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Abstract 

In this paper, we implement a stochastic deflator with four economic and financial risk factors: interest 
rates, stock prices, default intensities, and convenience yields. We examine the deflator with different 
financial assets, such as stocks, zero‐coupon bonds, vanilla options, and corporate coupon bonds. Our 
numerical results show the reliability of the deflator approach in pricing financial derivatives. 

Summary 
1. Introduction ........................................................................................................................................... 2 
2. Deflator approach .................................................................................................................................3 

2.1. Generate correlated Brownian motions ...............................................................................................3 
2.2. General form of deflator with five factors .......................................................................................... 4 

2.2.1. Dynamics of each process ............................................................................................................... 4 
2.2.2. General form of deflator .................................................................................................................. 5 

3. Implementation of time discretization ................................................................................................. 7 
3.1. Euler method ......................................................................................................................................... 7 
3.2. Milstein method ................................................................................................................................... 8 
3.3. Simplified Second Milstein method ..................................................................................................... 9 

4. Numerical results ................................................................................................................................. 10 
4.1. Example with CIR model and geometric Brownian motion .............................................................. 12 
4.2. Example with CIR model and corporate coupon bond ..................................................................... 13 
4.3. Comparisons of numerical results with antithetic sampling and discussion .................................... 14 

5. Conclusion ............................................................................................................................................ 15 
6. References ........................................................................................................................................... 15 
7. Tables and figures ................................................................................................................................ 18 

 

                                                         

∗ Po-Keng Cheng and Frédéric Planchet are researcher at SAF laboratory (EA n°2429). Frédéric Planchet is 
also consulting actuary at Prim’Act. Contact: ansd39@gmail.com / frederic@planchet.net. 

mailto:ansd39@gmail.com
mailto:frederic@planchet.net


P.K. Cheng, F. Planchet 

 - 2 -  

1. INTRODUCTION 

The Arrow‐Debreu model of general equilibrium introduced the existence of an 
equilibrium in which the allocation of consumption and production is Pareto optimal with 
a system of prices for contingent commodities.1 Their works have inspired tremendous 
research in fields of macroeconomics, financial economics, and asset pricing theory. 
Based on the concept of Arrow‐Debreu securities, researchers had developed the 
fundamental theorems of asset pricing, which the second theorem tells us that an 
arbitrage‐free market is complete if and only if the equivalent martingale measure is 
unique.2 

In the case of Brownian diffusion, the Girsanov's Theorem enables us to change 
probability measure from a physical world to a risk‐neutral world. Under risk‐neutral 
measure, we have a closed‐form solution for Black‐Scholes options pricing model. 
However, we wouldn't always have analytical solutions for various classes of stochastic 
processes, which motivates us to study numerical methods for approximating solutions. 

Due to the complicatedness of life insurance contracts and interactions among economic 
and financial risk factors, a reliable tool for asset/liability management (ALM) and 
calculations of reserves would be demanded. In practice, “economic scenario generators” 
assist insurers in pricing insurance contracts and managing long‐term risk3. 

The usual pricing scheme is as follows. 

Fig. 1 -  Calculating the best estimate reserve for a life insurance contract 

 
Usually, economic scenarios are computed under a risk-neutral measure; the actualization 
process involving risk-free rate is quite simple, numerically speaking. However, we like to 
point out that many “unusual” scenarios occur (e.g. 10‐year rate 50%) under risk‐neutral 
measure, which increases the difficulty to justify the calibration of “reaction functions” 
embedded in the ALM‐projection model used to compute cash flows. 

For example, the lapse rate is often a function of the difference between the 
revalorization rate of the contract and a reference rate; the parameters are calibrated 
observing “usual” values of economic parameters but may become difficult later to 
justify for atypical values of economic risk factors. We could use a stochastic deflator to 

                                                         
1 See, for example, Arrow and Debreu (1954), Geanakoplos (1989), and Mas‐Colell et al. (1995) Chapter 19. 
2 See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer 
(1994), and Shreve (2004) Chapter 5.4. 
3 See, for example, Varnell (2011), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016). 
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address this problem, using only scenarios under physical measure4. The numerical 
calculations become tedious due to the complexity of the deflator, which involves a risk-
free rate process and a change of measure between physical and risk-neutral measure. 
But the benefit is that we could calculate the deflator separately and multiply the deflator 
with projected cash flows for pricing insurance contracts. 

In this paper, we adopt the deflator approach initiated by Dastarac and Sauveplane (2010) 
and include the processes of default and convenience yield from Longstaff et al. (2005) to 
calculate prices for financial derivatives. We compare the values calculated from the 
deflator approach with the values suggested by analytical formulas in simple cases. Our 
numerical results show the reliability in statistics of the deflator approach for quite simple 
financial derivatives. Our goal is then to use this deflator to compute best estimates for a 
life insurance contract. 

The remainder of the paper is organized as follows. Section 2 shows the deflator 
approach. Section 3 discusses the implementation of time discretization. Section 4 
presents the numerical results. Section 5 concludes. 

2. DEFLATOR APPROACH 

Before discussing and deriving the general form of deflator, we need to generate 
correlated Brownian motions for the stochastic processes in our model. In our model, we 
consider the processes of interest rates, market prices of risk, stock prices, default 
intensities and convenience yields. Sections 2 and 3 discuss the technical details of 
implementations of the deflator and time discretization. Readers who are familiar with 
stochastic deflator and time discretization could directly skip to numerical results in 
Section 4. 

