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Laboratoire de Physique Théorique et Hautes Energies, LPTHE,

F-75005, Paris, France
bInstitut de Physique Théorique, DSM, CEA,
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1 Introduction

Recently, a new method for constructing Bethe vectors in quantum glN -invariant spin

chains was proposed in [1]. The main observation of this work is that an operator that is

used to build a basis in the Separation of Variables (SoV) approach can also be used within

the framework of the Algebraic Bethe Ansatz (ABA) to construct a basis of the transfer

matrix eigenvectors.

To illustrate this statement we consider a gl2-invariant spin chain model that can be

constructed from a monodromy matrix

T (z) =

(
A(z) B(z)

C(z) D(z)

)
. (1.1)

Within the framework of ABA [2–4], the eigenstates of the corresponding quantum Hamil-

tonian can be obtained by the successive action of the B operator on a referent state |0〉

B(u1) . . . B(un)|0〉, (1.2)

provided the parameters {u1, . . . , un} satisfy a system of Bethe equations (see (2.7) below).

On the other hand, to consider the spectrum problem within the framework of the SoV

approach [5–7], one should make a twist transformation of the monodromy matrix (1.1):

κT (z)κ−1 = T̃ (z) =

(
Ã(z) B̃(z)

C̃(z) D̃(z)

)
, (1.3)

where κ is an invertible c-number matrix. For some specific representations of the mon-

odromy matrix, the SoV basis is associated with the operator-valued roots of equation

B̃(u) = 0. The twist matrix and the representation are chosen in such a way that B̃(u)

has a simple spectrum [1, 8], that is a necessary condition for the implementation of the

SoV approach.
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It was shown in [1] that the states (1.2) also can be written in terms of the new B̃

operators as

B̃(u1) . . . B̃(un)|0〉 ∝ B(u1) . . . B(un)|0〉. (1.4)

Here the parameters {u1, . . . , un} also should satisfy the system of Bethe equations. In

other words, the functional dependence of the Hamiltonian eigenstates on the B operator

is invariant under the twist transformation of the monodromy matrix.

This fact was proved in [1] via the SoV method. In this paper we prove the prop-

erty (1.4) by means of the ABA.

Actually, we give two proofs. The first one is elementary. In fact, it literally mimics the

well known classical scheme of the ABA [2]. The main difference is that the referent state

is no longer an eigenvector of the diagonal elements of the twisted monodromy matrix. We

show, however, that this fact is not crucial here. On the contrary, the key point is that the

twist transformation (1.3) preserves the trace of the monodromy matrix

T (z) = tr T̃ (z) = trT (z). (1.5)

Furthermore, we do not use any specific representation of the algebra of the Tij operators.

Thus, we show that (1.4) is valid not only for spin chains, but for any ABA solvable model.

The second proof is more complex. For this proof, one should explicitly compute the

multiple action of the operators B̃ on the referent state for generic complex {u1, . . . , un}.
The advantage of this way is that one can explicitly see how the state B̃(u1) . . . B̃(un)|0〉
turns into the state B(u1) . . . B(un)|0〉, if the Bethe equations are imposed.

We also found it necessary to give this complex proof, because it has a direct application

to the Modified Algebraic Bethe Ansatz (MABA) [9–13]. Within the framework of this

method one considers more sophisticated twist transformation T̃ (z) = κ1T (z)κ2 with κ2 6=
κ−1

1 . Generically, this transformation does not preserve the trace of the monodromy matrix,

leading to the break of the U(1) symmetry. As a result, the property (1.4) is no longer true

for these models, therefore, one should find an alternative way to describe the eigenstates

of the corresponding quantum Hamiltonians. As we shall see below, property (1.4) leads

to the fact that under the action of the trace of the monodromy matrix on the vectors

B̃(u1) . . . B̃(un)|0〉, some contributions cancel out. In models that are described by the

MABA, such a cancellation is no longer valid. Thus, additional contributions should be

explicitly calculated. Our second proof provides a tool for this and gives, in a more explicit

way, the form conjectured in [13].

This paper is organized as follows. In section 2 we introduce a relevant notation and

recall the classical scheme of the ABA. In section 3 we present the new scheme of the

ABA for the monodromy matrix (1.3) and give the elementary proof of (1.4). Section 4 is

devoted to the second proof. The most complex part of it is moved to appendix A.

