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Abstract

In this paper, we implement a stochastic deflator with four economic and financial risk factors: interest
rates, stock prices, default intensities, and convenience yields. We examine the deflator with different
financial assets, such as stocks, zero-coupon bonds, vanilla options, and corporate coupon bonds. Our
numerical results show the reliability of the deflator approach in pricing financial derivatives.
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1. INTRODUCTION

The Arrow-Debreu model of general equilibrium introduced the existence of an
equilibrium in which the allocation of consumption and production is Pareto optimal with
a system of prices for contingent commodities.' Their works have inspired tremendous
research in fields of macroeconomics, financial economics, and asset pricing theory.
Based on the concept of Arrow-Debreu securities, researchers had developed the
fundamental theorems of asset pricing, which the second theorem tells us that an
arbitrage-free market is complete if and only if the equivalent martingale measure is
unique.?

In the case of Brownian diffusion, the Girsanov's Theorem enables us to change
probability measure from a physical world to a risk-neutral world. Under risk-neutral
measure, we have a closed-form solution for Black-Scholes options pricing model.
However, we wouldn't always have analytical solutions for various classes of stochastic
processes, which motivates us to study numerical methods for approximating solutions.

Due to the complicatedness of life insurance contracts and interactions among economic
and financial risk factors, a reliable tool for asset/liability management (ALM) and
calculations of reserves would be demanded. In practice, “economic scenario
generators” assist insurers in pricing insurance contracts and managing long-term risk3.

The usual pricing scheme is as follows.

Fig. 1 - Calculating the best estimate reserve for a life insurance contract

Economic Scenario Generators \
Iteratioris of the

Determination of policy liabilities

before revaluation and financial provisions S1 I )
economic scenarios
Iterations of the
forecasted period | Calculating profit sharing

Revaluation of policy liabilities

Usually, economic scenarios are computed under a risk-neutral measure; the actualization
process is then simply the risk-free rate and it makes the calculation quite easy,
numerically speaking.

But, we like to point out that many “unusual” scenarios occur (e.g. 10-year rate>50%)
under risk-neutral measure, which increases the difficulty to justify the calibration of
“reaction functions” embedded in the ALM-projection model used to compute cash
flows. For example, the lapse rate is often a function of the difference between the
revalorization rate of the contract and a reference rate; the parameters are calibrated
observing “usual” values of economic parameters but may become difficult later to

' See, for example, Arrow and Debreu (1954 ), Geanakoplos (1989), and Mas-Colell et al. (1995) Chapter 19.

2 See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer
(1994), and Shreve (2004) Chapter 5.4.

3 See, for example, Varnell (2011), Laurent et al. (2016) Chapters 3,4, and 5, and Pedersen et al. (2016).
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justify for atypical values of economic risk factors. We could use a stochastic deflator in a
way to address this problem, using only scenarios under physical measure4. But the
numerical calculations become tedious due to the complexity of the deflator, mixing a
risk-free rate process and a density of change of measure between physical and risk-
neutral measure.

In this paper, we apply the deflator approach initiated by Dastarac and Sauveplane (2010)
in the same context and include the processes of default and convenience yield from
Longstaff et al. (2005) to calculate prices for financial derivatives. We compare the values
calculated from the deflator approach with the values suggested by analytical formulas in
simple cases. Our numerical results show the reliability of the deflator approach for quite
simple financial derivatives. Our ultimate goal is then to use this deflator to compute best
estimates for a life insurance contract, that will be done in a further work.

The remainder of the paper is organized as follows. Section 2 shows the deflator
approach. Section 3 discusses the implementation of time discretization. Section 4
presents the numerical results. Section 5 concludes.

2. DEFLATOR APPROACH

Before discussing and deriving the general form of deflator, we need to generate
correlated Brownian motions for the processes we include in our model. In our model, we
consider the processes of interest rates, market prices of risk, stock prices, default
intensities, and convenience yields. Sections 2 and 3 discuss the technical details of
implementations of the deflator and time discretization. Readers who familiar with
stochastic deflator and time discretization could directly skip to numerical results in
Section 4.

2.1. GENERATE CORRELATED BROWNIAN MOTIONS

Let the Brownian motion part of each process W and the correlations matrix C.g;

among interest rates, stock prices, default intensities, and convenience yields be as
follows.

w W, W W
[ N S 4

Wr Wr l prS pr;{ pry

W, - Wi Cu Wslps 1 p, P (1)
Wl WZ pr;{ pSZ 1 pz;/
W7 W7 Pry  Psy Py 1

Denote r interest rate; S stock price; y default intensity; » convenience yield;

Wi 1=r.5, 7.y Brownian motion part of each process; and P 17K correlation
W, i=r,S,y7

between each two processes. In order to generate correlated 'V’
W,i=012,3

, we

require four independent Brownian motions . Following is the construction

4 See, for example, Bonnin et al. (2014), Borel-Mathurin et al. (2015), and Vedani et al. (2017).
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of W, details of the calculations is provided in the Appendix 1 of Supplementary

materials.
w1 0 0 0w,
W.. = Ws _| Prs \ll_przs 0 0 ||W, (2)
ESG — - ' '
WZ Pry Psy P 0 ||W,
W7 _pr;/ pgy p;y ,0;;_ W3
where
P PPy \/1—/355—pfl—p§z+2prsprlpsl
S 1 ]
x ll_pfs Y74 1_przs

. P, = PeyPr, = Ps,Ps, — P, + PrsPryPs, + PisPry Ps,
'0757 - 4 3 2 2 2 2 2 2 2
\/l+ Pis =2PsPeyPsy — 2P + PrsPry + PrsPsy — Pry = Psy +2PsPryPs,

" _ 2 "2 "2
Pl ==t =P = Pl
2.2. GENERAL FORM OF DEFLATOR WITH FIVE FACTORS?

