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Abstract 

In this paper, we implement a stochastic deflator with four economic and financial risk factors: interest 
rates, stock prices, default intensities, and convenience yields. We examine the deflator with different 
financial assets, such as stocks, zero‐coupon bonds, vanilla options, and corporate coupon bonds. Our 
numerical results show the reliability of the deflator approach in pricing financial derivatives. 
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1. INTRODUCTION 

The Arrow‐Debreu model of general equilibrium introduced the existence of an 
equilibrium in which the allocation of consumption and production is Pareto optimal with 
a system of prices for contingent commodities.1 Their works have inspired tremendous 
research in fields of macroeconomics, financial economics, and asset pricing theory. 
Based on the concept of Arrow‐Debreu securities, researchers had developed the 
fundamental theorems of asset pricing, which the second theorem tells us that an 
arbitrage‐free market is complete if and only if the equivalent martingale measure is 
unique.2 

In the case of Brownian diffusion, the Girsanov's Theorem enables us to change 
probability measure from a physical world to a risk‐neutral world. Under risk‐neutral 
measure, we have a closed‐form solution for Black‐Scholes options pricing model. 
However, we wouldn't always have analytical solutions for various classes of stochastic 
processes, which motivates us to study numerical methods for approximating solutions. 

Due to the complicatedness of life insurance contracts and interactions among economic 
and financial risk factors, a reliable tool for asset/liability management (ALM) and 
calculations of reserves would be demanded. In practice, “economic scenario 
generators” assist insurers in pricing insurance contracts and managing long‐term risk3. 

The usual pricing scheme is as follows. 

Fig. 1 -  Calculating the best estimate reserve for a life insurance contract 

 

Usually, economic scenarios are computed under a risk-neutral measure; the actualization 
process is then simply the risk-free rate and it makes the calculation quite easy, 
numerically speaking. 

But, we like to point out that many “unusual” scenarios occur (e.g. 10‐year rate 50%) 
under risk‐neutral measure, which increases the difficulty to justify the calibration of 
“reaction functions” embedded in the ALM‐projection model used to compute cash 
flows. For example, the lapse rate is often a function of the difference between the 
revalorization rate of the contract and a reference rate; the parameters are calibrated 
observing “usual” values of economic parameters but may become difficult later to 

                                                        

1 See, for example, Arrow and Debreu (1954), Geanakoplos (1989), and Mas‐Colell et al. (1995) Chapter 19. 
2 See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer 
(1994), and Shreve (2004) Chapter 5.4. 
3 See, for example, Varnell (2011), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016). 

Economic Scenario Generators 
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justify for atypical values of economic risk factors. We could use a stochastic deflator in a 
way to address this problem, using only scenarios under physical measure4. But the 
numerical calculations become tedious due to the complexity of the deflator, mixing a 
risk-free rate process and a density of change of measure between physical and risk-
neutral measure. 

In this paper, we apply the deflator approach initiated by Dastarac and Sauveplane (2010) 
in the same context and include the processes of default and convenience yield from 
Longstaff et al. (2005) to calculate prices for financial derivatives. We compare the values 
calculated from the deflator approach with the values suggested by analytical formulas in 
simple cases. Our numerical results show the reliability of the deflator approach for quite 
simple financial derivatives. Our ultimate goal is then to use this deflator to compute best 
estimates for a life insurance contract, that will be done in a further work. 

The remainder of the paper is organized as follows. Section 2 shows the deflator 
approach. Section 3 discusses the implementation of time discretization. Section 4 
presents the numerical results. Section 5 concludes. 

2. DEFLATOR APPROACH 

Before discussing and deriving the general form of deflator, we need to generate 
correlated Brownian motions for the processes we include in our model. In our model, we 
consider the processes of interest rates, market prices of risk, stock prices, default 
intensities, and convenience yields. Sections 2 and 3 discuss the technical details of 
implementations of the deflator and time discretization. Readers who familiar with 
stochastic deflator and time discretization could directly skip to numerical results in 
Section 4. 