2 Algebraic Bethe Ansatz

We briefly recall the classical scheme of the ABA (see [2–4] for more details). The main

objects of this method are a monodromy matrix T (u), an R-matrix, and a vacuum vector
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|0〉 (referent state). In the case under consideration the monodromy matrix is a 2 × 2

matrix (1.1), whose entries are operators acting in some Hilbert space H. Commutation

relations between Tij are given by an RTT -relation

R(u, v)
(
T (u)⊗ I

)(
I ⊗ T (v)

)
=
(
I ⊗ T (v)

)(
T (u)⊗ I

)
R(u, v), (2.1)

where R-matrix R(u, v) is a 4 × 4 c-number matrix satisfying the Yang-Baxter equation.

In particular, we consider

R(u, v) = I + g(u, v)P, g(u, v) =
c

u− v
. (2.2)

Here I is the identity matrix, P is the permutation matrix and c is a constant. It follows

immediately from (2.1) that a transfer matrix T (z) = trT (z) = A(z) + D(z) possesses

a property [T (y), T (z)] = 0 for arbitrary y and z, and thus, it can be considered as a

generating function of integrals of motion of a quantum integrable model.

Let a(z) and d(z) be some functions that depend on a particular model. We assume

that there exists a vacuum vector |0〉 ∈ H such that

A(z)|0〉 = a(z)|0〉, D(z)|0〉 = d(z)|0〉, C(z)|0〉 = 0. (2.3)

The ABA allows one to find the eigenvectors of the transfer matrix. These vectors are

commonly called on-shell Bethe vectors. Within the framework of this method, the states

of the space H are generated by multiple action of the operator B(u) on the vacuum vector

|0〉 as in (1.2).

Before describing the basic procedure of the ABA, we introduce a new notation. First

of all, we need one more rational function

f(u, v) = 1 + g(u, v) =
u− v + c

u− v
. (2.4)

Below we will consider a set of parameters {u1, . . . , un}, which we denote by a bar: ū =

{u1, . . . , un}. We agree upon that the notation ūk refers to a set that is complementary to

the element uk, that is, ūk = ū \ uk. We use a shorthand notation for the products over

the sets ū and ūk:

B(ū) =

n∏
j=1

B(uj), f(z, ū) =

n∏
j=1

f(z, uj), f(ūk, uk) =

n∏
j=1
j 6=k

f(uj , uk), (2.5)

and so on. Note that due to commutativity of the B-operators the first product in (2.5) is

well defined.

Now we are in position to describe the classical result of the ABA [2–4]. We are looking

for the eigenstates of the transfer matrix in the form

|Ψn(ū)〉 = B(ū)|0〉, n = 0, 1, . . . . (2.6)

If the parameters ū are generic complex numbers, then the state (2.6) is called an off-shell

Bethe vector. However, if the parameters ū satisfy a system of Bethe equations

a(uk)f(ūk, uk) = d(uk)f(uk, ūk), k = 1, . . . , n, (2.7)
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then the vector |Ψn(ū)〉 becomes an on-shell Bethe vector, that is, an eigenvector of the

transfer matrix.

The proof of this statement is based on the commutation relations between the oper-

ators A(z), D(z), and B(ū). Namely, if the R-matrix has the form (2.2), then

A(z)B(ū) = B(ū)A(z)f(ū, z) +

n∑
k=1

B(z)B(ūk)A(uk)g(z, uk)f(ūk, uk),

D(z)B(ū) = B(ū)D(z)f(z, ū) +

n∑
k=1

B(z)B(ūk)D(uk)g(uk, z)f(uk, ūk).

(2.8)

We stress that equations (2.8) are direct consequences of the RTT -relation (2.1).

Acting with equations (2.8) on |0〉 and using (2.3) we obtain

T (z)B(ū)|0〉 = Λ0B(ū)|0〉+
n∑

k=1

ΛkB(ūk)B(z)|0〉, (2.9)

where
Λ0 = a(z)f(ū, z) + d(z)f(z, ū),

Λk = g(z, uk)
(
a(uk)f(uj , uk)− d(uk)f(uk, ūk)

)
, k = 1, . . . , n.

(2.10)

It is clear that a requirement Λk = 0 for k = 1, . . . , n is equivalent to the system of Bethe

equations (2.7). Then it follows from (2.9) that the vector B(ū)|0〉 is the eigenvector of the

transfer matrix T (z) with the eigenvalue Λ0.

3 Elementary proof

Let κ1 and κ2 be a c-number 2 × 2 matrices, such that [R(u, v), κi ⊗ κi] = 0, for i = 1, 2.

Then, it is well known (see e.g. [2–4]) that a twisted monodromy matrix T̃ (u) = κ1T (u)κ2

also satisfies the RTT -relation (2.1). It is easy to see that in the case of the R-matrix (2.2)

the condition [R(u, v), κi ⊗ κi] = 0 holds for any κi ∈ gl2. Therefore, the R-matrix (2.2) is

called gl2-invariant R-matrix.