Let r(t), B(t), P(t,T,r(t)), S(t), x(t), »(t), D(t) be processes of interest rate,

short-term saving, zero coupon bond of no risk with maturity T, stock price, default
density, convenience yield, and deflator respectively. Denote E() expectation under

physical measure and E° () expectation under risk-neutral measure. Let a discount

IXG)

ds . , ,
. For a nonnegative random variable X , we would like to have

= (5(t) X)=E [D (t) X] (i.e. D(t)= 5(t)‘;—8 ). We describe the dynamics of each
process in the following paragraphs, in a quite general Markovian framework.

process &(t) equal e

2.2.1.  Dynamics of each process
dr(t)=c(t,r(t))dt+p(t,r(t))dw, (t) (3)
dB(t)=B(t)r(t)dt (4)

Equations 3 and 4 are the dynamics of interest rate and short-term saving respectively,
where a(t,r(t)) and ,B(t,r(t)) are the drift term and diffusion term of interest rate

process respectively and B(t)r(t) is the drift term of short-term saving process.

5 For discussions of stochastic deflator in insurance, see, for example, Dastarac and Sauveplane (2010) and
Caja and Planchet (2011). For a reference of stochastic calculus related to Ité's lemma and Girsanov's
Theorem, see Shreve (2004) Chapters 4 and 5.
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Let the process of zero coupon bond of no risk with maturity T be
dP(t,T,r(t))

P(t.T,r(t))
ﬂ(t,l’(t)) and the diffusion term &(t,r(t)) for P(t,T,r(t)). Since P(t,T,r(t)) is a

function of t and r(t), by It6 formula, we have

= f1(t,r(t))dt+&(t,r(t))dW, (t). We would like to derive the drift term

oP 10°P
dP(t,T,r(t))=—dt+ —d ——d t)dr(t
(6T (1)) = S+ (1) + 25 Zar (t)ar 1)
2
where o® is the first partial derivative of P(t,T,r(t)) with respect to t, o® and ﬂ
ot or or?

are the first and second partial derivative of P(t,T,r(t)) with respect to r(t). Thus, the

dynamics of P(t,T : r(t)) could also be written as
dP(t,T,r(t))= (Pt +a(t,r(t))P, +%Prrﬁ2 (t, r(t))jdt +PA(t,r(t))dw, (t),

2
p-P p P p IP Comparing these two representations of dP(t T,r(t )) we

at” T o’
have P(t,T,r(t))&(t,r( ))—Prﬂ(t,r(t)). As a result, we could calculate 5(t,r(t)) by

oo(ur(t)
P(tT,r(t))
Next step is to derive the drift term [J(t,r(t)). 5(t) equals efLr(s)dS, I(t) equals
'[;r(s)ds , and f(x)=e™. Then, dI(t) is equal to r(t)dt, f'(x)=—f(x), and
f”(x)= f(x). By It6 formula again,

1

do(t)=df (1(t))=f'(1(t))dl (t)+3 fr(1(t))di(t)dl (t)=-r(t)5(t)dt.
d[S(t)P(tT,r(t))|=8(t)dP(t.T,r(t))+P(tT,r(t))ds(t)+ds(t)dP(t,T,r (t)) by Itd
product rule. We introduce the process of market price of risk G(t) here, and let 6?(t)
At r(t)) r(t)
5(tr(t))
d[5(O)P(ET.r(1))
LA (tr(0)-r(t)|s(t)P(t,T,r(t))dt+& (t,r (t))S()P(L.T,r(t))dw, (1)

[l r t
=& (tr( )) )P(t.T,r(t))dwW, (t)

equal and dW, (t)=0(t)dt+dW. (t). Then
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dqQ’ t 1 ¢t
Let F:Z(t):exp{—joe(s)dwr—Ejoé?z(s)ds} , Z=Z(T) , and assume

E(IJ@Z(S)ZZ(S)ds)<w. Then by Girsanov's Theorem, E(Z)=1, and W, (t), 0<t<T,

under probability measure Q' is a Brownian motion. Thus, we could rewrite

d[s(t)P(LT.r(t)]=&(tr(t)s(t)P(LT.r(t))dw, (t)

and
T (st r)-slur)oro)a(.r)ai 0

P(t T,r(t )) is the zero coupon bond of no risk with maturity T, so the drift term of
d:’((tt-l'_l' r(tt)))) under probability measure Q' is equal to r(t).° Hence, we have [z(t, r(t))
equal r(t)+&(t,r(t))o(t).