2.1. GENERATE CORRELATED BROWNIAN MOTIONS 

Let the Brownian motion part of each process WESG  and the correlations matrix CESG  
among interest rates, stock prices, default intensities, and convenience yields be as 
follows.5 
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      

                          (1) 

Denote r  interest rate; S stock price; χ default intensity; γ  convenience yield; 
 , , , ,iW i r S χ γ=  Brownian motion part of each process; and  ,jk j kρ ≠  correlation 

between each two processes. To generate correlated  , , , ,iW i r S χ γ= , we require four 

                                                         
4 See, for example, Bonnin et al. (2014), Borel‐Mathurin et al. (2015), and Vedani et al. (2017). 
5 Here the correlations matrix CESG  describes the linear correlation between each two processes of their 
Brownian motion parts. For discussions of dependence structure among random variables, see, for 
example, McNeil et al. (2005) Chapter 5 and Rachev et al. (2011) Chapter 2.6.4 . 
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independent Brownian motions  0 1 2 3, , , ,iW i = . Following is the construction of WESG , 
technical details are provided in the Appendix 1 of Supplementary materials. 
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2.2. GENERAL FORM OF DEFLATOR WITH FIVE FACTORS6 

Let ( )r t , ( )B t , ( )( ), ,P t T r t , ( )S t , ( )tχ , ( )tγ , ( )D t  be processes of interest rate, 

short‐term saving, zero coupon bond of no risk with maturity T , stock price, default 
density, convenience yield, and deflator respectively.7 Denote ( )E ⋅  expectation under 

physical measure and ( )QE ⋅  expectation under risk‐neutral measure. Let a discount 

process ( )tδ  equal 
( )

0

t
r s ds

e
−∫ . For a nonnegative random variable X , we would like to 

have ( )( ) ( )QE t X E D t Xδ  =    (i.e. ( ) ( ) Q
P

dD t t
d

δ= , where 
d
d
Q
P

 is a Radon-Nikodym 

derivative). We describe the dynamics of each process in the following paragraphs, in a 
quite general Markovian framework. 

2.2.1. Dynamics of each process 

( ) ( )( ) ( )( ) ( ), , rdr t t r t dt t r t dW tα β= +                                      (3) 

( ) ( ) ( )dB t B t r t dt=                                                                      (4) 

                                                         
6 For discussions of stochastic deflator in insurance, see, for example, Dastarac and Sauveplane (2010) and 
Caja and Planchet (2011). For a reference of stochastic calculus related to Itô's lemma and Girsanov's 
Theorem, see Shreve (2004) Chapters 4 and 5. 
7 Note that research studies of pricing, default and liquidity are fundamental no matter which currency we 
use. 
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Equations 3 and 4 are the dynamics of interest rate and short‐term saving respectively, 
where ( )( ),t r tα  and ( )( ),t r tβ  are the drift term and diffusion term of interest rate 

process respectively and ( ) ( )B t r t  is the drift term of short‐term saving process. 

Let the process of zero coupon bond of no risk with maturity T  be
( )( )
( )( ) ( )( ) ( )( ) ( )

, ,
, ,

, , r

dP t T r t
t r t dt t r t dW t

P t T r t
µ σ= +  . We would like to derive the drift term 

( )( ),t r tµ  and the diffusion term ( )( ),t r tσ  for ( )( ), ,P t T r t , and the technical details are 

provided in the Appendix 2 of Supplementary materials. 

( )( )
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σ θ σ

 = + + = 
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  

 

      (5) 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

1         1
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S S S
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dS t
t dt t dW t

S t

dS t S t t dt S t t dW t
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= +

= +

= + + −

                                  (6) 

Equations 5 and 6 show the dynamics of zero coupon bond ( )( ), ,P t T r t  and stock price 

( )S t . Following the model settings in Longstaff et al. (2005), we let the processes of 

default density ( )tχ  and convenience yield ( )tγ  as follows.8 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

; 0

          

, ,

r r S

d t e f t dt t dW t e f

e f t dt t dW t t dW t t dW t

χ χ χ

χ χ χ χ χ χχ

χ χ σ χ σ

χ σ ρ χ σ ρ χ σ ρ χ

 = − + > 

′ ′ = − + + + 
   (7) 

( ) ( ) ( ) ( ) ( ) ( )1 2 3r r Sd t dW t dW t dW t dW t dW tγ γ γ χγ γγγ η ηρ ηρ ηρ ηρ′′ ′′ ′′= = + + +                                    (8) 

2.2.2. General form of deflator 

We are now able to derive the general form of deflator. First, let 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3rdD t t dt t dW t t dW t t dW t t dW t= Ω +Φ +Ψ +Γ + Ι .                                 (9) 

                                                         
8 Different from Longstaff et al. (2005), η  in our model could be negative. The regularity condition 

introduced later require η  equalling ( ) ( )
( )r

t r t
tγ

γ
ρ θ

− . If we impose η  to be positive, then rγρ  has to be negative 

(positive) when ( )tγ  is positive (negative) given ( )r t  and ( )tθ  are positive in our numerical examples 

later in Section 4. The switch of sign of rγρ  could be a further research question. 
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We would like to have ( ) ( )D t B t , ( ) ( )( ), ,D t P t T r t , ( ) ( )D t S t , ( ) ( )D t tχ , and ( ) ( )D t tγ  

be P ‐martingales. By Itô product rule again, we have 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d D t X t X t dD t D t dX t dX t dD t  = + +   for a stochastic process ( )X t . 

We derive ( )tΩ , ( )tΦ , ( )tΨ , ( )tΓ , and ( )tΙ  step by step in the Appendix 3 of 
Supplementary materials. 

Let  
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′′ ′ −

, then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3rdD t D t r t dt D t t dW t D t K t dW t D t K t dW t D t K t dW tθ Ψ Γ Ι= − − + + + .  

We have the general form of deflator ( )D t  as follows. 
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∫ ∫ ∫ ∫
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In addition, we require ( ) ( ) ( ) ( )S S rSt r t t tµ θ σ ρ= + , 

( ) ( ) ( ) ( ) ( )re r t t f t t tχ χχ χ σ ρ θ χ= + + , and 
( ) ( )

( )r

t r t
tγ

γ
η

ρ θ
= −  as regularity condition, such 

that ( ) ( )t S tδ , ( ) ( )t tδ χ , and ( ) ( )t tδ γ  are Q ‐martingales (technical details are 

provided in the Appendix 4 of Supplementary materials). As a result, ( ) 0K tΨ = , 

( ) 0K tΓ = , and ( ) 0K tΙ = . Then, ( ) ( ) ( ) ( ) ( ) ( )rdD t D t r t dt D t t dW tθ= − − . 