Consider a special twist (1.3), where κ is an invertible matrix. As we have already

mentioned, this twist transformation preserves the transfer matrix T (z). However, if the

twist matrix κ is not diagonal, then the entries of the twisted monodromy matrix (1.3) are

linear combinations of the original A, B, C, and D operators. Thus, their actions on the

vacuum vector |0〉 are no longer given by equations (2.3). Nevertheless, if κ11 6= 0, then the

on-shell Bethe vectors can be presented in terms of the B̃ operators as in (1.4), provided

the parameters ū satisfy the same system of Bethe equations (2.7).

At the first sight equation (1.4) look strange and even mysterious, as the vector B̃(ū)|0〉
is a linear combination of states of the form (2.6), in which the states depend on all possible

subsets of the set ū. However, from the point of view of the ABA, this result directly follows

from the RTT -relations (2.1) and the fact that tr T̃ (u) = trT (u). It is valid for much wider

class of models, but not only for spin chains.
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Let us turn back to the twisted monodromy matrix (1.3) and consider the action of

the new diagonal operators Ã(z) and D̃(z) on the vacuum vector. Let

κ =

(
κ11 κ12

κ21 κ22

)
, (3.1)

where κ is invertible and κ11 6= 0. Without loss of generality, we assume that det κ = 1.

Proposition 1. The new operators (1.3) act on the vacuum vector |0〉 as follows:

Ã(z)|0〉 = a(z)|0〉 − κ21

κ11
B̃(z)|0〉, D̃(z)|0〉 = d(z)|0〉+

κ21

κ11
B̃(z)|0〉. (3.2)

Proof. It follows from (1.3) that

Ã(z) = κ11κ22A(z)− κ11κ21B(z) + κ12κ22C(z)− κ12κ21D(z), (3.3)

D̃(z) = κ11κ22D(z) + κ11κ21B(z)− κ12κ22C(z)− κ12κ21A(z), (3.4)

and

B̃(z) = κ2
11B(z) + κ11κ12

(
D(z)−A(z)

)
− κ2

12C(z). (3.5)

Equation (3.5) shows the importance of the condition κ11 6= 0. Otherwise, for κ11 = 0,

the new creation operator B̃(z) would be proportional to the annihilation operator C(z).

Acting with (3.3)–(3.5) on the vacuum vector via (2.3) we after elementary linear algebra

arrive at (3.2).

We can explicitly see that the vacuum vector |0〉 remains the eigenvector of the transfer

matrix and additional terms in the actions of the new diagonal operators Ã(z) and D̃(z)

compensate each other. We will show that the same compensation takes place in the action

of the transfer matrix on the state B̃(ū)|0〉 with arbitrary parameters ū.

Since the twisted monodromy matrix T̃ (z) satisfies the RTT -relation (2.1), we imme-

diately obtain commutation relations of the operators Ã and D̃ with the product of the

operators B̃. They are given by equations (2.8), in which one should replace {A,D,B} with

{Ã, D̃, B̃}. Acting with these formulas on the vacuum vector we arrive at the following

Proposition 2. The actions of the new operators Ã(z) and D̃(z) on the state B̃(ū)|0〉 are

given by

Ã(z)B̃(ū)|0〉 = − κ21

κ11
B̃(z)B̃(ū)|0〉+ a(z)f(ū, z)B̃(ū)|0〉

+

n∑
k=1

g(z, uk)a(uk)f(ūk, uk)B̃(z)B̃(ūk)|0〉, (3.6)

D̃(z)B̃(ū)|0〉 =
κ21

κ11
B̃(z)B̃(ū)|0〉+ d(z)f(z, ū)B̃(ū)|0〉

+

n∑
k=1

g(uk, z)d(uk)f(uk, ūk)B̃(z)B̃(ūk)|0〉. (3.7)
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Proof. Let us consider the first action. Due to the first equation (2.8) we have

Ã(z)B̃(ū)|0〉 = f(ū, z)B̃(ū)Ã(z)|0〉+

n∑
k=1

g(z, uk)f(ūk, uk)B̃(z)B̃(ūk)Ã(uk)|0〉. (3.8)

Now we act with Ã(z) and Ã(uk) on |0〉 via (3.2):

Ã(z)B̃(ū)|0〉 = a(z)f(ū, z)B̃(ū)|0〉+

n∑
k=1

a(uk)g(z, uk)f(ūk, uk)B̃(z)B̃(ūk)|0〉

− κ21

κ11

(
f(ū, z) +

n∑
k=1

g(z, uk)f(ūk, uk)

)
B̃(z)B̃(ū)|0〉. (3.9)

We see that in comparison with the usual action of the operator A(z) on an off-shell Bethe

vector B(ū)|0〉 we obtain an additional contribution with n + 1 operators B̃. This new

term arises due to the modified action on the vacuum vector (3.2). One can easily convince

himself that

f(ū, z)− 1 =
n∑

k=1

g(uk, z)f(ūk, uk), (3.10)

because the r.h.s. of (3.10) is nothing but a partial fraction decomposition of the l.h.s.