W=[r(t)+&(t,r(t))&( Vat+6 (t,r(£))aw, (), (t,r(t))=FLﬂ(£t—’:(f;)»

dP(£,T,r(t))=P(t,T,r(1))[ r(t)+&(t.r(t))O(t) |dt+P(tT,r(t))&(tr (t))dwW, (1)

(5)
dsSTtt)):”S (t)dt+og (t)dW, (t)

dS(t)=S(t) s (t)dt+S(t) o, (t)dW (t)
=S(t) us (t)dt+S(t) o (t) pdW, (1) +S(t) o (t)1— p5 dW, (1)
(6)
Equations 5 and 6 show the dynamics of zero coupon bond P(t,T,r(t)) and stock price

S(t). Following the model settings in Longstaff et al. (2005), we let the processes of

default density y(t) and convenience yield y(t) as follows.

=[e-fx(t)]dt+o, 7 (t)dw, (t);e .o, >0
(e 1200, L2000, 1)+ 0,08, L2 (000 (1), (e 1)

(7)

® We could verify this by the intuition of change of measure with 5( ) and the solution of 5(t) P(t T, r(t))
being exponential functions. Alternatively, we could plug [,(t r(t )) back to d[ (t T,r(t )] to verify

the statement.
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dy (t) =ndW, (t)=np, dW, (t)+n7o: dW, (t)+70] dW, (t)+7po] dW,(t), 7>0
(8)
We are now able to derive the general form of deflator. First, let
dD(t)=Q(D(t),t,r(t))dt+®(D(t),t,r(t))dw, (t)+¥(D(t),t,r(t))dw,(t)
+T(D(t),t,r(t))dW, (t)+I(D(t).t,r(t))dW,(t).

(9)
We would like to have D(t)S(t), D(t)B(t), D(t)P(t,T,r(t)), D(t) #(t), and D(t)y(t)
be P -martingale. By It6 product rule again, we have
d[D (t)] ( ) D(t)+D(t)dX (t)+dX (t)dD(t) for a stochastic process X (t). We
derive Q(D(t),t,r(t)) , ®(D(t),t,r(t)), ¥(D(t),t,r(t)) , T(D(t),t,r(t)), and
I(D(t) t, r(t)) step by step in the Appendix 2 of Supplementary materials.
Let
_¥(OO).tr(t) _r()+o(t)os (1) ps 4 (1)
Ky (tr(t))= D(t) - o (1 \/1_10rs ’
e (PO 00, (020 e 15) o[ (0-r)-0)o: (0]
o D(1) Pl o, P2 (1) A ONES
< (tr() = WA ) _p00)  rOr(Y) phpu0(t), £ lemr(t2(t) F2 (1)
Y D(t) P, ey, PPy, oLp, 0, x(t)

(psypzz_ ;ypéz)[/us t —I’('[)—prse(t)O'S (t)]
P55 (V1P

we have the general form of deflator D(t) as follows.

D(t):D(O)exp{ J' r(s)ds— j;[ez( )+ KE (tr(t)+ KZ(tr(t))+ Kf(t,r(t))]ds}

xexp[—ﬁﬁ(s)dwr (U] Ky (67 (1) W, (0)+] K (61 ()W, (0)+ K, (£ (1))dw, (t)}
(10)

3. IMPLEMENTATION OF TIME DISCRETIZATION

In order to implement the deflator approach, we need to discretize time steps for each
process. We discuss the time discretization here. We adopt the Euler method, the Milstein
method, and the simplified Second Milstein method for time discretization in our model.”

7 For references of time discretization, see, for example, Kloeden and Platen (1992), lacus (2009), and
Glasserman (2013).
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Denote a stochastic process X (t) with its dynamics
dX (t)=by (t, X (t))dt+ oy (t, X (t))dW, (t) where W, (t) is the Brownian part of X (t).
We partition the time [0,T] into N segments with each length equaling (T —0)/N , then
we have a time discretization T, =TT, ([0,T]) with 0=t, <t, <---<t, =T.

3.1. EULER METHOD

In  Euler method, we approximate X(t) by Y, discretely, in which
Yoo =Y +by (6,Y) (i, —t)+ oy (6.Y))(W,, -W,), i=0,1,...,N-1, W, is the value of a

i+1

Brownian motion at time period i , and Y, is equal to X(0) . Denote

At =t —t =(T-0 /N and AW, ; =W,, -W,, k=r,1,2,3. We approximate r(t), B(t),
(t T.r( ) (t), x 7(t), D(t) by the Euler method as follows.
t = ( i+1

aft, r(t))dt+ﬂ(t r(t))dw, (t), thenr, =r +a(t, 5 )AL+ B(t, 1) AW, .
dB(t)=B(t)r(t)dt, then B,, = B (1+rAt,).

