dW t t r t t                                                     -        
. Figures 16,17,18,and 19 show the numerical results of Second Milstein method with 10000 simulations after projecting 100 years. 24

DISCUSSIONS

Given the variance of a random variable X ,

( )

Var X , the variance of

1 X n is equal to ( ) 2 1
Var X n . Suppose the risk factors and parameters involved are constant at time period t , ( ) Dt is lognormal distributed. With the sample size being equal to n , the mean of 24 Note that the formulas in [START_REF] Longstaff | Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market[END_REF] and [START_REF] Kim | Option pricing under stochastic interest rates: an empirical investigation[END_REF] are not applicable for longer periods, i.e. Further study would be to investigate the situation when the diffusion term in stock price is a complex number and when the observed estimated processes are deviated from the processes with required regularity conditions.

CONCLUSION

In this paper, we derive the general form of deflator for four risk factors: interest rates, stock prices, default intensities, and convenience yields and then we find the regularity conditions for the deflator. We examine the deflator with different financial derivatives, comparing the numerical results with values calculated from closed-form formulas. We find required regularity conditions to implement our stochastic deflator. Our results indicate the reliability in statistics of the deflator for financial asset pricing.

Except the benefit that we could compute best estimate value by simply averaging the multiplication of deflator and projected cash flows, the fact that we observe data only in physical world would provide the motivation for us to use deflator for the convenience to estimate parameters of "reaction functions" in an ALM projection model as in Chapter 4 of Laurent et al. (2016).

Further work would be to compare the best estimate values of a life insurance contract by the deflator approach under physical measure and risk-neutral measure. More importantly, how to handle the situation when the diffusion term in stock price is a complex number and when the observed estimated processes are deviated from the processes with required regularity conditions would be further research directions. 
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  Chapter 5 and Rachev et al. (2011) Chapter 2.6.4 . Denote r interest rate; S stock price;  default intensity;  convenience yield;

	, W i r S  , , , i =	Brownian motion part of each process; and		, jk jk  correlation
	between each two processes. To generate correlated	, W i r S  , , , =	, we require four
					i
	independent Brownian motions	, Wi = i	0 1 2 3 , , ,	. Following is the construction of W ESG ,
	technical details are provided in Appendix 1 of Supplementary materials.

  and

	( ) ,, ( ) ( ) ( ) 1 , , dd , 1 1 t t t i t 2 i i j i	2	( ) , t i j	, t ij
	dm	ik	( ) , t	( ) , t	, t k	,	t	( ) ( ) , T , t t
	11 ik			i				
									t W is a	1 m vector.
	d is the number of different stochastic processes in	t X , and m is the number of
	independent Brownian motions involved in	t X .			
	For a continuously twice differentiable function ( f t x  , we could write ( ) ) 1 , d , t df t X by
	Itô formula for multi-dimensional case as follows.			

  Dt could not be the same given different discount factors with the same Radon-Nikodym derivative, i.e. different discount factors imply different risk-neutral worlds.

							D t Discount factor =		d d Q P	, ( )
	23 We approximate	0 T 	( ) D t dt	by	0  T t =	(	2 DD i t t i +	1 +	)	i t 	; similarly, we approximate	0 T 		( ) ( ) t D t dt	by
																i
	0  T t =	(		i t	i t D	2  +	i t	1 +	i t D	1 +	)	i t 	.	
	i														

Tab. 1. Zero coupon bond of no risk with maturity T

  