Thus, using (3.10) we immediately obtain the result.

The action (3.7) can be considered exactly in the same manner. In this case one should

use a partial fraction decomposition

f(z, ū)− 1 =
n∑

k=1

g(z, uk)f(uk, ūk). (3.11)

Thus, the proof of proposition 2 is completed.

Theorem 3.1. The action of the transfer matrix T (z) on the state B̃(ū)|0〉 reads

T (z)B̃(ū)|0〉 = Λ0B̃(ū)|0〉+
n∑

k=1

ΛkB̃(z)B̃(ūk)|0〉, (3.12)

where Λ0 and Λk are given by (2.10).

Proof. This theorem is a direct consequence of proposition 2 and the fact that the twist

transformation (1.3) preserves the transfer matrix.

Thus, theorem 3.1 states that the action of the transfer matrix T (z) on B̃(ū)|0〉 is given

by the same formula as the action of T (z) on B(ū)|0〉 for arbitrary parameters ū. Then it

becomes obvious that if the Bethe equations (2.7) are fulfilled, then the vector B̃(ū)|0〉 is

proportional to the on-shell Bethe vector B(ū)|0〉 and corresponds to the same eigenvalue

Λ0 (2.10). We also would like to stress that our proof is based only on the commutation

relations (2.1) and the standard property of the vacuum vector (2.3). We did not use any

specific representation of the RTT -algebra.

The fact that the vector B̃(z)B̃(ū)|0〉 does not contribute to the action (3.12) also can

be seen from rather general consideration. Original operator B(u) acting on |0〉 creates a

– 6 –
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state with one excitation usually called a magnon. Action of n operators B gives a state

with n magnons. The action of the operator tr T (z) on B(ū)|0〉 with a set ū of cardinality

#ū = n does not change the number of magnons, what can be easily seen from (2.9). At

the same time, the operator B̃(u) is a linear combination (3.5). Therefore, B̃(ū)|0〉 is a

linear combination of states with a different number of magnons. It is clear, however, that

the maximal number of magnons in an individual state of this linear combination cannot

exceed n. It is also clear that the action of the operator tr T (z) on B̃(ū)|0〉 cannot change

this maximal number. On the other hand, the vector B̃(z)B̃(ū)|0〉 contains a state with

n+1 magnons. Due to the above considerations, the action of tr T (z) cannot produce such

the state. Hence, the coefficient of B̃(z)B̃(ū)|0〉 must vanish, as we have seen by the direct

calculation.

This consideration stresses once more the importance of the condition tr T̃ (z) = trT (z).

4 Second proof

In this section we give one more proof of the property (1.4). To do this, we need to improve

our convention on the shorthand notation. First, we introduce a rational function h(u, v) as

h(u, v) =
f(u, v)

g(u, v)
=
u− v + c

c
. (4.1)

We will consider partitions of the sets ū and w̄ = z∪ū into subsets. A notation ū⇒ {ūI, ūII}
means that the set ū is divided into two subsets ūI and ūII such that ūI ∪ ūII = ū and

ūI ∩ ūII = ∅. Similar notation will be used for other partitions. The order of the elements

in each subset is not essential. We extend the convention on the shorthand notation (2.5)

to the products over subsets, for example,

a(ūI) =
∏

uj∈ūI

a(uj), d(w̄II) =
∏

wj∈w̄II

d(wj), f(ūI, ūIII) =
∏

uj∈ūI

∏
uk∈ūIII

f(uj , uk).

(4.2)

By definition, any product over the empty set is equal to 1. A double product is equal to

1 if at least one of the sets is empty.

To illustrate the use of this notation we give here equations (2.8) (applied to the

vacuum vector |0〉) as sums over partitions. Let w̄ = z ∪ ū. Then

A(z)B(ū)|0〉 =
∑
w̄

a(w̄I)
f(w̄II, w̄I)

h(z, w̄I)
B(w̄II)|0〉,

D(z)B(ū)|0〉 =
∑
w̄

d(w̄I)
f(w̄I, w̄II)

h(w̄I, z)
B(w̄II)|0〉.

(4.3)

The subscript of the sum symbol shows that the sums are taken over partitions of the set

w̄. In (4.3) this set is divided into subsets w̄ ⇒ {w̄I, w̄II} such that #w̄I = 1. The sum is

taken over all possible partitions of this type.