(t T,r(t))=P(LT,r(t )[r( )+6(tr(1)o(t)]dt+P(t,T,r(t))6(tr (t))dw, (1),
then P,{1+[r +6(1,1)0(t) At + 6 (4, 1) AW, }

() S(t)u ()dt+5() s (8) W, (t) +S (t) o () 1= prs AW, (1),

then's, , S[1+ys( VAL + 0 (1) P AW, , + 0 (1) 1= 2 AW, ]

<dz(t)=[e- 1 2(1)]dt+o, o, 2 ()W, (t) + 5,00, 7 ()W, (t) + 5, ), [z (t)aW, (1)

then .., =z, ( -ty )A'[i +alpw\/;iAWni +0, 00, N iAW, +0 0, AW, ;.
. d;/( ) =np,,dW, (t) +7p4,dW, (t) +np, dW, (t) +np, dW, (t) :
then y,,, =7 +77(pryAWr,i +pg, AW, + o) AW, ; + p) AW, ; )

. dDD_((tt)) =—r(t)dt—O(t)dW, (t)+ K, (t,r(t))dW, (t)+ K (t,r(t))dW, (t)+ K, (t,r(t))dw,(t),

then D, = D, [ 1- [ AL —0(t,) AW, ; + K, (t, 1) AW, + K, (8,1 ) AW, + K, (8,1 ) AW, |.
3.2.  MILSTEIN METHOD

ooy (t, X) ) )
Denote o, = 5 , we approximate X (t) by Y, discretely as
X

Yo=Y +b (6,Y)) (t—t )+ o (6,Y, ) (W, — W)+%0'X ()0, (6.Y,)] (Wig -W, )" = (10—t |

Thus, we approximate r(t), B(t), P(t,T,r(t)), S(t), z(t), (t), D(t) by the Milstein

method as follows.
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e dr(t)=c(t,r(t))dt+B(t,r(t))dw,(t),
then r, = +a(t, ) At + A(t, ) AW, +%ﬂ(ti,n)ﬁr (ti,n)[(AWr,i ) —Ati]

- dB(t)=B(t)r(t)dt, thenB,, =B, (1+rAt).

«dP(t,T,r(t))=P(t,T.r(t ))[r(t)+&(t,r(t))@(t)]dt+P(t,T,r(t))&(t,r(t))dWr (1),

(t)
then P {1+[r +6(t,5)0(t)] A +6 (4, 1)AW,, +; (ti,ri)[(AWr’i)z—Ati}}.

«dS(t)=S(t) s (t)dt+S(t)og (1) psdW, (t)+S(t) o (1)1 o5 AW, (1),
1+y5( )AL + 0 (t) P AW, ; + 05 (1) (1— P AW,

[0'5 Vo | [(AWH) —Ati}+%[as (t)=p? T [(A\Nl,i e Aﬂ .
~dz(t)= (e~ 2(1))dt+ o, o, 7 ()W, (t) +0, 0%, 1 (W, (1) +0,00, 7 ()W, (t)

then .= 7 +(e— T 1) At + 0,0 1AW, + 0, 05, iAW, + 0, 0, | 1AW,
+%(Gl,0rl )2 [(AWKi )2 - At } +%(O‘Zpél )2 [(AWLi )2 —Ati}+%(0'lp;ﬂ )2 |:(AW2,i )2 —Atij.

» dy (t) = np,, AW, (t)+ 705, AW, (t) + 107, dW, (t) + 7o) AW, (t),
then 7/|+1 7/| +77(pr;/AW +pS A\Nl,i +p;:yAW2| +pWAW )

then S, ,

. O:g)((tt))=—r(t)dt—9(t)dwr (t)+ Ky (£7 (1)) dW, (t)+ K (8,1 (t))dW, (t)+ K, (t,r (t))dW, (t),
then D,,, = D, [1- (At —0(4 ) AW, , + K, (t, 1) AW, + K (1, 1) AW, + K, (1) AW, |

1

_EDiez(ti)[(AWr,i)z—M}%DKZ(.’ 0| (aw, ) -a |
+%DiK§ (ti’ri)[(sz,i)z_Ati}'%DiKlz (ti’ri)[(AW&i )Z_Ati}'

3.3.  SIMPLIFIED SECOND MILSTEIN METHOD

We advance to multi-dimensional case in this sub-section. Let X, be multi-dimensional
stochastic processes with the dynamics dX, =a(t, X,)dt+b(t, X,)dW,, where X, is a
d x1 vector, a(t, X,) is a d x1 vector, b(t, X,) is a d xm matrix, and W, is a d x1 vector.
d is the number of different stochastic processes in X,, and m is the number of

independent Brownian motions involved in X, .

For a continuously twice differentiable function f (t, X, ), we could write df (t, X,) by
[t6 formula for multi-dimensional case as follows.
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af(t,X) d@f(t,X) 18 52f(t,X)
df t, X = t t ) t’ X + t Z ) dt
( t) ot +; ox a.( t)+ Zi;—axiaxj tij -
"
d m af t, X
+2. 2 (t’xt)—(ax ‘)th‘k, T, =b(t, X, )b" (t, X,)
il k=1 i

In equation 11, & (t, X, ) is the element of i row of a(t, X,), b, (t, X,) is the element of
b(t, X,) at its i" row and k™ column, b' (t, X,) is the transpose of b(t,X,), Z; is the
element of X, at its i" row and j" column, and W,, is the element of k" row of W,.

