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1 Introduction

Since the seminal paper of McKenzie (1985), time series models for nonnegative integers have

become more and more popular in domains such as marketing [Bockenholt (1998)], economics

[Blundell et al. (1999)], finance [Heinen and Rengifo (2007)] and insurance [Gouriéroux and Jasiak

(2004)]. There are two approaches in the literature. The first one is based on the (Poisson, first-

order) Integer Autoregressive [INAR(1)] process [McKenzie (1985), (1988), Al-Osh and Azaid

(1987)]. This model has the following advantages: i) the stationary distribution is tractable and

ii) the multi-step-ahead predictive density has a closed form expression. However the INAR(1)

process features conditional under-dispersion and is thus not suitable for data with conditional

over-dispersion.

Another popular model is the Poisson autoregression [see Rydberg and Shephard (2000),

Fokianos et al. (2009)] as well as its higher-order extensions called INGARCH [Ferland et

al. (2006)]. Such models assume that, given the past history Xt, variable Xt+1 is Poisson

distributed. Thus the Poisson autoregression features neither conditional over-dispersion, nor

under-dispersion. Moreover it does not allow for tractable multi-step-ahead nonlinear prediction

formulas.

Although many extensions of the univariate INAR(1) and Poisson autoregressions have been

proposed to allow for more flexible conditional or marginal distributions [see McKenzie (1986),

Zhu (2011)], the literature on multivariate count processes is rather sparse. The existing models

either are not suitable for conditional over-dispersed data [see Pedeli and Karlis (2013) for bi-

variate INAR and Doukhan et al. (2017) for bivariate Poisson autoregression], or do not allow

for tractable stationarity condition and forecasting formulas [see Heinen and Rengifo (2007);

Doukhan et al. (2017)].

The aim of this paper is to introduce a new family of (univariate and bivariate) processes,

called the Negative Binomial AutoRegressive (NBAR) processes, which solves the two difficulties

above. We explore the Poisson-gamma conjugacy to define a univariate count process with a

gamma type intermediate stochastic intensity process, and then use the matrix extension of the

gamma distribution, that is the Wishart distribution, to define a bivariate count process. We

show that the NBAR process belongs to the class of Compound AutoRegressive (CaR) processes,
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which facilitates: i) the analysis of stationarity; ii) the Laplace transform based GMM estimation;

iii) the nonlinear probabilistic forecasting at any horizon.

The paper is organized as follows. In Section 2, we introduce the univariate NBAR process.

The univariate model is extended to the bivariate case in Section 3. Section 4 discusses the

parameter identification and statistical inference of the NBAR model. Section 5 proposes a real

data application to analyze the diffusion of chickenpox in neighbouring French regions. Section

6 concludes. Proofs are gathered in Appendices.

2 Univariate NBAR process

In this section we introduce a first-order Markov process for univariate count data called Negative

Binomial Autoregressive process (NBAR). This terminology is motivated by the property that

both the transition distribution at horizon 1 and the stationary distribution (i.e. the conditional

distribution at infinite horizon) are negative binomial.

2.1 Dynamic specification

The model is based on the Poisson-gamma conjugacy, reviewed in Appendix 1. We denote by

P(λ) the Poisson distribution with parameter λ, by γ(δ, β, c) the gamma distribution with degree

of freedom δ, noncentrality parameter β and scale parameter c, and by NB(δ, β) the negative

binomial (NB) distribution with positive parameters δ, β. This parametrization relies on the

interpretation of the NB distribution as a Poisson distribution with gamma stochastic intensity,

with δ the degree of freedom of the gamma distribution, and β the scale of this intensity. The

process (Xt) is defined jointly with a real positive intensity process (Yt) in the following way:

Definition 1. The process (Xt) is NBAR if:

i) the conditional distribution of Xt+1 given Yt+1, Xt is Poisson P(βYt+1),

ii) the conditional distribution of Yt+1 given Xt, Yt is centered gamma with shape parameter

δ +Xt and scale parameter c: γ(δ +Xt, 0, c),

where Xt = (Xt, Xt−1, ..., X1, ...), Yt = (Yt, Yt−1, ..., Y1, ....), and β, δ, c are positive scalars.
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In other words (Yt+1) is the stochastic intensity of the count Xt+1 at time t+1, which depends

on past count Xt. Thus we have a causal chain :

. . . Xt → Yt+1 → Xt+1 → Yt+2 . . .