It is easy to see that these equations immediately follow from (2.8). Indeed, if w̄I = z,

then w̄II = ū, and using h(z, z) = 1 we reproduce the first terms in (2.8). If w̄I = uk, where

k = 1, . . . , n, then w̄II = z ∪ ūk, and we reproduce the sums over k in (2.8).
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Similarly, one can write down the action of the operator C(z) on an off-shell Bethe

vector B(ū)|0〉 (see e.g. [3, 14])

C(z)B(ū)|0〉 =
∑
w̄

d(w̄I)a(w̄II)
f(w̄I, w̄III)

h(w̄I, z)

f(w̄III, w̄II)

h(z, w̄II)
f(w̄I, w̄II)B(w̄III)|0〉. (4.4)

Here the sum is taken over partitions w̄ ⇒ {w̄I, w̄II, w̄III} such that #w̄I = #w̄II = 1.

Now we give an explicit representation of the vector B̃(ū)|0〉 in terms of the ordinary

off-shell Bethe vectors.

Proposition 3. Let #ū = n. Then

B̃(ū)|0〉 = (κ11κ12)n
∑
ū

(−1)#ūII

(
κ11

κ12

)#ūIII

d(ūI)a(ūII)f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII)B(ūIII)|0〉,

(4.5)

where the sum is taken over all partitions ū⇒ {ūI, ūII, ūIII}.

The proof of this proposition is quite involved, therefore, we give it in appendix A.

We have already mentioned that the vector B̃(ū)|0〉 is a linear combination of the

ordinary off-shell Bethe vectors. Proposition 3 explicitly describes this linear combination.

Using this explicit representation, we can easily show that only the term with #ūIII = n

survives in the sum (4.5), if the set ū satisfies the Bethe equations.

First we prove an auxiliary lemma.

Lemma 4.1. Let x̄ be a set of arbitrary complex numbers {x1, . . . , xl}. Then∑
#x̄II=s

f(x̄II, x̄I) =

(
l

s

)
. (4.6)

Here the sum over partitions is taken under the restriction #x̄II = s, where s ∈ {0, 1, . . . , l}.
We also used the shorthand notation for the double products of the f -functions over the

subsets x̄I and x̄II.

Proof. Clearly, the sum over partitions in (4.6) gives a rational function of x̄. This rational

function has no poles in the finite complex plane, in spite of individual terms of the sum

may have singularities at xi = xj . Indeed, let, for instance, x1 → x2. Then the pole occurs

if either x1 ∈ x̄I and x2 ∈ x̄II or x1 ∈ x̄II and x2 ∈ x̄I. Consider the first case. Then we can

set x̄I = x1 ∪ x̄i and x̄II = x2 ∪ x̄ii. The contribution corresponding to this partition takes

the form

f(x1, x2)
∑

#x̄ii=s−1

f(x̄ii, x1)f(x2, x̄i)f(x̄ii, x̄i), (4.7)

where the sum is taken over partitions x̄ \ {x1, x2} ⇒ {x̄i, x̄ii} such that #x̄ii = s− 1.

In the second case we set x̄I = x2∪x̄i and x̄II = x1∪x̄ii. The contribution corresponding

to this partition takes the form

f(x2, x1)
∑

#x̄ii=s−1

f(x̄ii, x2)f(x1, x̄i)f(x̄ii, x̄i), (4.8)
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where the sum is taken over the same partitions as in (4.7). Obviously, the poles at x1 → x2

in (4.7) and (4.8) cancel each other.

It is also easy to see that the sum (4.6) has a finite limit, if any xj →∞. Hence, this

function is a constant, that does not depend on any xj . Then sending all xj → ∞ (for

instance, xj = jL, L→∞) we make all the f -functions equal to 1. The sum becomes equal

to the number of partitions of l elements into two subsets with fixed number of elements

in the subset x̄II = s.

Let us turn back to (4.5). Consider an arbitrary partition ū⇒ {ūI, ūII, ūIII}. Taking a

product of the Bethe equations (2.7) over subset ūII we obtain

a(ūII)f(ūI, ūII)f(ūIII, ūII) = d(ūII)f(ūII, ūI)f(ūII, ūIII). (4.9)

Substituting the product a(ūII) from this equation into (4.5) we find

B̃(ū)|0〉 = (κ11κ12)n
∑
ū

(−1)#ūII

(
κ11

κ12

)#ūIII

d(ūI)d(ūII)f(ūII, ūI)f(ūII, ūIII)f(ūI, ūIII)B(ūIII)|0〉.