2.1. GENERATE CORRELATED BROWNIAN MOTIONS 

Let the Brownian motion part of each process WESG  and the correlations matrix C
ESG

 

among interest rates, stock prices, default intensities, and convenience yields be as 
follows. 
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Denote r  interest rate; S stock price;  default intensity;   convenience yield; 

 , , , ,
i

W i r S  
 Brownian motion part of each process; and 

 ,
jk

j k 
 correlation 

between each two processes. In order to generate correlated 
 , , , ,

i
W i r S  

, we 

require four independent Brownian motions 
 0 1 2 3, , , ,

i
W i 

. Following is the construction 

                                                        

4 See, for example, Bonnin et al. (2014), Borel‐Mathurin et al. (2015), and Vedani et al. (2017). 
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of WESG , details of the calculations is provided in the Appendix 1 of Supplementary 

materials. 
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2.2. GENERAL FORM OF DEFLATOR WITH FIVE FACTORS5 

Let  r t ,  B t ,   , ,P t T r t ,  S t ,  t ,  t ,  D t  be processes of interest rate, 

short‐term saving, zero coupon bond of no risk with maturity T , stock price, default 

density, convenience yield, and deflator respectively. Denote  E   expectation under 

physical measure and  QE   expectation under risk‐neutral measure. Let a discount 

process  t  equal 
 

0

t

r s ds

e
 . For a nonnegative random variable X , we would like to have 

    QE t X E D t X      (i.e.    
Q

P

d
D t t

d
 ). We describe the dynamics of each 

process in the following paragraphs, in a quite general Markovian framework. 

2.2.1. Dynamics of each process 

         , ,
r

dr t t r t dt t r t dW t                                     (3) 

     dB t B t r t dt                                                                      (4) 

Equations 3 and 4 are the dynamics of interest rate and short‐term saving respectively, 

where   ,t r t  and   ,t r t  are the drift term and diffusion term of interest rate 

process respectively and    B t r t  is the drift term of short‐term saving process. 

                                                        

5 For discussions of stochastic deflator in insurance, see, for example, Dastarac and Sauveplane (2010) and 
Caja and Planchet (2011). For a reference of stochastic calculus related to Itô's lemma and Girsanov's 
Theorem, see Shreve (2004) Chapters 4 and 5. 
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Let the process of zero coupon bond of no risk with maturity T  be

  
  

       
, ,

, ,
, ,

r

dP t T r t
t r t dt t r t dW t

P t T r t
   . We would like to derive the drift term 

  ,t r t  and the diffusion term   ,t r t  for   , ,P t T r t . Since   , ,P t T r t  is a 

function of t  and  r t , by Itô formula, we have 
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are the first and second partial derivative of   , ,P t T r t  with respect to  r t . Thus, the 

dynamics of   , ,P t T r t  could also be written as 

             21

2
, , , , ,

t r rr r r
dP t T r t P t r t P P t r t dt P t r t dW t  

 
    
 

, 

t

P
P

t





, r

P
P

r





, 
2

2rr

P
P

r





. Comparing these two representations of   , ,dP t T r t , we 

have         , , , ,
r

P t T r t t r t P t r t  . As a result, we could calculate   ,t r t  by 
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, ,

r
P t r t

P t T r t
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Next step is to derive the drift term   ,t r t .  t  equals 
 

0
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r s ds

e
 ,  I t  equals 

 
0

t

r s ds , and   xf x e . Then,  dI t  is equal to  r t dt ,    f x f x   , and 

   f x f x  . By Itô formula again, 
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Let      2
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(6) 

Equations 5 and 6 show the dynamics of zero coupon bond   , ,P t T r t  and stock price 

 S t . Following the model settings in Longstaff et al. (2005), we let the processes of 

default density  t  and convenience yield  t  as follows. 
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; 0
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6 We could verify this by the intuition of change of measure with  t  and the solution of     , ,t P t T r t  

being exponential functions. Alternatively, we could plug   ,t r t  back to     , ,d t P t T r t 
 

 to verify 

the statement. 
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           1 2 3
 0,

r r S
d t dW t dW t dW t dW t dW t                                        

(8) 