Next, we introduce operators L° and L* and rewrite df (t,Xt) for multi-dimensional

case.
=— (t,X,)=—

+Za .+ I; i 6xax (12)

d 0
L =>"b, (t,X,)—, Vk=1...,m (13)

i1 OX;
df (t, X,)=L"f (t,Xt)dt+Zm:ka (t, X, )dW,, (14)

k=1

We approximate X, by Y, discretely by simplified Second Milstein method, where Y, is a
d x1 vector. Foreach i=1,...,d,

vnm:vn_i+ai(n,vn)mibik(n,vn)Awmk+%L°ai(n,vn)(m)2 )
15
%i[u (n.Y,)+ L, (n,Y,)]AW, At+liiL Y,) (AW, AW, , -V, )
k:l j=1

Y,

n+1,i

is the element of i" row of Y, in the time step n+1. V,, is an independent random
1
variable with probabilities Pr(ij =At) =Pr (ij= —At) =3 for j<k,V,=-V, for j>Kk,

and V; = At for j=k.The following are the X, a(t,X,), W,,and b(t, X,) in our model.
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Cor(t) ] a(tr(t))
o(t) a,—b,0(t)
B(t) B(t)r(t) m;
x P(t,T,r(t)) A(tX,) = P(LT.r(®))[r(t)+6(tr(t)o()] W W:(t) |
S S (t)us (1) W, (1)
Z(t) e— f;((t) W, (t)
7(t) 0
L PO _ ~r(1)D() _
i ﬂ(t,r(t)) 0 0 0 0 ]
0 0 0 0 o, 9('[)
0 0 0 0 0
P(LT.r(t)&(tr(t) 0 0 0 0
PEX)T s oy ()ps SO O o
o, P\ (t) oo z(t) TP x() 0” 0 (16)
e, ek, 1Py, 1Py 0
-0(1)D(1) w(D(t).r(t) T(P@).Lr(R) (PELA) o

4. NUMERICAL RESULTS

We implement the deflator approach with three methods for time discretization and
adopt CIR interest rate model for short-term saving.® In addition, we also incorporate
parallel computing with a variance technique, antithetic sampling in our algorithm.® In CIR

interest rate model, dr(t) =[ar —brr(t)]dt+o-r1/r(t)dV\~/r (t); a,.b,,0, >0. The process of
interest rate is defined under probability measure Q'. In order to convert the process
into physical measure P, we have to consider the process of market price of risk 0(t).

From Section 2.2.1, we let dW, (t)=@(t)dt+dW, (t). Thus, we could rewrite dr(t) in P
-measure as dr (t)=| & ~b,r (t)+0(t)o,|fr (t) |dt+o, |fr ()W, ().

Let O(t) also be CIR process here and W, is an independent Brownian motion of
W,, i=r,12,3."° The dynamics of 6(t) is

do(t)=[a,-b,0(t)]dt +0,,/0(t)dW, (t);a,,b,, o, > 0.

In CIR interest rate model, the price of zero coupon bond of no risk with maturity T,
P(t,T,r(t)),is equal to e "W=tT*tT) where

inh T-t
Cs (t,T): l (}/CIR( )) » 7CIR :%\/brz +Zo_r2 ’

1 )
Yo COSh (;/C,R (T —t))+§br sinh (;/C,R (T —t))

8 Here we choose CIR interest rate model because the model has a closed-form formula for prices of
zero-coupon bonds of no risk.

9 The R codes are available from the authors by inquiry.

'® Here we choose o(t) to be CIR process, so that o(t) would be positive in any time period t.

_11_
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lbr (T _t)

and A,,(t,T):—ZaZr In Yor®”

T .
Tt | Y Cosh (7oe (T —t))+§br sinh (7 (T -t))

U_ —-u eu+e—u
, coshu =
2

Note that sinhu = € ,and P(O,T, r(O)) — @ "(0C(0T)-A(0T) 1

To calculate the option price for stock under CIR interest rate process, we use the
formula proposed by Kim (2002)." In Kim (2002), the process of CIR interest rate dr(t)

under probability measure Q' is as follows
dr (t) = |:KKim6Kim - (KKim + §Kimﬂ’Kim ) r (t)] dt + 5Kim \/ r (t)dwr (t) (13)

Let A, =1, then 8, =0,, K¢ =0 —0,, On =2, /(b, —0,). Thus, we could calculate
the price of an European call option of stock S with strike K and maturity T at time zero,
Call,;, (0,5(0),T,K).