(4.10)

Let ū0 = ūI ∪ ūII. Then we recast (4.10) as follows:

B̃(ū)|0〉 = (κ11κ12)n
∑
ū

(
κ11

κ12

)#ūIII

d(ū0)f(ū0, ūIII)B(ūIII)|0〉
∑
ū0

(−1)#ūIIf(ūI, ūII).

(4.11)

Here the sum over partitions is taken in two steps. First, we divide the set ū into subsets

ū⇒ {ū0, ūIII}. Then the subset ū0 is divided once more as ū0 ⇒ {ūI, ūII}.
It is easy to see that the sum over partitions ū0 ⇒ {ūI, ūII} vanishes, if ū0 6= ∅. Indeed,

due to lemma 4.1 we have

∑
ū0

(−1)#ūIIf(ūII, ūI) =

#ū0∑
s=0

(−1)s
∑
ū0

#ūII=s

f(ūII, ūI) =

#ū0∑
s=0

(−1)s
(

#ū0

s

)
= (1− 1)#ū0 .

(4.12)

Thus, a non-vanishing contribution to the sum (4.11) occurs for ū0 = ∅ only. This

implies ūIII = ū, and we arrive at

B̃(ū)|0〉 = (κ11)2nB(ū)|0〉, (4.13)

provided the Bethe equations (2.7) are fulfilled.

Conclusion. In this paper we have studied equation (1.4) within the framework of the

ABA. We have shown that it holds for an arbitrary ABA solvable model possessing the

gl2-invariant R-matrix. Furthermore, we have shown that the action of the twisted transfer

matrix T (z) on the vectors B̃(ū)|0〉 and B(ū)|0〉 are given by the same formulas for arbitrary

parameters ū. Therefore, it is not surprising that both these vectors become on-shell, if

the Bethe equations are fulfilled.

Note that in spite of the actions of the twisted operators T̃ij(u) on the vacuum vector

are different form the ones of the original Tij(u), most of the standard tools of the ABA are
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still available. This fact is of great importance for application of certain results of this paper

to MABA, in which the twist transformation of the monodromy matrix does not preserve

its trace. In particular, in this paper, we computed the multiple action of the B̃ operator

on the vacuum vector in terms of the standard off-shell Bethe vectors. Using exactly the

same technics one can find analogous actions of other entries of the twisted monodromy

matrix T̃ (u) on the states B̃(ū)|0〉 and prove, in an explicit form, a conjecture of [13]. In

their turn, these action formulas lead to new multiple action formulas [14], in which one

deals with products of T̃ij(zk) acting on B̃(ū)|0〉. These multiple action formulas are very

useful for the calculation of Bethe vectors scalar products, form factors, and correlation

functions and will be given in a forthcoming publication.

In the present paper we considered integrable models with gl2-invariant R-matrix only.

However, most of the results of the work [1] concerns the spin chains with the symmetry

of higher rank. In this case, the authors of [1] succeeded to find an operator Bgood(u)

such that, on the one hand, it allows one to build the SoV basis, and, on the other hand,

it allows one to construct on-shell Bethe vectors in the same manner as in the case of

the gl2 based models. This remarkable property of Bgood(u) was checked for numerous

examples, however, it was not proved. An analytical proof of this property for the models

with gl3-invariant R-matrix will be given in a forthcoming publication.
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A Proof of proposition 3

We use induction over n = #ū. For n = 1, we have from (2.3) and (3.5)

B̃(u)|0〉 = κ11κ12

(
κ11

κ12
B(u)− a(u) + d(u)

)
|0〉. (A.1)

Thus, proposition 3 is true for n = 1. Suppose that it holds for some n − 1. Then due

to (3.5) we have

B̃(un)B̃(ūn)|0〉 = (κ11κ12)n
(
κ11

κ12
B(un)−A(un) +D(un)− κ12

κ11
C(un)

)
×
∑
ūn

(−1)#ūII

(
κ11

κ12

)#ūIII

d(ūI)a(ūII)f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII)B(ūIII)|0〉

(A.2)

Here the subscript ūn of the sum symbol indicates that the sum is taken over partitions of

the subset ūn = ū \ {un} ⇒ {ūI, ūII, ūIII}. Thus, we can present this action in the form

B̃(ū)|0〉 = (κ11κ12)n(Λ[B] + Λ[A] + Λ[D] + Λ[C]), (A.3)
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where Λ’s are the contributions of four operators in (A.2):

Λ[B] =
κ11

κ12
B(un)B̃(ūn)|0〉, Λ[A] = −A(un)B̃(ūn)|0〉,

Λ[C] = −κ12

κ11
C(un)B̃(ūn)|0〉, Λ[D] = D(un)B̃(ūn)|0〉.