We are now able to derive the general form of deflator. First, let 
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we have the general form of deflator  D t  as follows. 
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(10) 

3. IMPLEMENTATION OF TIME DISCRETIZATION 

In order to implement the deflator approach, we need to discretize time steps for each 
process. We discuss the time discretization here. We adopt the Euler method, the Milstein 
method, and the simplified Second Milstein method for time discretization in our model.7 

                                                        

7 For references of time discretization, see, for example, Kloeden and Platen (1992), Iacus (2009), and 
Glasserman (2013). 
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Denote a stochastic process  X t  with its dynamics 

         , ,
X X X

dX t b t X t dt t X t dW t   where  X
W t  is the Brownian part of  X t . 

We partition the time  0,T  into N  segments with each length equaling  0T N , then 

we have a time discretization   0,
N N
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0 1
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Thus, we approximate  r t ,  B t ,   , ,P t T r t ,  S t ,  t ,  t ,  D t  by the Milstein 

method as follows. 
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3.3. SIMPLIFIED SECOND MILSTEIN METHOD 

We advance to multi‐dimensional case in this sub‐section. Let tX  be multi‐dimensional 

stochastic processes with the dynamics    , ,t t t tdX a t X dt b t X dW  , where tX  is a 

1d   vector,  , ta t X  is a 1d   vector,  , tb t X  is a d m  matrix, and tW  is a 1d   vector. 

d  is the number of different stochastic processes in tX , and m  is the number of 

independent Brownian motions involved in tX . 

For a continuously twice differentiable function  1, df t x  , we could write  , tdf t X  by 

Itô formula for multi‐dimensional case as follows. 
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df t X L f t X dt L f t X dW


                           (14) 

We approximate tX  by tY  discretely by simplified Second Milstein method, where tY  is a 

1d   vector. For each 1, ,i d , 

      

      

20

1

1

0

1 1 1

1

2

1 1
                 

2 2

, , ,

, , ,

, , ,

, , ,

m

n i n i i n ik n n k i n

k

m m m
k j

i n ik n n k ik n n j n k jk

k k j

Y Y a n Y t b n Y W L a n Y t

L a n Y L b n Y W t L b n Y W W V





  

      

         



 

   (15) 

1,n iY   is the element of thi  row of tY  in the time step 1n . jkV  is an independent random 

variable with probabilities    
1

Pr = Pr =
2

jk jkV t V t     for j k , kj jkV V   for j k , 

and jkV t   for j k . The following are the tX ,  , ta t X , tW , and   , tb t X  in our model. 
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    (16) 

4. NUMERICAL RESULTS 

We implement the deflator approach with three methods for time discretization and 
adopt CIR interest rate model for short‐term saving.8 In addition, we also incorporate 
parallel computing with a variance technique, antithetic sampling in our algorithm.9 In CIR 

interest rate model,        ; , , 0r r r r r r rdr t a b r t dt r t dW t a b       . The process of 

interest rate is defined under probability measure Q . In order to convert the process 

into physical measure P , we have to consider the process of market price of risk  t . 

From Section 2.2.1, we let       r rdW t t dt dW t  . Thus, we could rewrite  dr t  in P

‐measure as            r r r r rdr t a b r t t r t dt r t dW t      
 

. 

Let  t  also be CIR process here and W  is an independent Brownian motion of 

,  ,1,2,3iW i r .10 The dynamics of  t  is 

       ; , , 0d t a b t dt t dW t a b                . 

In CIR interest rate model, the price of zero coupon bond of no risk with maturity T , 

  , ,P t T r t , is equal to      , ,P Pr t C t T A t T
e
   where 

 
  

     

sinh
,

1
cosh sinh

2

CIR

P

CIR CIR r CIR

T t
C t T

T t b T t



  




  

, 2 21
2

2
CIR r rb   , 

                                                        

8 Here we choose CIR interest rate model because the model has a closed‐form formula for prices of 
zero‐coupon bonds of no risk. 
9 The R codes are available from the authors by inquiry. 
10 Here we choose  t  to be CIR process, so that  t  would be positive in any time period t . 
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and   
 

     

1

2

2

2
, ln

1
cosh sinh

2

rb T t

CIRr
P

r
CIR CIR r CIR

ea
A t T

T t b T t



   


 
 

   
   
 

. 