We could rewrite the general form of deflator ( )D t  as follows9. 

                                                         
9 The disappearance of ( )K tΨ

 term also tells us that stocks are financial derivatives. Given a rate of time 

value (growth) ( )r t  and a rate of market risk ( )tθ , the proper expected return of a stock in our model is 

equal to ( ) ( ) ( )S rSr t t tθ σ ρ+ . Also, the regularity conditions tell us more about the relations among 

interest rates, market prices of risk, stock prices, default intensities, and convenience yields in our model 
based on how we derive the deflator. For example, if we choose ( )tχ  exp  instead of ( )tχ  to derive the 

deflator, the regularity conditions will be different. 
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( ) ( ) ( ) ( ) ( ) ( )2

0 0 0

10
2

t t t

rD t D r s ds s ds s dW sθ θ = − − −  ∫ ∫ ∫exp    (10) 

3. IMPLEMENTATION OF TIME DISCRETIZATION 

To implement the deflator approach, we need to discretize time steps for each process. 
We discuss the time discretization here. We adopt the Euler method, the Milstein method, 
and the simplified Second Milstein method for time discretization in our model.10 

Denote a stochastic process ( )X t  with its dynamics 

( ) ( )( ) ( )( ) ( ), ,X X XdX t b t X t dt t X t dW tσ= +  where ( )XW t  is the Brownian part of ( )X t . 

We partition the time [ ]0,T  into N  segments with each length equalling ( )0T N− , then 

we have a time discretization [ ]( )0,N N TΠ = Π  with 0 10 Nt t t T= < < < = . 

3.1. EULER METHOD 

In Euler method, we approximate ( )X t  by tY  discretely, in which 

( )( ) ( )( )1 1 1i i X i i i i X i i i iY Y b t Y t t t Y W Wσ+ + += + − + −, , , 0 1 1, , ,i N= − , iW  is the value of a 

Brownian motion at time period i , and 0Y  is equal to ( )0X . Denote 

( )1 0i i it t t T N+∆ = − = −  and 
1, , ,i ik i k t k tW W W
+

∆ = − , 1 2 3, , ,k r= . We approximate ( )r t , ( )B t , 

( )( ), ,P t T r t , ( )S t , ( )tχ , ( )tγ , ( )D t  by the Euler method as follows. 

( ) ( )( ) ( )( ) ( ) ( ) ( )1 , then ,, , , , .r i i i i i i i r idr t t r t dt t r t dW t r r t r t t r Wα β α β+= + = + ∆ + ∆

 

( ) ( ) ( ) ( )1  then 1, .i i i idB t B t r t dt B B r t+= = + ∆  
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10 For references of time discretization, see, for example, Kloeden and Platen (1992), Iacus (2009), and 
Glasserman (2013). 
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( )
( ) ( ) ( ) ( ) 1  then 1r i i i i i r i

dD t
r t dt t dW t D D r t W

D t
θ θ+  = − − = − ∆ − ∆ ,, .

 

3.2. MILSTEIN METHOD 

Denote 
( )X

X

t x
x

σ
σ ′

∂
=

∂
,

, we approximate ( )X t  by tY  discretely as  
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Thus, we approximate ( )r t , ( )B t , ( )( ), ,P t T r t , ( )S t , ( )tχ , ( )tγ , ( )D t  by the Milstein 

method as follows. 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )2

1

 ,

1then 
2, ,

, ,

, , , , .

r

i i i i i i i r i i i r i i r i i

dr t t r t dt t r t dW t

r r t r t t r W t r t r W t

α β

α β β β+

= +

 = + ∆ + ∆ + ∆ −∆  



 

( ) ( ) ( ) ( )1  then 1i i i idB t B t r t dt B B r t+= = + ∆, .  

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )22
1 , ,

 , , , , , , , , ,

1then 1 , , , .
2

r

i i i i i i i i i r i i i r i i

dP t T r t P t T r t r t t r t t dt P t T r t t r t dW t

P P r t r t t r W t r W t

σ θ σ

σ θ σ σ+

 = + + 
  = + + ∆ + ∆ + ∆ −∆      

 


  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
1

2
, , , , 1,

21 2 2 22
, , , 1,

 1 ,

1 1
then .1 1 1

2 2

i i i

i i

S rS S rS r S rS

i i S t rS i S t rS r i S t rS i

i i

S t rS r i i S t rS i i

dS t S t r t t t dt S t t dW t S t t dW t

r t W W
S S

W t W t

θ σ ρ σ ρ σ ρ

θ σ ρ σ ρ σ ρ

σ ρ σ ρ
+

= + + + −  
  + + ∆ + ∆ + − ∆  =  

     + ∆ −∆ + − ∆ −∆        



( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 2

1 , 1, 2,

2 22 2
, 1,

 ,

then 

1 1                
4 4

r r r S

i i i i r i i i r i r i S i i i i

r r i i S i i

d t r t t t t dt t dW t t dW t t dW t

r t W W W

W t W t

χ χ χ χ χ χ χ χχ

χ χ χ χ χ χ χ χχ

χ χ χ χ

χ χ σ ρ θ χ σ ρ χ σ ρ χ σ ρ χ

χ χ χ σ ρ θ χ σ ρ χ σ ρ χ σ ρ χ

σ ρ σ ρ

+

  ′ ′= + + + + 

′ ′= + + ∆ + ∆ + ∆ + ∆

   ′+ ∆ −∆ + ∆ −∆ +
   



( ) ( )2 2
2,

1 .
4 i iW tχ χχσ ρ  ′ ∆ − ∆

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( )