In this chain each variable depends on all previous variables via its nearest left neighbor only.

As a consequence, both the count process (Xt) and the intensity process (Yt) are individually

Markov with respect to their own histories and their respective dynamics are the following ones:

Proposition 1. 1. The count process (Xt) is Markov and the conditional distribution Xt+1

given Xt is negative binomial NB(δ +Xt, βc).

2. The intensity process (Yt) is Markov and the conditional distribution of Yt+1 given Yt is

noncentered gamma γ(δ, βYt, c).

Proof. The proposition is an immediate consequence of Property A.1 in Appendix 1.

Such an intensity process (Yt) is called (first order) AutoRegressive Gamma, or ARG(1)

[see Gouriéroux and Jasiak (2006)]. It is the exact time discretization of the continuous time

Cox-Ingersoll-Ross process. Using the iterated expectation formula. We have:

E[Yt+1|Yt] = E
[
E[Yt+1|Xt]|Yt

]
= E[c(δ +Xt)|Yt] = cδ + βcYt, (2.1)

E[Xt+1|Xt] = E
[
E[Xt+1|Yt]|Xt

]
= E[βYt|Xt] = βc(δ +Xt). (2.2)

Both processes (Xt) and (Yt) have a (weak) linear AR(1) representation, with the same positive

autocorrelation coefficient ρ = βc, if the latter is strictly smaller than 1.

The transition distributions are characterized by their (real) Laplace transforms1, that are:

E[exp(−uXt+1)|Xt] = 1
[1 + βc(1− exp(−u))]δ+Xt , ∀u ≥ 0, (2.3)

E[exp(−uYt+1)|Yt] = 1
(1 + cu)δ exp(− βcu

1 + cu
Yt), ∀u ≥ 0. (2.4)

1Let us recall that the Laplace transform with nonnegative argument characterizes the distribution of a positive
variable [Feller (1968)].
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Both log-Laplace transforms are affine functions of the conditioning variable. Thus both

processes are Compound AutoRegressive (CaR) [Darolles, Gouriéroux, Jasiak (2006)], also called

affine processes in the continuous time framework [see Duffie, Filipovic, Schachermayer (2003)]

and thinning based processes in the count process literature [see Steutel and van Harn (1979),

Latour (1998), Zhu and Joe (2010)]. The following corollary explores the link between the NBAR

process and its two alternatives within the CaR framework, that are the INAR(1) process and

the (linear) Poisson autoregression.

Corollary 1. The NBAR process satisfies the representation:

Xt+1 =
Xt∑
i=1

Zi,t+1 + εt+1, (2.5)

where given Xt, variables (Zi,t+1) are i.i.d. with NB(1, βc) distribution (that is a geometric

distribution with probability βc
βc+1), whereas (εt+1) is i.i.d., independent of Zi,t+1, with NB(δ, βc)

distribution.

This result follows from Proposition 1 and the infinite divisibility of the NB distribution.

Conversely, any process (Xt) satisfying (2.5), with Zi,t+1 and εt+1 mutually independent and

independent of Xt, not necessarily negative binomial distributed, is CaR since:

E[e−uXt+1 |Xt] =
(
E[e−uZ1,t+1 ]

)Xt
E[e−uεt+1 ],

is exponential affine in Xt. Thus both INAR(1) and Poisson autoregression are CaR. Indeed:

• The process (Xt) is Poisson INAR(1) if Zi,t+1 follows Bernoulli distribution with parameter

p and εt+1 follows P(λ);

• The process (Xt) is Poisson autoregression if Zi,t+1 follows P(λ0) and εt+1 follows P(λ1).
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2.2 Conditional overdispersion

Because of its stochastic intensity, the NBAR process (Xt) features conditional over-dispersion.