Note that sinh
2

u ue e
u


 , cosh

2

u ue e
u


 , and         0 0, 0,

0, , 0 P Pr C T A T
P T r e

 
 .11 

To calculate the option price for stock under CIR interest rate process, we use the 

formula proposed by Kim (2002).12 In Kim (2002), the process of CIR interest rate  dr t  

under probability measure Q  is as follows 

         Kim Kim Kim Kim Kim Kim rdr t r t dt r t dW t                         (13) 

Let 1Kim  , then  ,  ,  Kim r Kim r r Kim r r rb a b          . Thus, we could calculate 

the price of an European call option of stock S with strike K  and maturity T  at time zero, 

  0, 0 , ,KimCall S T K . 

          

          

       

*

1 2
0

*

0 1 2 2
0

*

1 2 1 1 2
0

0, 0 , , 0 exp

                                     0 exp

                                     0 exp

T

Kim t

T

Kim t S

T

Kim t

Call S T K S d K r dt d

C S d K r dt d T d

C d S d d K r dt d

   

  

     
  

     
  

    
  





   ,Kimo 

 

where     and     are the cumulative density function and probability density function 

of the standard normal distribution respectively; 

 *

0 1Kim Kimt t

t Kimr r e e
  

   ,    
 0*

0
exp exp 1 Kim

T
TKim

t Kim

Kim

r
r dt e T






 
     

 
 ; 

   
 

2
0

1

01
ln 1

2
KimTKim S

Kim

KimS

S r
d e T T

KT

 




 
     

 
, 2 1 Sd d T  ; 

 0 0

1 1 1
1

Kim Kim

Kim

T T
T

Kim Kim

Kim KimKim S

e e
C r Te T

T

 
 

  

 


     
        

    
; 

                                                        

11 See, for example, Shreve (2004) Chapter 6. 
12 For references of option pricing under stochastic interest rates, see, for example, Shreve (2004) Chapter 
9, and Brigo and Mercurio (2006) Chapter 3 and Appendix B. 
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. 

By Put‐Call parity,        00, 0 , , 0, 0 , , 0

T

ur du

Call S T K Ke Put S T K S
   . We could 

then calculate the price of the European put option at time zero   0, 0 , ,Put S T K  as 

       0, 0 , , 0, , 0 0Call S T K KP T r S  . 

We approximate  r t ,  t ,   , ,P t T r t  by the Euler method and the Milstein method 

as follows. 

            r r r r rdr t a b r t t r t dt r t dW t      
 

 

By Euler method,  1 ,i i r r i i r i i r i r ir r a b r r t r W         ; and by Milstein method, 

   
22

1 , ,

1

4
i i r r i i r i i r i r i r r i ir r a b r r t r W W t   

          
 

. 

        d t a b t dt t dW t            

By Euler method,  1 ,ii i i i ia b t W              ; and by Milstein method, 

   
22

1 , ,

1

4
i i i i i i i ia b t W W t          

         
 

. 

                     , , , , , , , , rdP t T r t P t T r t r t t r t t dt P t T r t t r t dW t      
 

  
  
  

,
,

,

rP t r t
t r t

P t r t


  , we could rewrite the process as 

               , , , , r r r r rdP t T r t P t T r t r t P r t t dt P r t dW t     
 

. 

Note that        , ,
, P Pr t C t T A t T

r PP C t T e
 

   in CIR interest rate model. By Euler method, 

 1 , , ,i ii i i i r t r i i i r t r i r iP P Pr P r t P r W         ; and by Milstein method, 

 1 , , ,i ii i i i r t r i i i r t r i r iP P Pr P r t P r W         . 