Call,, (0,5(0),T,K)= [s (0)@(d,)-K exp(—joT rt*dt)d)(dz)J
+6,,,Cy [s (0)¢(d,)-K exp(—joT q*dt)(¢(d2)—as x/ﬂD(dz))}
50aC| 425 (0)8(d) - K exp ) 't} () [+ 0 0.

where @(-) and ¢(-) are the cumulative density function and probability density function
of the standard normal distribution respectively;

L =re " + 6, (1— C ) , €Xp (— JOT r{‘dt) =exp {— (1~ ) (l— ol ) —Oim T } ;

Kim
KKim

Kim

_ - 2
d, = 1 {Ins}ioh(ro QK'm)(l—e"KimT)+6? T+%T},d2:d1—0sﬁ;

KKim

1

—Kiim | _ —Kiim |
S P _QKim)(le__Tew}gKimT (1_1e_j ;
KyimOs \/'F Kyim Kkim

" See, for example, Shreve (2004) Chapter 6.
2 For references of option pricing under stochastic interest rates, see, for example, Shreve (2004) Chapter
9, and Brigo and Mercurio (2006) Chapter 3 and Appendix B.
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ECONOMIC SCENARIO GENERATOR WITH FIVE FACTORS

2\ Oin {(“26 ") 3 gT\/ro K.m(l—e"K“)}wm[eKim(1+2eW)_rOJ

P
Cl = __Scn! C11 =

O-ST 2e" Tkﬁlm \ eKim
Oy (2677 1) 1, 120 7 \/ (€57 1)+ O,
V/Kim = In

(Vo B )

By Put-Call parity, Call(0,S(0),T,K)+ Ke b =Put(0,5(0),T,K)+S(0). We could
then calculate the price of the European put option at time zero Put(O,S(O),T, K) as
Call(0,5(0),T,K)+KP(0,T,r(0))-S(0).

We approximate r(t), 6(t), P(t,T,r(t)) by the Euler method and the Milstein method

as follows.
< dr(t)=| & ~b,r (£) +0(t) o, r (1) |dt+ o, |fr (E)aw, (1)

By Euler method, r, =1, +(a, —b.r, + 60, I |At, + 0,/;AW,;; and by Milstein method,
y i+l ir i i r i

ri?

r

=T +(a ~br+6c \/T)Ati+ar\/EAWr'i+%af[(AWm)2—Ati].
- dO(t)=[a, ~b,0(t) ]dt+0,.[O(t)dW, (

By Euler method, 6’”1:6%+(a9—b90i)Ati+ag\/5iAW9’i; and by Milstein method,

0., =0,+(a,—b,0) At + 5, JGAW, +%0'92 [(AWHJ § —Ati] .
«dP(LT,r(t))=P(LT,r(t))[r(t)+&(t.r(t))ot) [dt+P(LT,r(t))& (t.r (t))dw, (t)

s RA(Lr (1))
U(t’f(t))zw :

dP(L.T,r (1) =| P(LT.r (6)r(t)+Ro,r(©)(t) |dt+ Ro,r (H)aw, (t)

Note that P, =—C,(t, T) "I AT) i CIR interest rate model. By Euler method,
P P+(Pr+Prt o, )At +PR, 0 r\/—AW ;  and by  Milstein method,

i+1

P

i+1

we could rewrite the process as

:F’i+(Pr+Prt o, )At+Prt r\/7AW

The details of implementation of simplified Second Milstein method is provided in the
Appendix 3 of Supplementary materials.
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4.1. EXAMPLE WITH CIR MODEL AND GEOMETRIC BROWNIAN MOTION

The following is the settings describing the dynamics of each process in our example.™
T=1 At=0.0% ps =06, p,, =07, p, =05, p;, =01, p;, =03, p, =0.1
do(t)=[0.05-0.016(t)]dt +0.0L,/8(t)dw, (t), 6(0)=0.02

dr(t)=[0.02-0.04r (t)]dt +0.01,/r (t)dW, (t), r(0)=0.02

dS(t)=0.1S(t)dt+0.2S (t)dW; (t), S(0)=1

dz(t)=[0.05-0.1¢(t) ]dt + 0.1/ ¢ (t)dW, (t), (t)=0.05

dy(t)=0.1dW, (1), 7(0)=0.2

We could see in equation (12) that D(O) is equal to 1. The deflator approach tells us that
for a nonnegative random variable X (t), we would have E° [é(t) X (t)] = E[D(t) X (t)]

. The price of a zero coupon bond of no risk with maturity T at time period T is equal to
1. We also calculate the price of Put option of S(T) with strike K equaling to 2. Thus, we

would expect the following equations to hold.

D(0)$(0)=5(0)=E[(T)S(T)]=E[D(T)S(T)]-1 (14)
D(0)P(0.7.7(0))=P(0.T.r(0)) = E°[&(T)P(T.T.r(T))]=E[D(T)P(T.T.r(T))]=E[D(T)]  (15)
D(0)Put(r(0),5(0)) = Put(r(0),5(0)) =E°[ 6(T)(K~S(T))" |=E[ D(T)(K -5 (T))" | (16)

We compare the numerical results with Black-Scholes put option price, Put(r(0),S(0)).
Tables 1, 2, and 3 show the numerical results. Figures 2, 3, 4, 5, 6, 7, 8, and 9 show the
convergence of the approximations to expected value, i.e. S(0), P(0,T,r(0)),
Put(0,5(0),T,K). We could see that the simplified Second Milstein method provides

better approximations and converges faster than the Euler method and the Milstein
method do. This could be explained by convergence order in which the simplified Second
Milstein method has larger weak order of convergence.™

4.2.  EXAMPLE WITH CIR MODEL AND CORPORATE COUPON BOND

Longstaff et al. (2005) assumed the independence among interest rate, default intensity,
and convenience yield. Thus, we let p,, =0, p,_ =0, p;, =0, p;, =0, and p,, =0.%To

accommodate the three risk factors (interest rate, default intensity, and convenience

3 Here we provide a numerical example for the model, in which the chosen values for model settings could
be different. In our example, there are strong positive correlations between interest rates and other factors
(i.e. stock prices, default densities, and convenience yields), but weak positive correlations between each
two of stock prices, default densities, and convenience yields.