(A.4)

Proposition 4. The contributions defined by (A.4) have the form

Λ[B] =
∑
ū

Fpart(ūI, ūII, ūIII)

f(ūI, un)f(un, ūII)
, (A.5)

Λ[A] =
∑
ū

Fpart(ūI, ūII, ūIII)

f(ūI, un)

(
1− 1

f(un, ūII)

)
, (A.6)

Λ[D] =
∑
ū

Fpart(ūI, ūII, ūIII)

f(un, ūII)

(
1− 1

f(ūI, un)

)
, (A.7)

Λ[C] =
∑
ū

Fpart(ūI, ūII, ūIII)

(
1− 1

f(un, ūII)

)(
1− 1

f(ūI, un)

)
, (A.8)

where

Fpart(ūI, ūII, ūIII) = (−1)#ūII

(
κ11

κ12

)#ūIII

d(ūI)a(ūII)B(ūIII)|0〉f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII).

(A.9)

The sums in (A.5)–(A.8) are taken over all possible partitions ū⇒ {ūI, ūII, ūIII}.

Observe that taking the sum of all contributions (A.5)–(A.8) we immediately arrive at

the assertion of proposition 3:

Λ[B] + Λ[A] + Λ[D] + Λ[C] =
∑
ū

Fpart(ūI, ūII, ūIII). (A.10)

Thus, we should prove equations (A.5)–(A.8).

Proof. We begin with the simplest contribution Λ[B]. Obviously,

Λ[B] =
∑
ūn

(−1)#ūII

(
κ11

κ12

)#ūIII+1

d(ūI)a(ūII)B(un)B(ūIII)|0〉f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII).

(A.11)

Setting here ūiii = un ∪ ūIII we obtain

Λ[B] =
∑
ū

(−1)#ūII

(
κ11

κ12

)#ūiii

d(ūI)a(ūII)B(ūiii)|0〉
f(ūI, ūII)f(ūI, ūiii)f(ūiii, ūII)

f(ūI, un)f(un, ūII)
. (A.12)

Here in distinction of (A.11) we have the sum over partitions of the complete set ū. How-

ever, the terms of the sum vanish as soon as un ∈ {ūI ∪ ūII}. This is due to the fact that

1/f(ūI, un)f(un, ūII) = 0, if un ∈ {ūI ∪ ūII}.
Equation (A.12) coincides with (A.5) up to the labels of the subsets.
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Consider now the contribution of Λ[A]. Using the first equation (4.3) we obtain

Λ[A] =
∑
ūn

(−1)#ūII+1

(
κ11

κ12

)#ūIII

d(ūI)a(ūII)f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII)

×
∑

un∪ūIII

a(ūi)
f(ūii, ūi)

h(un, ūi)
B(ūii)|0〉. (A.13)

Here the sum over partitions is organized in two steps. First, we have the standard parti-

tions ūn ⇒ {ūI, ūII, ūIII}. Then we combine the element un with the subset ūIII and take the

sum over partitions {un∪ūIII} ⇒ {ūi, ūii} such that #ūi = 1. Substituting ūIII = {ūi∪ūii}\un
in (A.13) we obtain

Λ[A] =
∑
ū

(−1)#ūII+1

(
κ11

κ12

)#ūIII

d(ūI)a(ūII)
f(ūI, ūII)f(ūI, ūi)f(ūI, ūii)f(ūi, ūII)f(ūii, ūII)

f(ūI, un)f(un, ūII)

× f(ūii, ūi)

h(un, ūi)
B(ūii)a(ūi)|0〉, (A.14)

where the sum now is taken over partitions of the complete set ū ⇒ {ūI, ūII, ūi, ūii} such

that #ūi = 1. Note that in the sum (A.13), we had un /∈ {ūI ∪ ūII}. In the sum (A.14) this

restriction formally is absent, however the terms of the sum vanish as soon as un ∈ {ūI∪ūII}.
This is due to the fact that 1/f(ūI, un)f(un, ūII) = 0, if un ∈ {ūI ∪ ūII}.

Setting here {ūi ∪ ūII} = ū0 we arrive at

Λ[A] = lim
z→un

∑
ū

(−1)#ū0

(
κ11

κ12

)#ūIII

d(ūI)a(ū0)B(ūii)|0〉
f(ūI, ū0)f(ūI, ūii)f(ūii, ū0)

f(ūI, z)f(z, ū0)

×
∑
ū0

f(ūi, ūII)g(z, ūi). (A.15)

Here we first have the sum over partitions ū ⇒ {ūI, ū0, ūIII}, and then the subset ū0 is

divided once more as ū0 ⇒ {ūi, ūII} such that #ūi = 1. Note, that we have replaced un
by z and consider the limit z → un. This is because the sum over partitions of the set ū0

becomes singular, if un ∈ ū0. Of course, this singularity eventually is compensated by the

product 1/f(un, ū0), however, we should replace un by z in the intermediate formula (A.15).