1 2 3

2
2

1 , 1, 2, 3, ,

2
2

1,

 ,

1then 
2

1                
2

r r S
r

i i i
i i r r i S i i i i r i i

r i i

S i
i i

r i

t r t
d t dW t dW t dW t dW t

t

r rW W W W W t

r
W

γ γ χγ γγ
γ

γ γ χγ γγ
γ

γ

γ

γ
γ ρ ρ ρ ρ

ρ θ

γγ γ ρ ρ ρ ρ γ
ρ θ θ

ρ
γ

ρ θ

+

′′ ′′ ′′ = − + + + 

   ′′ ′′ ′′= − ∆ + ∆ + ∆ + ∆ + ∆ −∆    

 ′′
+ ∆ −  

 



( ) ( )
2 2

2 2
2, 3,

1 1 .
2 2

i i
i i i i i i i

r i r i

r r
t W t W tχγ γγ

γ γ

ρ ρ
γ γ

ρ θ ρ θ
   ′′ ′′     ∆ + ∆ −∆ + ∆ −∆              

( )
( ) ( ) ( ) ( )

( )22
1 , ,

 ,

1then 1 .
2

r

i i i i r i i i r i i

dD t
r t dt t dW t

D t

D D r t W D W t

θ

θ θ+

= − −

  = − ∆ − ∆ + ∆ −∆   


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3.3. SIMPLIFIED SECOND MILSTEIN METHOD 

We advance to multi‐dimensional case in this sub‐section. Let tX  be multi‐dimensional 

stochastic processes with the dynamics ( ) ( ), ,t t t tdX a t X dt b t X dW= + , where tX  is a 

1d ×  vector, ( ), ta t X  is a 1d ×  vector, ( ), tb t X  is a d m×  matrix, and tW  is a 1m×  vector. 

d  is the number of different stochastic processes in tX , and m  is the number of 
independent Brownian motions involved in tX . 

For a continuously twice differentiable function ( )1, df t x × , we could write ( ), tdf t X  by 
Itô formula for multi‐dimensional case as follows. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

,
1 , 1

,
1 1

, , ,1, ,
2

,
                  , ,  , ,

d d
t t t

t i t t ij
i i ji i j

d m
t T

ik t t k t t t
i k i

f t X f t X f t X
df t X a t X dt

t x x x

f t X
b t X dW b t X b t X

x

= =

= =

 ∂ ∂ ∂
= + + Σ 

∂ ∂ ∂ ∂  
∂

+ Σ =
∂

∑ ∑

∑∑
       (11) 

In equation 11, ( ),i ta t X  is the element of thi  row of ( ), ta t X , ( ),ik tb t X  is the element of 

( ), tb t X  at its thi  row and thk  column, ( ),T
tb t X  is the transpose of ( ), tb t X , ,t ijΣ  is the 

element of tΣ  at its thi  row and thj  column, and ,t kW  is the element of thk  row of tW . 

Next, we introduce operators 0L  and kL  and rewrite ( ), tdf t X  for multi‐dimensional case. 

( )
2

0
,

1 , 1

1,
2

d d

i t t ij
i i ji i j

L a t X
t x x x= =

∂ ∂ ∂
= + + Σ
∂ ∂ ∂ ∂∑ ∑                                (12) 

( )
1

, ,  1, ,
d

k
ik t

i i

L b t X k m
x=

∂
= ∀ =

∂∑                                                (13) 

( ) ( ) ( )0
,

1
, , ,

m
k

t t t t k
k

df t X L f t X dt L f t X dW
=

= +∑                          (14) 

We approximate tX  by tY  discretely by simplified Second Milstein method, where tY  is a 
1d ×  vector. For each 1, ,i d=  , 

( ) ( ) ( )( )

( ) ( ) ( )( )

20
1

1

0

1 1 1

1
2

1 1                 
2 2

, , ,

, , ,

, , ,

, , ,

m

n i n i i n ik n n k i n
k

m m m
k j

i n ik n n k ik n n j n k jk
k k j

Y Y a n Y t b n Y W L a n Y t

L a n Y L b n Y W t L b n Y W W V

+
=

= = =

= + ∆ + ∆ + ∆

 + + ∆ ∆ + ∆ ∆ − 

∑

∑ ∑∑
   (15) 

1,n iY +  is the element of thi  row of tY  in the time step 1n + . jkV  is an independent random 

variable with probabilities ( ) ( ) 1Pr = Pr =
2jk jkV t V t∆ = −∆ =  for j k< , kj jkV V= −  for j k> , 

and jkV t= ∆  for j k= . The following are the tX , ( ), ta t X , tW , and  ( ), tb t X  in our model. 
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( )
( )
( )

( )( )
( )
( )
( )
( )

( )

( )( )
( )

( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )
( )
( )
( )
( )

1

2

3

,

, , ,, ,
,  , , ,

0

r

t t t
S rS

r

t r tr t
a b tt

W tB t r tB t
W t

P t T r t r t t r t tP t T r t
W tX a t X W

S t S t r t t t W t
t r t t t t W t
t

D t r t D t

θ θ

χ χ θ

α

θθ

σ θ

θ σ ρ
χ χ σ ρ θ χ
γ

      −                 +      = = =     +            +            −  



 

( )

( )( )

( )( ) ( )( )
( ) ( )

( )
( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )
( )

( ) ( )
( )

( )

2

0, 0 0 00 00 0
0 00 0
0 00, , , 0

001 0,    
00
0
0
0000

S rSS rSt

Sr

S

rrr

t r t

t

P t T r t t r t
S t tS t tb t X

ttt
t r tt r tt r tt r t

tttt
t D t

θ

χ χχχ χχ χ

γγχγγ

γγγ

β

σ θ

σ
σ ρσ ρ

σ ρ χσ ρ χσ ρ χ
ρ γρ γρ γγ
ρ θρ θρ θθ

θ

 
 
 
 
 
 
 

−=  
 ′′ 

′′ ′′′′ − −−−
 
 

−  



 

4. NUMERICAL RESULTS 

We implement the deflator approach with three methods for time discretization and 
adopt CIR interest rate model for short‐term saving.11 In addition, we also incorporate 
parallel computing with a variance technique, antithetic sampling in our algorithm.12 In 
CIR interest rate model, ( ) ( ) ( ) ( ); , , 0r r r r r r rdr t a b r t dt r t dW t a bσ σ= − + >    . The 

process of interest rate is defined under probability measure ′Q . To convert the process 
into physical measure P , we have to consider the process of market price of risk ( )tθ . 