	# of Simulations	( ) E D T 		( ) E D T P T T r T ( ) (  ,,	)		( ) 0, , 0 P T r (	)
	Euler method							
	2500	0.967646653771768	0.967552873529761		
	5000	0.968545566976094	0.968451758793272		
	10000	0.971055574970586	0.970961666405972		
	100000	0.969964099445665	0.969870204097554			0.970957220487724
	250000	0.970861713011257	0.970767802364827		
	500000	0.970697882733399	0.970603984186568		
	1000000	0.971001216710056	0.970907309007362		
	Milstein method							
	2500	0.969203041882130	0.969109232549717		
	5000	0.968364554353440	0.968270761261484		
	10000	0.972015353313569	0.971921436693164		
	100000	0.969796855984494	0.969702984763468			0.970957220487724
	250000	0.970693248836965	0.970599353426790		
	500000	0.970367620896040	0.970273749033845		
	1000000	0.970880147642130	0.970786256114490		
	Second Milstein method						
	2500	0.971985461477127	0.971985482351078		
	5000	0.973386426354929	0.973386494993151		
	10000	0.970979266245196	0.970979241795446		
	100000	0.972928673921800	0.972928710489062			0.970957220487724
	250000	0.970544559568911	0.970544535585851		
	500000	0.970579400873414	0.970579381127470		
	1000000	0.970630578417248	0.970630560272500		
	Tab. 2. Corporate coupon bond						
	# of Simulations		Deflator	Longstaff et al. (2005)
	Euler method						
	2500		1.03001393884536			
	5000		1.02907100520235			
	10000		1.03312948158384			
	100000	1.03162033904634	1.03313616115971
	250000	1.03255241573140			
	500000	1.03237954508927			
	1000000	1.03271899062813			
	Milstein method						
	2500		1.02572713722014			
	5000		1.02914390668280			
	10000		1.03349796386179			
	100000	1.03135227993609	1.03313616115971
	250000	1.03247145621524			
	500000	1.03214895930589			
	1000000	1.03261933018597			
	Second Milstein method				
	2500		1.03584708542322			
	5000		1.03243391095283			
	10000		1.03330315641903			
	100000	1.03468566679080	1.03313616115971
	250000	1.03243619762781			
	500000	1.03234018373030			
	1000000	1.03229088096527			

For discussions of stochastic deflator in insurance, see, for example,[START_REF] Dastarac | Les Déflateurs stochastiques: quelle utilisation en assurance?[END_REF] and[START_REF] Caja | La mesure du prix de marché du risque: quels outils pour une utilisation dans les modèles en assurance?[END_REF]. For a reference of stochastic calculus related to Itô's lemma and Girsanov's Theorem, see[START_REF] Shreve | Stochastic calculus for finance II: Continuous-time models[END_REF] Chapters 4 and 5.

Note that research studies of pricing, default and liquidity are fundamental no matter which currency we use.

For references of time discretization, see, for example,[START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF],[START_REF] Iacus | Simulation and inference for stochastic differential equations: with R examples[END_REF], and[START_REF] Glasserman | Monte Carlo methods in financial engineering[END_REF].

See, for example, Olsson (2005).

See, for example,[START_REF] Dufresne | The log-normal approximation in financial and other computations[END_REF],[START_REF] Lo | The Sum and Difference of Two Lognormal Random Variables[END_REF], and[START_REF] Gulisashvili | Tail behavior of sums and differences of log-normal random variables[END_REF].

See, for example, Glasserman (2013) Chapter 6.3.3, and Mörters and Peres (2010) Chapter 1.3.
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)

. We could calculate its 95% confidence interval as follows. 25

Here

. . 1 d f n t =-is the t statistics with degree of freedom equalling 1 n -. For example, in our numerical results of Second Milstein method with antithetic sampling and sample size equalling 2500, the 95% confidence interval of ( ) k . Given stochastic differential equations of two normalized stochastic processes dX and dY , we could calculate

( )

, Cov X Y by dXdY . The multiplication of lognormal random variables is again lognormal distributed, and the sum of lognormal random variables most likely behaves as either normal or lognormal distributions (so that we could still calculate the confidence interval). 26 As a numerical example, we let , we could alleviate this situation observed in Figure 22. In Appendix 10 Supplementary materials, we show that the mean and variance of the interest rate process ( ) rt behave like the mean and variance of a CIR process asymptotically. In addition, we observe negative values of ( ) Dt while implementing time discretization over long time periods, which could result from discretization bias and no differentiability of Brownian motion. 27 We provide one more example related to insurance contract. From [START_REF] Bonnin | Best estimate calculations of savings contracts by closed formulas: application to the ORSA[END_REF], the flow of benefits for a saving contract VR t is the value of a saving contract with its