The sum over partitions of the subset ū0 is a partial fraction decomposition

f(z, ū0)− 1 =
∑
ū0

f(ūi, ūII)g(z, ūi). (A.16)

Substituting this into (A.15) and setting z = un we find

Λ[A] =
∑
ū

(−1)#ū0

(
κ11

κ12

)#ūii

d(ūI)a(ū0)B(ūii)|0〉

× f(ūI, ū0)f(ūI, ūii)f(ūii, ū0)

f(ūI, un)

(
1− 1

f(un, ū0)

)
. (A.17)

This equation coincides with (A.6) up to the labels of the subsets.
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Calculation of the contribution Λ[D] can be done exactly in the same manner via

the second equation (4.3). Therefore, we omit the details and pass to the calculating the

contribution Λ[C]. Using (4.4) we obtain

Λ[C] =
∑
ūn

(−1)#ūII+1

(
κ11

κ12

)#ūIII−1

d(ūI)a(ūII) f(ūI, ūII)f(ūI, ūIII)f(ūIII, ūII) (A.18)

×
∑

{un∪ūIII}

f(ūi, ūii)f(ūi, ūiii)f(ūiii, ūii)

h(ūi, un)h(un, ūii)
d(ūi)a(ūii)B(ūiii)|0〉. (A.19)

Here we again deal with the sum over partitions in two steps. First, we have the partitions
ūn ⇒ {ūI, ūII, ūIII}. Then we combine the element un with the subset ūIII and take the
sum over partitions {un ∪ ūIII} ⇒ {ūi, ūii, ūiii} such that #ūi = #ūii = 1. Substituting
ūIII = {ūi ∪ ūii ∪ ūiii} \ un in (A.19) we obtain a sum over partitions of the complete set ū:

Λ[C] =
∑
ū

(−1)#ūII+1

(
κ11

κ12

)#ūiii

d(ūI)d(ūi)a(ūII)a(ūii)B(ūiii)|0〉

f(ūI, ūII)f(ūI, ūi)f(ūI, ūii)f(ūI, ūiii)f(ūi, ūII)f(ūii, ūII)f(ūiii, ūII)f(ūi, ūii)f(ūi, ūiii)f(ūiii, ūii)

f(ūI, un)f(un, ūII)h(ūi, un)h(un, ūii)
.

(A.20)

Here the sum is taken over partitions ū ⇒ {ūI, ūII, ūi, ūii, ūiii} such that #ūi = #ūii = 1.

The restriction un /∈ {ūI∪ ūII} automatically holds, as it was in the case of the contribution

Λ[A]. Setting {ūI ∪ ūi} = ū0 and {ūII ∪ ūii} = ū0′ we find

Λ[C] = lim
z→un

∑
ū

(−1)ū0′

(
κ11

κ12

)#ūiii

d(ū0)a(ū0′)B(ūiii)|0〉
f(ū0, ū0′)f(ū0, ūiii)f(ūiii, ū0′)

f(ū0, z)f(z, ū0′)

×
∑
ū0

f(ūI, ūi)g(ūi, z)
∑
ū0′

f(ūii, ūII)g(z, ūii). (A.21)

Here we first have the sum over partitions ū ⇒ {ū0, ū0′ , ūIII}, and then the subsets ū0

and ū0′ are respectively divided once more as ū0 ⇒ {ūi, ūI} and ū0′ ⇒ {ūii, ūII} such that

#ūi = #ūii = 1. We also replaced un by z for the same reason as in (A.15).

The sum over partitions of the subset ū0′ was already considered (see (A.16)), the sum

over partitions of the subset ū0 is the following partial fraction decomposition:∑
ū0

f(ūI, ūi)g(ūi, z) = f(ū0, z)− 1. (A.22)

Substituting this into (A.21) and setting z = un we arrive at

Λ[C] =
∑
ū

(−1)ū0′

(
κ11

κ12

)#ūiii

d(ū0)a(ū0′)B(ūiii)|0〉 f(ū0, ū0′)f(ū0, ūiii)f(ūiii, ū0′)

×
(

1− 1

f(ū0, un)

)(
1− 1

f(un, ū0′)

)
, (A.23)

what coincides with (A.8) up to the labels of the subsets.

Thus, all the four actions (A.5)–(A.8) are proved, and taking the sum of these equations

we obtain the statement of proposition 3 for #ū = n. This completes the inductive step.
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