From Section 2.2.1, we let  ( ) ( ) ( )r rdW t t dt dW tθ= + . Thus, we could rewrite ( )dr t  in P

‐measure as ( ) ( ) ( ) ( ) ( ) ( )r r r r rdr t a b r t t r t dt r t dW tθ σ σ = − + +  . 

Let ( )tθ  also be CIR process here and Wθ  is an independent Brownian motion of 

,  ,1, 2,3iW i r= .13 The dynamics of ( )tθ  is 

                                                         
11 Here we choose CIR interest rate model because the model has a closed‐form formula for prices of 
zero‐coupon bonds of no risk. 
12 The R codes are available from the authors by inquiry. For examples of computing time, user CPU time is 
3.363 s, system CPU time is 0.286 s, and elapsed time is 15.747 s in 2500 simulations; user CPU time is 
2828.413 s, system CPU time is 161.860 s, and elapsed time is 5127.524 s in 1000000 simulations. 
13 Here we choose ( )tθ  to be CIR process, so that ( )tθ  would be positive in any time period t . 
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( ) ( ) ( ) ( ); , , 0d t a b t dt t dW t a bθ θ θ θ θ θ θθ θ σ θ σ= − + >   . 

In CIR interest rate model, the price of zero coupon bond of no risk with maturity T , 
( )( ), ,P t T r t , is equal to ( ) ( ) ( ), ,P Pr t C t T A t Te− −  where 

( ) ( )( )
( )( ) ( )( )
sinh

, 1cosh sinh
2

CIR
P

CIR CIR r CIR

T t
C t T

T t b T t

γ

γ γ γ

−
=

− + −
, 2 21 2

2CIR r rbγ σ= + , 

and  ( )
( )

( )( ) ( )( )

1
2

2

2, ln 1cosh sinh
2

rb T t

CIRr
P

r
CIR CIR r CIR

eaA t T
T t b T t

γ
σ γ γ γ

− 
 

= −  
 − + −
 

. 

Note that sinh
2

u ue eu
−−

= , cosh
2

u ue eu
−+

= , and ( )( ) ( ) ( ) ( )0 0, 0,0, , 0 P Pr C T A TP T r e− −= .14 

To calculate the option price for stock under CIR interest rate process, we use the 
formula proposed by Kim (2002), which we leave the technical detail in the Appendix 5 of 
Supplementary materials.15 In addition, notice that the drift term of stock prices in Kim 
(2002) is a constant, which is different from our model in which 

( ) ( ) ( ) ( )S S rSt r t t tµ θ σ ρ= + . Thus, our numerical results would be different from the 
value suggested by the formula in Kim (2002). 

We approximate ( )r t , ( )tθ , ( )( ), ,P t T r t  by the Euler method and the Milstein method 
as follows. 

( ) ( ) ( ) ( ) ( ) ( ) r r r r rdr t a b r t t r t dt r t dW tθ σ σ = − + +   

By Euler method, ( )1 ,i i r r i i r i i r i r ir r a b r r t r Wθ σ σ+ = + − + ∆ + ∆ ; and by Milstein method, 

( ) ( )22
1 , ,

1
4i i r r i i r i i r i r i r r i ir r a b r r t r W W tθ σ σ σ+

 = + − + ∆ + ∆ + ∆ −∆
 

. 

( ) ( ) ( ) ( ) d t a b t dt t dW tθ θ θ θθ θ σ θ= − +    

By Euler method, ( )1 ,ii i i i ia b t Wθ θ θ θθ θ θ σ θ+ = + − ∆ + ∆ ; and by Milstein method, 

( ) ( )22
1 , ,

1
4i i i i i i i ia b t W W tθ θ θ θ θ θθ θ θ σ θ σ+

 = + − ∆ + ∆ + ∆ −∆
 

. 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) , , , , , , , , rdP t T r t P t T r t r t t r t t dt P t T r t t r t dW tσ θ σ = + +  


 

                                                         
14 See, for example, Shreve (2004) Chapter 6. 
15 For references of option pricing under stochastic interest rates, see, for example, Shreve (2004) Chapter 
9, and Brigo and Mercurio (2006) Chapter 3 and Appendix B. 
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( )( ) ( )( )
( )( )

,
,

,
rP t r t

t r t
P t r t
β

σ = , we could rewrite the process as 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ), , , , r r r r rdP t T r t P t T r t r t P r t t dt P r t dW tσ θ σ = + +  . 

Note that ( ) ( ) ( ) ( ), ,, P Pr t C t T A t T
r PP C t T e− −= −  in CIR interest rate model. By Euler method, 

( )1 , , ,i ii i i i r t r i i i r t r i r iP P Pr P r t P r Wσ θ σ+ = + + ∆ + ∆ ; and by Milstein method, 

( )1 , , ,i ii i i i r t r i i i r t r i r iP P Pr P r t P r Wσ θ σ+ = + + ∆ + ∆ . 

The details of implementation of simplified Second Milstein method is provided in the 
Appendix 6 of Supplementary materials. 