* The Euler method and the Milstein method have weak order of convergence 1, and the simplified Second
Milstein method has weak order of convergence 2, see, for example, Glasserman (2013) Chapter 6.

> We let dw,dw; =0 here, i.e. pairwise independence.
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yield) with deflator, we let dB(t)= B(t)[r(t)+)((t)+y(t)] dt."® The following is the
formula provided in Longstaff et al. (2005).
CB(c,,T)=c[ A (t)exp(Bus (t) z0)Cos (t)P(0.t,(0))e ct
+ Acs (T)exp(Bgg (T) 25 )Ces (T)P(0,T,r(0))e "
1m0 0B (12)Cn (1P (0,7 (0)[Con () Hon (1) 2] et

A(:B(t)ZEXp e}((f12+¢)t}( ];_K j"i’ BcB(t): fl;¢+ 2 2

i o, 1— xe”t o Gl(l Ke¢t)’
C (t):exp ﬁ G (t):e—l(e¢t—l)exp el(fl+¢)t [ 1-x jszeim
CB 6 ' —CB ¢ G; 1_K_e¢t )

HCB(t)zexp{e"(f”+¢z)+¢alt]( 1-x jgf , K=(fl+¢)/(fl—¢),
¢5=J20‘§+ f}(2

In order to implement the deflator, we look at the original definition of CB(c,®,T).
CB(c,»,T)= E{CIOT exp[—ﬂ(r(s)+;((s)+7(s))ds}dt}+ E{exp[—ﬂ(r(s)+z(s)+7(s))ds}} (17)
4 E{(l—a))IOT % exp[—jg(r(s)+;((s)+7(3))ds]dt}

For the time period t when a bond holder receives a coupon or a fraction of the par value
of the bond (because of default), the payoff at that time period t is equal to ¢ and
(1— ) respectively. Thus, we could implement the deflator as follows.

D(0)CB(c,w,T)= E[D(T)]JrcEDOT D(t)olt}r(l—a))EUOT ;(tD(t)dt} (18)

Table 4 and Figures 10 and 11 show the numerical results and convergence of the
approximations.

4.3. COMPARISONS OF NUMERICAL RESULTS WITH ANTITHETIC SAMPLING

Table 5 shows the differences of variances with/without antithetic sampling. Given the

variance of a random variable X , Var(X ), the variance of 1 X is equal to 1Var(X ). In
n n

our model, D(t) is lognormal distributed. With the sample size being equal to n, the

16 Recall that D(t) = Discount factor - dQ s D(t) could not be the same given different discount factors with
P
the same Radon-Nikodym derivative.
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mean of D(t), E[D(t)], equals 1 > D(t); and its variance Var(E[D(t)]) is equal to
n trials

1
“Var ( D(t)). We could calculate its 95% confidence interval as follows."

n

Clggy, = E[D(t)]"_var(EED(t)}) R P

var(E[D(1)]) [Var(E[D(1)])]

n 2(n-1) (19)

Here t,, _, is the t statistics with degree of freedom equalling n. For example, in our
numerical results of Second Milstein method with antithetic sampling and sample size
equalling 2500, the 95% confidence interval of E[D(T )] is equal to [0.95192,0.95559].

Suppose the weights of investment in a portfolio on stock, zero coupon bond of no risk

with maturity T, and corporate coupon bond equal Wy, W,, and W, respectively.

Theoretically, the variance of the portfolio is equal to
> wvar(i)+2 > wwCov(j,k), where Cov(j k) is the covariance between

i=S,P,CB j,k=S,P,CB; j=k

J and k. Given stochastic differential equations of two stochastic processes dX and dY

, we could calculate Cov(X,Y) by dXdY . The multiplication of lognormal random

variables is again lognormal distributed, and the sum of lognormal random variables most
likely behaves as either normal or lognormal distributions (so that we could still calculate
the confidence interval).’® As a numerical example, let W, , W,, and W, be 0.15, 0.65, and

0.2 respectively. Figure 12 shows the comparison of histograms with/without antithetic
sampling of the portfolio.

5. CONCLUSION

In this paper, we derive the general form of deflator for four risk factors: interest rates,
stock prices, default intensities, and convenience yields. We examine the deflator with
different financial derivatives, comparing the numerical results with values calculated
from closed-form formulas.

Our results indicate the reliability of the deflator for financial asset pricing, if the time
discretization of the underlying stochastic processes is done carefully.

Except the benefit that we could compute best estimate value by simply averaging the
multiplication of deflator and projected cash flows, the fact that we observe data only in
physical world would provide the motivation for us to use deflator for the convenience to
estimate parameters of “reaction functions” in an ALM projection model as in Chapter 4
of Laurent et al. (2016).

Further work would be to implement the deflator and compare the best estimate values
of a life insurance contract under physical measure and risk-neutral measure.