Indeed the conditional variance is

V[Xt+1|Xt] = E
[
V[Xt+1|Xt, Yt+1] | Xt

]
+V

[
E[Xt+1 | Xt, Yt+1] | Xt

]
= βc(δ+Xt)+β2c2(δ+Xt)

Thus the coefficient of (conditional) over-dispersion is:

V[Xt+1|Xt]
E[Xt+1|Xt]

= 1 + βc > 1. (2.6)

It is constant independent of the conditioning variable Xt. The larger the serial correlation

ρ = βc, the more important the conditional over-dispersion.

As a comparison, using the representation (2.5), it is easily checked that a Poisson INAR(1)

process is conditionally under-dispersed, since for such a process:

V[Xt+1|Xt] = p(1− p)Xt + λ ≤ E[Xt+1|Xt] = pXt + λ,

whereas a Poisson autoregression features neither conditional under-dispersion, nor conditional

over-dispersion, since:

E[Xt+1|Xt] = λ0Xt + λ1 = V[Xt+1|Xt].

2.3 Term structure of nonlinear predictions and the stationarity

The advantage of CaR process is to facilitate the computation of nonlinear predictions at any

horizon. Such non-linear forecasts are essential for count data, as linear expectations are incon-

sistent with the integer state space [see McCabe et al. (2011)]. The following proposition is

proved in Appendix 2.
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Proposition 2. At horizon h, the transition of the count process is such that for any u ≥ 0:

E[e−uXt+h |Xt] =

(
1 + ρ

1− ρh−1

1− ρ [1− exp(−u)]
)Xt

(
1 + ρ

1− ρh

1− ρ [1− exp(−u)]
)δ+Xt =

(
1 + βch−1[1− exp(−u)]

)Xt
(

1 + βch[1− exp(−u)]
)δ+Xt , (2.7)

where ρ = βc, and the sequence (ch) is defined by ch = c 1−ρh
1−ρ .

Let us now provide the corresponding h−step-ahead probability mass function (p.m.f.). We

first write the conditional Laplace transform as an infinite sum:

E[exp(−uXt+h)|Xt] =
∞∑
n=0

e−unP[Xt+h = n|Xt]. (2.8)

The RHS of equation (2.8) is analytic in e−u, thus P[Xt+h = n|Xt] is equal to the coefficient of

the term e−nu in the Taylor’s expansion in e−u of the LHS. By equation (2.7), this expansion is

equal to:

(1 + βch−1

1 + βch

)Xt [1− βch−1
1+βch−1

e−u
]Xt

[
1− βch

1+βch e
−u
]δ+Xt

=
(1 + βch−1

1 + βch

)Xt Xt∑
i=0

(
Xt

i

)(
− βch−1

1 + βch−1
e−u

)i ∞∑
j=0

( βch
1 + βch

e−u
)j Γ(δ +Xt + j)

Γ(δ +Xt)j!
.

Thus we have the next corollary:

Corollary 2. The h−step-ahead conditional p.m.f. is given by:

P[Xt+h = n|Xt] =
(1 + βch−1

1 + βch

)Xt min(n,Xt)∑
i=0

[(Xt

i

)(
− βch−1

1 + βch−1

)i( βch
1 + βch

)n−iΓ(δ +Xt + n− i)
Γ(δ +Xt)(n− i)!

]
.

To get the stationarity condition, let us get back to Proposition 2. If ρ < 1, then ch
h∞−−→ c

1−ρ .

Thus for large h, the Laplace transform E[e−uXt+h |Xt] converges to 1
[1+βc(1−e−u)]δ and we get

the next corollary:

Corollary 3. Both the counting process (Xt) and the intensity process (Yt) are strongly station-

ary if ρ = βc < 1. The stationary distributions are the centered gamma distribution γ(δ, 0, c

1− βc )
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for the intensity process, and the negative binomial distribution NB(δ, βc) for the count process,

respectively.

The count process is such that both the short term transition (h = 1) and the long term

transition (h =∞) are negative binomial, which motivates the terminology of NBAR. However,

the transitions at intermediate horizons are not NB.