4.1. EXAMPLE WITH CIR MODEL AND GEOMETRIC BROWNIAN MOTION 

The following is the settings describing the dynamics of each process in our example.16 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1,  0.01,  0.6,  0.7,  0.5,  0.1,  0.3,  0.1

0.05 0.01 0.01 ,  0 0.3

0.02 0.04 0.01 ,  0 0.02

0.2 0.2 ,  0 1

0.01

rS r r S S

r

rS S

T t

d t t dt t dW t

dr t r t dt r t dW t r

dS t S t r t t dt S t dW t S

d t r t t

χ γ χ γ χγ

θ

ρ ρ ρ ρ ρ ρ

θ θ θ θ

ρ θ

χ χ

= ∆ = = = = = = =

= − + =  

= − + =  
= + + =  

= +



( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0.01 ,  0.05

,  0 0.01

r

r

t t dt t dW t t

t r t
d t dW t

t

χ χ

γ
γ

ρ θ χ χ χ

γ
γ γ

ρ θ

  + = 

= − =

 

Let ( )0D  equal 1 in equation (10). The deflator approach tells us that for a nonnegative 

random variable ( )X t , we would have ( ) ( ) ( ) ( )E t X t E D t X tδ =      
Q . The price of a 

zero-coupon bond of no risk with maturity T  at time period T  is equal to 1. We also 
calculate the price of Put option of ( )S T  with strike K  equalling to 2. Thus, we would 
expect the following equations to hold. 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1D S S E T S T E D T S Tδ= = = =      
Q                                           (16) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )0 0 0 0 0 Q, , , , , , , ,D P T r P T r E T P T T r T E D T P T T r T E D Tδ     = = = =     
      (17) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0, 0 , , 0, 0 , ,D Put S T K Put S T K E T K S T E D T K S Tδ
+ +   = = − = −

   
Q    (18) 

We compare the numerical results with Black‐Scholes put option price, 
( )( )0, 0 , ,KimPut S T K . Tables 1, 2, and 3 show the numerical results. Figures 2, 3, 4, 5, 6, 7, 

                                                         
16 Here we provide a numerical example for the model, in which the chosen values for model settings could 
be different. In our example, there are strong positive correlations between interest rates and other factors 
(i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each 
two of stock prices, default densities, and convenience yields. Note that the Feller condition holds in our 
numerical examples, e.g. 22 0.05 0.01× > . 
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8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show the convergence of approximations to expected 
values, i.e. ( )0S , ( )( )0, , 0P T r , ( )( )0, 0 , ,KimPut S T K , and the differences between 
approximations and expected values. In general, we could see that the simplified Second 
Milstein method provides better approximations and converges faster than the Euler 
method and the Milstein method do. This could be explained by convergence order in 
which the simplified Second Milstein method has larger weak order of convergence.17 

4.2. EXAMPLE WITH CIR MODEL AND CORPORATE COUPON BOND 

Longstaff et al. (2005) assumed the independence among interest rate, default intensity, 
and convenience yield. Thus, we let 0rχρ = , 0rγρ = , 0Sχρ = , 0Sγρ = , and 0χγρ = .18 To 
accommodate the three risk factors (interest rate, default intensity, and convenience 
yield) with deflator, we let ( ) ( ) ( ) ( ) ( )dB t B t r t t t dtχ γ= + +   .19 In addition, notice again 

that the formula provided in Longstaff et al. (2005) is not directly applicable after we add 
regularity conditions in our model, which we leave technical detail of the formula in 
Longstaff et al. (2005) in the Appendix 7 of Supplementary materials. 

To implement the deflator, we look at the original definition of ( ), ,CB c Tω . 

( ) ( ) ( ) ( )( ){ } ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( )( ){ }

0 0 0

0 0

, , exp exp

                     1 exp

T t T

T t

t

CB c T E c r s s s ds dt E r s s s ds

E r s s s ds dt

ω χ γ χ γ

ω χ χ γ

   = − + + + − + +      

 + − − + +  

∫ ∫ ∫

∫ ∫
          (19) 

For the time period t  when a bond holder receives a coupon or a fraction of the par value 
of the bond (because of default), the payoff at that time period t  is equal to c  or ( )1 ω−  
multiply the par value of the bond respectively. Thus, we could implement the deflator as 
follows, the details of implementation of time discretization is provided in the Appendix 8 
of Supplementary materials. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 , , 1
T T

D CB c T E D T cE D t dt E t D t dtω ω χ   = + + −         ∫ ∫               (20)20 

Tables 4 and 5 show the numerical results. Figures 18, 19, 20, 21, 22, 23, 24, and 25 show 
the convergence of approximations and the differences between approximations and 
expected values. 

                                                         
17 The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second 
Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6. 
18 We let 0i jdW dW =  here, i.e. pairwise independence. 
19 Recall that ( )  dD t Discount factor

d
= ⋅

Q
P

, ( )D t  could not be the same given different discount factors 

with the same Radon‐Nikodym derivative, i.e. different discount factors imply different risk‐neutral worlds. 

20  We approximate ( )
0

T
D t dt∫  by ( )1

0 2
i i

i

T
t t

i
t

D D
t+

=

+
∆∑ ; similarly, we approximate ( ) ( )

0

T
t D t dtχ∫  by 

( )1 1

0 2
i i i i

i

T
t t t t

i
t

D D
t

χ χ
+ +

=

+
∆∑ . 
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4.3. COMPARISONS OF NUMERICAL RESULTS WITH ANTITHETIC SAMPLING AND DISCUSSION 

Table 6 shows the differences of variances with/without antithetic sampling. Given the 

variance of a random variable X , ( )Var X , the variance of 
1 X
n

 is equal to ( )2

1 Var X
n

. 

Suppose the risk factors and parameters involved are constant at time period t , ( )D t  is 

lognormal distributed. With the sample size being equal to n , the mean of ( )D t , 

( )E D t   , equals ( )
 

1
n trials

D t
n ∑ ; and its variance ( )( )Var E D t    is equal to ( )( )1 Var D t

n
. 

We could calculate its 95% confidence interval as follows.21 

( )
( )( ) ( )( ) ( )( )

( )

2

95% . . 12 2 1d f n

Var E D tVar E D t Var E D t
CI E D t t

n n= −

            = + ± +   −
   (21) 

Here . . 1d f nt = −  is the t  statistics with degree of freedom equalling 1n − . For example, in our 
numerical results of Second Milstein method with antithetic sampling and sample size 
equalling 2500, the 95% confidence interval of ( )E D T    is equal to 

[ ]0.9714838,0.9718523 . 