The details of implementation of simplified Second Milstein method is provided in the 
Appendix 3 of Supplementary materials. 
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4.1. EXAMPLE WITH CIR MODEL AND GEOMETRIC BROWNIAN MOTION 

The following is the settings describing the dynamics of each process in our example.13 

         

         

         

   

1,  0.01,  0.6,  0.7,  0.5,  0.1,  0.3,  0.1

0.05 0.01 0.01 ,  0 0.02

0.02 0.04 0.01 ,  0 0.02

0.1 0.2 ,  0 1

0.05 0.1 0.1

rS r r S S

r

S

T t

d t t dt t dW t

dr t r t dt r t dW t r

dS t S t dt S t dW t S

d t t dt

    



     

   

 

        

     

     

  

          

     

,  0.05

0.1 ,  0 0.2

t dW t t

d t dW t





 

 



 

 

We could see in equation (12) that  0D  is equal to 1. The deflator approach tells us that 

for a nonnegative random variable  X t , we would have        E t X t E D t X t       
Q

. The price of a zero coupon bond of no risk with maturity T  at time period T  is equal to 

1. We also calculate the price of Put option of  S T  with strike K  equaling to 2. Thus, we 

would expect the following equations to hold. 

             0 0 0 1D S S E T S T E D T S T         
Q                                          (14) 

                   0 0, , 0 0, , 0 , , , ,D P T r P T r E T P T T r T E D T P T T r T E D T            
Q      (15) 

                     0 0 , 0 0 , 0D Put r S Put r S E T K S T E D T K S T
        

   
Q   (16) 

We compare the numerical results with Black‐Scholes put option price,     0 , 0Put r S . 

Tables 1, 2, and 3 show the numerical results. Figures 2, 3, 4, 5, 6, 7, 8, and 9 show the 

convergence of the approximations to expected value, i.e.  0S ,   0, , 0P T r , 

  0, 0 , ,Put S T K . We could see that the simplified Second Milstein method provides 

better approximations and converges faster than the Euler method and the Milstein 
method do. This could be explained by convergence order in which the simplified Second 
Milstein method has larger weak order of convergence.14 

4.2. EXAMPLE WITH CIR MODEL AND CORPORATE COUPON BOND 

Longstaff et al. (2005) assumed the independence among interest rate, default intensity, 
and convenience yield. Thus, we let 0r  , 0r  , 0S  , 0S  , and 0  .15 To 

accommodate the three risk factors (interest rate, default intensity, and convenience 

                                                        

13 Here we provide a numerical example for the model, in which the chosen values for model settings could 
be different. In our example, there are strong positive correlations between interest rates and other factors 
(i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each 
two of stock prices, default densities, and convenience yields. 
14 The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second 
Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6. 
15 We let 0i jdW dW   here, i.e. pairwise independence. 
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yield) with deflator, we let          dB t B t r t t t dt      .16 The following is the 

formula provided in Longstaff et al. (2005). 
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0 0
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                     exp 0, , 0
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2

2

2 2

,  ,

2

e

f f

f





 

 

  

 



  

 

 

In order to implement the deflator, we look at the original definition of  , ,CB c T . 

                 
         

0 0 0

0 0

, , exp exp

                     1 exp

T t T

T t

t

CB c T E c r s s s ds dt E r s s s ds

E r s s s ds dt

    

   

          
      

     
  

  

 

     (17) 

For the time period t  when a bond holder receives a coupon or a fraction of the par value 
of the bond (because of default), the payoff at that time period t  is equal to c  and 

 1   respectively. Thus, we could implement the deflator as follows. 

           
0 0

0 , , 1
T T

tD CB c T E D T cE D t dt E D t dt                                 (18) 

Table 4 and Figures 10 and 11 show the numerical results and convergence of the 
approximations. 