7 See, for example, Olsson (2005).
'8 See, for example, Dufresne (2004), Lo (2012), and Gulisashvili and Tankov (2016).
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7. TABLES AND FIGURES

Tab.1. Stock

# of Simulations E [D (T ) S (T )] S (O)
Euler method
2500 0.600069755272291
5000 0.393586742835856
10000 0.37903361971978
100000 0.657324756344535 1
250000 0.843102951645603
500000 0.770462054324114
1000000 1.29863524218499
Milstein method
2500 0.370434390825238
5000 0.398022925866662
10000 0.395876767138054
100000 0.679818876796659 1
250000 0.771340365068307
500000 0.824386955022253
1000000 1.12292596930633

Second Milstein method

2500
5000
10000
100000
250000
500000
1000000

0.954846533976465
1.00743887812346
1.02341198496773
1.00680833122829 1
1.00231591266646
1.00268873753513
0.999997325958791

Tab.2. Zero coupon bond of no risk with maturity T

# of Simulations

E[D(T)]

E[D(T)P(T,T,r(T))]

P(0,T,r(0))

Euler method

2500 0.48812434395029
5000 0.308038513966897
10000 0.325024763106268
100000 0.625985956594468
250000 0.771419872927604
500000 0.726182177029966
1000000 1.18961111433854
Milstein method
2500 0.332402071677238
5000 0.366969978004539
10000 0.360964352720743
100000 0.654420842856107
250000 0.746857198318386
500000 0.824192927498608
1000000 1.15968204198937
Second Milstein method
2500 0.952656631120277
5000 0.986807314190818
10000 1.00104803675261
100000 0.97943249260489
250000 0.974542088257683
500000 0.975959099152459
1000000 0.973919234689554

0.488066560145415
0.308003081851407
0.324990036772998
0.625922227828396
0.771346645830578
0.72611342647583
1.18949806538064

0.332366375930865
0.366931013968048
0.360926322954742
0.654354469594408
0.746783090935181
0.82411348941373
1.15956727600934

0.952657151589584
0.986807555270611
1.00104821737114
0.979432483928667
0.974542020575479
0.975959075808478
0.97391925959157

0.970957220487724

0.970957220487724

0.970957220487724
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Tab. 3. Putoption

# of Simulations E[D(T)(K =S (T))+]

Kim (2002)

Euler method
2500 0.376179173414971
5000 0.222535471469381
10000 0.271038627789198
100000 0.594654067016785
250000 0.699758896691695
500000 0.681914718350244
1000000 1.07921012174278
Milstein method
2500 0.294370393477994
5000 0.335949588638566
10000 0.32606847481562
100000 0.629027012422739
250000 0.72239181263158
500000 0.824011757155215
1000000 1.19641443858681
Second Milstein method
2500 0.950440933233568
5000 0.966323781894296
10000 0.978829277799832
100000 0.952030741956879
250000 0.94674239771515
500000 0.949181442176693

1000000 0.947797286021223

0.950345063621439

0.950345063621439

0.950345063621439
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Tab. 4. Corporate coupon bond

# of Simulations Deflator Longstaff et al. (2005)
Euler method
2500 0.861924054813666
5000 0.972373894195048
10000 0.904175407930738
100000 0.877454293920751 0.858680337551511
250000 0.878602279971190
500000 0.857615754345209

1000000 0.907459377255768
Milstein method

2500 0.811300811125437
5000 0.963754448602619
10000 0.938308214385827
100000 0.896750823102638 0.858680337551511
250000 0.879656712709339
500000 0.874192077843085
1000000 0.891953664767561
Second Milstein method
2500 0.838321934993519
5000 0.867139374025251
10000 0.881789095441836
100000 0.865607112017938 0.858680337551511
250000 0.864357451331807
500000 0.865196031950400

1000000 0.865178960263938
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Tab. 5. Comparisons of numerical results with antithetic sampling

Sample size n=1000000

D(T) D(T)s(T) D(T)P(T,T,r(T)) b(T)(k-s(T))" CB

Euler method

Varlorgna ~ 273480.434  340681.898 273426.081 219495.036 132.512

Varlaiteic 175562779 221021.187 175531.642 135907.953 4040.719

Milstein method

Valogna  22417.520  27288.816 22412.939 18276.458 3285.788

Varaimeic 172987167  132384.322 172952.076 219810.389 983.915

Second Milstein method

Var original 10.914 13.437 10.914 9.691 12.719

Var anithetic 5.473 6.735 5.473 4.865 1.181

Portfolio with Second Milstein method

Var original 7.315

Var antithetic 3.669

Fig. 2 - Stock

T Eliar

""""""" Misie 2
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Value
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Fig. 3 - Stock, number of simulations less than 5000
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Fig. 5 - Zero coupon bond, E [D (T )] , number of simulations less than 5000
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Fig. 7 - Zero coupon bond, E [D (T)P (T Tr(T ))], number of simulations less than 5000
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Fig. 9 - Put option, E [ D (T )( K-S (T ))1 , number of simulations less than 5000
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Fig. 12 - Histogram comparison with antithetic sampling
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