Suppose the weights of investment in a portfolio on stock, zero coupon bond of no risk 
with maturity T , and corporate coupon bond equal Sw , Pw , and CBw  respectively. 
Theoretically, the variance of the portfolio is equal to 

( )2

, , , , , ;
( ) 2 ,i j k

i S P CB j k S P CB j k
w Var i w w Cov j k

= = ≠

+∑ ∑ , where ( ),Cov j k  is the covariance between 

j  and k . Given stochastic differential equations of two stochastic processes dX  and dY , 
we could calculate ( ),Cov X Y  by dXdY . The multiplication of lognormal random 
variables is again lognormal distributed, and the sum of lognormal random variables most 
likely behaves as either normal or lognormal distributions (so that we could still calculate 
the confidence interval).22 As a numerical example, we let Sw , Pw , and CBw  be 0.15, 0.65, 
and 0.2 respectively. Figure 26 shows the comparison of histograms with/without 
antithetic sampling of the portfolio. 

However, the risk factors and parameters involved are not constant. For example, ( )r t ,  

( )tθ  and ( )tχ  in our numerical examples are not constant. In addition, ( )r t  rises sharply 
over long time periods as we could see in Figures 27. By switching the coefficients in the 
drift term of ( )tθ , ( )0.01 0.05 tθ− , we could alleviate this situation observed in Figure 28. 

Moreover, we observe negative values of ( )D t  while implementing time discretization 
over long time periods, which could result from discretization bias and no differentiability 
of Brownian motion.23 For example, Figures 29 and 30 show the instability of deflator in 

                                                         
21 See, for example, Olsson (2005). 
22 See, for example, Dufresne (2004), Lo (2012), and Gulisashvili and Tankov (2016). 
23 See, for example, Glasserman (2013) Chapter 6.3.3, and Mörters and Peres (2010) Chapter 1.3. 
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Second Milstein method with 10000 simulations after projecting longer than 15 years. 
Further study would be to improve the time discretization methods for longer time 
periods and investigate the long‐term behaviours of  ( )r t , ( )S t , ( )tχ , ( )tγ , and ( )D t . 

5. CONCLUSION 

In this paper, we derive the general form of deflator for four risk factors: interest rates, 
stock prices, default intensities, and convenience yields and then we find the regularity 
conditions for the deflator. We examine the deflator with different financial derivatives, 
comparing the numerical results with values calculated from closed‐form formulas. Our 
results indicate the reliability in statistics of the deflator for financial asset pricing, if the 
time discretization of the underlying stochastic processes is done carefully. 

Except the benefit that we could compute best estimate value by simply averaging the 
multiplication of deflator and projected cash flows, the fact that we observe data only in 
physical world would provide the motivation for us to use deflator for the convenience to 
estimate parameters of “reaction functions” in an ALM projection model as in Chapter 4 
of Laurent et al. (2016). 

Further work would be to improve the time discretization methods for longer time 
periods and compare the best estimate values of a life insurance contract by the deflator 
approach under physical measure and risk‐neutral measure. 
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7. TABLES AND FIGURES 
Tab. 1. Stock 

# of Simulations ( ) ( )[ ]E D T S T  ( )0S  
Euler method 

2500 0.997343479989509  
 
 
1 

5000 0.998142676642770 
10000 1.001640716236570 

100000 0.999497123579330 
250000 0.999728283545952 
500000 0.999422542995910 
1000000 0.999875105997983 

Milstein method 
2500 0.997899080544132  

 
 
1 

5000 0.998952023077794 
10000 1.002510110002660 

100000 0.999657036176353 
250000 0.999865720758998 
500000 0.999200134486620 
1000000 0.999777674476404 

Second Milstein method 
2500 1.01190314179327  

 
 
1 

5000 1.00792790879748 
10000 1.00428716519342 

100000 1.00219200434419 
250000 1.00012829759949 
500000 1.00013559893822 
1000000 1.00005213983922 

Tab. 2. Zero coupon bond of no risk with maturity T  

# of Simulations ( )[ ]E D T  ( ) ( )( )[ ], ,E D T P T T r T  ( )( )0, , 0P T r  
Euler method 

2500 0.967646653771768 0.967552873529761  
 
 

0.970957220487724 

5000 0.968545566976094 0.968451758793272 
10000 0.971055574970586 0.970961666405972 

100000 0.969964099445665 0.969870204097554 
250000 0.970861713011257 0.970767802364827 
500000 0.970697882733399 0.970603984186568 

1000000 0.971001216710056 0.970907309007362 
Milstein method 

2500 0.969203041882130 0.969109232549717  
 
 

0.970957220487724 

5000 0.968364554353440 0.968270761261484 
10000 0.972015353313569 0.971921436693164 

100000 0.969796855984494 0.969702984763468 
250000 0.970693248836965 0.970599353426790 
500000 0.970367620896040 0.970273749033845 

1000000 0.970880147642130 0.970786256114490 
Second Milstein method 

2500 0.971985461477127 0.971985482351078  
 
 

0.970957220487724 

5000 0.973386426354929 0.973386494993151 
10000 0.970979266245196 0.970979241795446 

100000 0.972928673921800 0.972928710489062 
250000 0.970544559568911 0.970544535585851 
500000 0.970579400873414 0.970579381127470 

1000000 0.970630578417248 0.970630560272500 
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Tab. 3. Put option 

# of Simulations ( ) ( )( )E D T K S T
+

−    Kim (2002) 
Euler method 

2500 0.938055311357493  
 
 

0.950345063621439 

5000 0.939027520135428 
10000 0.940530146070407 
100000 0.940465997679685 
250000 0.942027252944620 
500000 0.942002187823708 

1000000 0.942158826970994 
Milstein method 

2500 0.940598627190120  
 
 

0.950345063621439 

5000 0.937876954200679 
10000 0.941578281443178 
100000 0.939970483806778 
250000 0.941555001874763 
500000 0.941567913811375 