4.3. COMPARISONS OF NUMERICAL RESULTS WITH ANTITHETIC SAMPLING 

Table 5 shows the differences of variances with/without antithetic sampling. Given the 

variance of a random variable X ,  Var X , the variance of 
1

X
n

 is equal to  
1

Var X
n

. In 

our model,  D t  is lognormal distributed. With the sample size being equal to n , the 

                                                        

16 Recall that    
d

D t Discount factor
d

 
Q

P
,  D t  could not be the same given different discount factors with 

the same Radon‐Nikodym derivative. 
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mean of  D t ,  E D t   , equals  
 

1

n trials

D t
n
 ; and its variance   Var E D t    is equal to 

  
1

Var D t
n

. We could calculate its 95% confidence interval as follows.17 

 
        

 

2

95% . .
2 2 1

d f n

Var E D tVar E D t Var E D t
CI E D t t

n n


                  
   (19) 

Here . .d f nt   is the t  statistics with degree of freedom equalling n . For example, in our 

numerical results of Second Milstein method with antithetic sampling and sample size 

equalling 2500, the 95% confidence interval of  E D T    is equal to  0.95192,0.95559 . 

Suppose the weights of investment in a portfolio on stock, zero coupon bond of no risk 

with maturity T , and corporate coupon bond equal Sw , Pw , and CBw  respectively. 

Theoretically, the variance of the portfolio is equal to 

 2

, , , , , ;

( ) 2 ,i j k

i S P CB j k S P CB j k

w Var i w w Cov j k
  

  , where  ,Cov j k  is the covariance between 

j  and k . Given stochastic differential equations of two stochastic processes dX  and dY

, we could calculate  ,Cov X Y  by dXdY . The multiplication of lognormal random 

variables is again lognormal distributed, and the sum of lognormal random variables most 
likely behaves as either normal or lognormal distributions (so that we could still calculate 

the confidence interval).18 As a numerical example, let Sw , Pw , and CBw  be 0.15, 0.65, and 

0.2 respectively. Figure 12 shows the comparison of histograms with/without antithetic 
sampling of the portfolio. 

5. CONCLUSION 

In this paper, we derive the general form of deflator for four risk factors: interest rates, 
stock prices, default intensities, and convenience yields. We examine the deflator with 
different financial derivatives, comparing the numerical results with values calculated 
from closed‐form formulas. 

Our results indicate the reliability of the deflator for financial asset pricing, if the time 
discretization of the underlying stochastic processes is done carefully. 

Except the benefit that we could compute best estimate value by simply averaging the 
multiplication of deflator and projected cash flows, the fact that we observe data only in 
physical world would provide the motivation for us to use deflator for the convenience to 
estimate parameters of “reaction functions” in an ALM projection model as in Chapter 4 
of Laurent et al. (2016). 

Further work would be to implement the deflator and compare the best estimate values 
of a life insurance contract under physical measure and risk‐neutral measure. 

 

                                                        

17 See, for example, Olsson (2005). 
18 See, for example, Dufresne (2004), Lo (2012), and Gulisashvili and Tankov (2016). 
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7. TABLES AND FIGURES 

Tab. 1. Stock 

# of Simulations     E D T S T   0S  

Euler method 
2500 0.600069755272291  

 
 
1 

5000 0.393586742835856 
10000 0.37903361971978 

100000 0.657324756344535 
250000 0.843102951645603 
500000 0.770462054324114 
1000000 1.29863524218499 

Milstein method 
2500 0.370434390825238  

 
 
1 

5000 0.398022925866662 
10000 0.395876767138054 

100000 0.679818876796659 
250000 0.771340365068307 
500000 0.824386955022253 
1000000 1.12292596930633 

Second Milstein method 
2500 0.954846533976465  

 
 
1 

5000 1.00743887812346 
10000 1.02341198496773 

100000 1.00680833122829 
250000 1.00231591266646 
500000 1.00268873753513 
1000000 0.999997325958791 

Tab. 2. Zero coupon bond of no risk with maturity T  

# of Simulations   E D T       , ,E D T P T T r T    0, , 0P T r  

Euler method 
2500 0.48812434395029 0.488066560145415  

 

 

0.970957220487724 

5000 0.308038513966897 0.308003081851407 

10000 0.325024763106268 0.324990036772998 

100000 0.625985956594468 0.625922227828396 

250000 0.771419872927604 0.771346645830578 

500000 0.726182177029966 0.72611342647583 

1000000 1.18961111433854 1.18949806538064 

Milstein method 

2500 0.332402071677238 0.332366375930865  

 

 