1000000 0.942015368307321 
Second Milstein method 

2500 0.932067781160989  
 
 

0.950345063621439 

5000 0.938862519526287 
10000 0.937700180823368 
100000 0.943694035752038 
250000 0.940993887836878 
500000 0.941059303482625 

1000000 0.941246115302564 
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Tab. 4. Stock under Corporate coupon bond setting 

# of Simulations ( ) ( )[ ]E D T S T  ( )0S  
Euler method 

2500 0.997308347973866  
 
 
1 

5000 0.997261683067088 
10000 1.001817599261470 
100000 0.999470030668423 
250000 0.999688899496345 
500000 0.999340679958565 

1000000 0.999767133513361 
Milstein method 

2500 0.995307106022021  
 
 
1 

5000 0.997994493796620 
10000 1.001446403686810 
100000 0.999493388467998 
250000 0.999843236184384 
500000 0.999179257706644 

1000000 0.999732523574961 
Second Milstein method 

2500 1.01363445611378  
 
 
1 

5000 1.00677441206457 
10000 1.00507852320876 
100000 1.00213042615806 
250000 1.00040332127820 
500000 1.00021789790890 

1000000 1.00002871562762 
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Tab. 5. Corporate coupon bond 

# of Simulations Deflator Longstaff et al. (2005) 
Euler method 

2500 1.03001393884536  
 
 

1.03313616115971 

5000 1.02907100520235 
10000 1.03312948158384 
100000 1.03162033904634 
250000 1.03255241573140 
500000 1.03237954508927 

1000000 1.03271899062813 
Milstein method 

2500 1.02572713722014  
 
 

1.03313616115971 

5000 1.02914390668280 
10000 1.03349796386179 
100000 1.03135227993609 
250000 1.03247145621524 
500000 1.03214895930589 

1000000 1.03261933018597 
Second Milstein method 

2500 1.03584708542322  
 
 

1.03313616115971 

5000 1.03243391095283 
10000 1.03330315641903 
100000 1.03468566679080 
250000 1.03243619762781 
500000 1.03234018373030 

1000000 1.03229088096527 
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Tab. 6. Comparisons of numerical results with antithetic sampling 

Sample size 1000000n =  
 ( )D T  ( ) ( )D T S T  ( ) ( )( ), ,D T P T T r T  ( ) ( )( )D T K S T

+
−  CB 

Euler method 


originalVar  0.10475640 0.06963731 0.10474750 0.22261710 0.10362130 



antitheticVar  0.05239637 0.03489372 0.05239189 0.11126300 0.05180637 

Milstein method 


originalVar  0.10471860 0.06951604 0.10470970 0.22267030 0.10350410 



antitheticVar  0.05241453 0.03484841 0.05241010 0.11139420 0.05179191 

Second Milstein method 


originalVar  0.10480380 0.06953398 0.10480950 0.22269700 0.10346770 



antitheticVar  0.05240066 0.03474529 0.05240348 0.11152750 0.05174220 

Portfolio with Second Milstein method 


originalVar  0.04709286 


antitheticVar  0.02355112 

 
Fig. 2 -  Deflator multiplies stock 
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Fig. 3 -  Deflator multiplies stock, number of simulations less than 10000 

 
Fig. 4 -  Differences between approximation and expected value of multiplication of deflator and stock 
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Fig. 5 -  Differences between approximation and expected value of multiplication of deflator and stock, 
number of simulations less than 10000 

 
Fig. 6 -  Zero coupon bond, ( )E D T    
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Fig. 7 -  Zero coupon bond, ( )E D T   , number of simulations less than 10000 

 
Fig. 8 -  Differences between approximation and expected value of Zero coupon bond, ( )E D T    
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Fig. 9 -  Differences between approximation and expected value of Zero coupon bond, ( )E D T   , 

number of simulations less than 10000 

 
Fig. 10 -  Zero coupon bond, ( ) ( )( ), ,E D T P T T r T    
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Fig. 11 -  Zero coupon bond, ( ) ( )( ), ,E D T P T T r T   , number of simulations less than 10000 

 
Fig. 12 -  Differences between approximation and expected value of Zero coupon bond, ( ) ( )( ), ,E D T P T T r T  
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Fig. 13 -  Differences between approximation and expected value of Zero coupon bond, ( ) ( )( ), ,E D T P T T r T  
, 

  number of simulations less than 10000 

 
Fig. 14 -  Put option, ( ) ( )( )E D T K S T

+ −
 
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Fig. 15 -  Put option, ( ) ( )( )E D T K S T
+ −

 
, number of simulations less than 10000 

 
Fig. 16 -  Differences between approximation and expected value of Put option in Kim (2002) 
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Fig. 17 -  Differences between approximation and expected value of Put option in Kim (2002),  
  number of simulations less than 10000 

 
Fig. 18 -  Deflator multiplies stock under Corporate coupon bond setting 
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Fig. 19 -  Deflator multiplies stock under Corporate coupon bond setting, 
  number of simulations less than 10000 

 
Fig. 20 -  Differences between approximation and expected value of multiplication of deflator and stock 

  under Corporate coupon bond setting 
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Fig. 21 -  Differences between approximation and expected value of multiplication of deflator and stock 
  under Corporate coupon bond setting, number of simulations less than 10000 

 
 

Fig. 22 -  Corporate coupon bond 
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Fig. 23 -  Corporate coupon bond, number of simulations less than 10000 

 
Fig. 24 -  Differences between approximation and expected value of Corporate coupon bond 

  in Longstaff et al. (2005) 
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Fig. 25 -  Differences between approximation and expected value of Corporate coupon bond 
  in Longstaff et al. (2005), number of simulations less than 10000 

 
Fig. 26 -  Histogram comparison with antithetic sampling 
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Fig. 27 -  Interest rate over long time periods 

 
Fig. 28 -  Interest rate over long time periods, alleviated 
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Fig. 29 -  Deflator multiplies stock over long time periods 

 
Fig. 30 -  Deflator multiplies stock over long time periods, 16 years 
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