0.970957220487724 

5000 0.366969978004539 0.366931013968048 

10000 0.360964352720743 0.360926322954742 

100000 0.654420842856107 0.654354469594408 

250000 0.746857198318386 0.746783090935181 

500000 0.824192927498608 0.82411348941373 

1000000 1.15968204198937 1.15956727600934 

Second Milstein method 
2500 0.952656631120277 0.952657151589584  

 

 

0.970957220487724 

5000 0.986807314190818 0.986807555270611 

10000 1.00104803675261 1.00104821737114 

100000 0.97943249260489 0.979432483928667 

250000 0.974542088257683 0.974542020575479 

500000 0.975959099152459 0.975959075808478 

1000000 0.973919234689554 0.97391925959157 
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Tab. 3. Put option 

# of Simulations     E D T K S T


    Kim (2002) 

Euler method 

2500 0.376179173414971  

 

 

0.950345063621439 

5000 0.222535471469381 

10000 0.271038627789198 

100000 0.594654067016785 

250000 0.699758896691695 

500000 0.681914718350244 

1000000 1.07921012174278 

Milstein method 

2500 0.294370393477994  

 

 

0.950345063621439 

5000 0.335949588638566 

10000 0.32606847481562 

100000 0.629027012422739 

250000 0.72239181263158 

500000 0.824011757155215 

1000000 1.19641443858681 

Second Milstein method 

2500 0.950440933233568  

 

 

0.950345063621439 

5000 0.966323781894296 

10000 0.978829277799832 

100000 0.952030741956879 

250000 0.94674239771515 

500000 0.949181442176693 

1000000 0.947797286021223 
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Tab. 4. Corporate coupon bond 

# of Simulations Deflator Longstaff et al. (2005) 

Euler method 

2500 0.861924054813666  

 

 

0.858680337551511 

5000 0.972373894195048 

10000 0.904175407930738 

100000 0.877454293920751 

250000 0.878602279971190 

500000 0.857615754345209 

1000000 0.907459377255768 

Milstein method 

2500 0.811300811125437  

 

 

0.858680337551511 

5000 0.963754448602619 

10000 0.938308214385827 

100000 0.896750823102638 

250000 0.879656712709339 

500000 0.874192077843085 

1000000 0.891953664767561 

Second Milstein method 

2500 0.838321934993519  

 

 

0.858680337551511 

5000 0.867139374025251 

10000 0.881789095441836 

100000 0.865607112017938 

250000 0.864357451331807 

500000 0.865196031950400 

1000000 0.865178960263938 
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Tab. 5. Comparisons of numerical results with antithetic sampling 

Sample size 1000000n   

  D T     D T S T      , ,D T P T T r T      D T K S T


  CB 

Euler method 

originalVar  273480.434 340681.898 273426.081 219495.036 132.512 

antitheticVar  175562.779 221021.187 175531.642 135907.953 4040.719 

Milstein method 

originalVar  22417.520 27288.816 22412.939 18276.458 3285.788 

antitheticVar  172987.167 132384.322 172952.076 219810.389 983.915 

Second Milstein method 

originalVar  10.914 13.437 10.914 9.691 12.719 

antitheticVar  5.473 6.735 5.473 4.865 1.181 

Portfolio with Second Milstein method 

originalVar  7.315 

antitheticVar  3.669 

 

Fig. 2 -  Stock 
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Fig. 3 -  Stock, number of simulations less than 5000 

 

Fig. 4 -  Zero coupon bond,  E D T    
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Fig. 5 -  Zero coupon bond,  E D T   , number of simulations less than 5000 

 

Fig. 6 -  Zero coupon bond,     , ,E D T P T T r T 
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Fig. 7 -  Zero coupon bond,     , ,E D T P T T r T 
 

, number of simulations less than 5000 

 

 

Fig. 8 -  Put option,     E D T K S T
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Fig. 9 -  Put option,     E D T K S T
 

 
, number of simulations less than 5000 

 

Fig. 10 -  Corporate coupon bond 

 

Fig. 11 -  Corporate coupon bond, number of simulations less than 5000 
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Fig. 12 -  Histogram comparison with antithetic sampling 

 