As an illustration, we plot, in Figure 1, a simulated sample path of the joint process (Xt, Yt)

with parameters set to c = 1, β = 0.69, and δ = 1.3.
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Figure 1: Paths of count process (Xt) (full line) and intensity process (Yt) (dashed line). The
two paths are plotted at the same scale.

In the simulation, the magnitude of the autocorrelation ρ = βc = 0.69 [see equations (2.1),

(2.2)] has been chosen smaller than, but rather close to 1 to ensure stationarity and high large

intensity and count clusterings.

2.4 Comparison with other negative binomial processes

Our model is different from other existing Markov processes with NB stationary distribution.

Most of these models are also based on representation (2.5), but involve rather complicated

p.m.f. for variables εt+1 and/or Zj,t+1. For instance,

• McKenzie (1986) assume that Zj,t+1 is binomial, but εj,t+1 follows a mixture distribution
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of the point mass at zero and a geometric distribution;

• Al-Osh and Aly (1992) assume that the distribution of Zj,t+1 is a mixture of point mass

at zero and a geometric distribution, whereas the distribution of εt is deduced under the

assumption of NB marginal distribution.

• Ristic and Nastić (2009) assume that Zj,t+1 is geometric, but the distribution of εt+1 is a

mixture of two geometric distributions.

• Zhu and Joe (2010) propose a model in which Zj,t+1 and εt+1 have intractable p.m.f. and

are defined via Laplace transforms.

• Finally, Joe (1996) consider a model in which Zj,t+1, j = 1, ... are independent and Bernoulli

distributed conditionally on a stochastic, beta distributed parameter α, whereas εt+1 is NB.

This latter model does not have the representation (2.5) due to the dependence induced by

the common stochastic parameter.

Finally, these models do not reflect the Poisson-gamma mixture interpretation of the NB distri-

bution. As a consequence, none of them allow for tractable higher-horizon nonlinear forecasting

formulas and it is not clear whether they can be extended to the bivariate case.

3 Bivariate NBAR processes

Let us now extend the NBAR process to the bivariate case. In Section 3.1 we first consider a

model in which the two component processes share a single gamma common intensity factor.

Then in Section 3.2 we generalize the approach to a model with a matrix valued common factor,

by using the matrix-variate extension of the gamma distribution, that is the Wishart distribution.

3.1 Bivariate count process with single common intensity factor

3.1.1 The model

Definition 2. The bivariate NBAR process Xt = (X1,t, X2,t)′ with single common intensity

factor Yt is such that:
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• Given Xt, variables Z1,t+1, Z2,t+1, Yt+1 are independent, with gamma conditional distri-

butions γ(δ1 +X1t, c1), γ(δ2 +X2t, c2) and γ(δ3 + α1X1,t + α2X2,t, c3), respectively.

• X1,t+1 and X2,t+1 are independent conditionally on Xt, Yt+1, Z1,t+1, and Z2,t+1. Their

conditional distributions are Poisson, with parameters β1Yt+1 + κ1Z1,t+1 and β2Yt+1 +

κ2Z2,t+1, respectively,

where δ1, δ2, δ3, c1, c2, c3, β1, β2, α1, α2, κ1, κ2 are nonnegative parameters.

Thus both conditional Poisson intensities are sums of two components: the first components

βjYt+1, j = 1, 2, depend on the common factor, whereas the second components κjZj,t+1, j = 1, 2

are conditionally independent and depend only on the past history via the individual count

processes X1t (resp. X2,t). These are the specific intensities.

As in the univariate case, the joint process (Xt) = (X1,t, X2,t) is Markov and we have the

following causal scheme:

X1,t−1 −→ Z1,t −→ X1,t −→ Z1,t+1 −→ X1,t+1

↘ ↗ ↘ ↗

Yt Yt+1

↗ ↘ ↗ ↘

X2,t−1 −→ Z2,t −→ X2,t −→ Z2,t+1 −→ X2,t+1

(2.9)

Example 1: In the special case κ1 = κ2 = 0, α1 = α2 = 1, we can check that given Yt+1,

X1,t+X2,t is P
(
(β1+β2)Yt+1

)
, whereas given X1,t+X2,t, intensity Yt+1 is γ(δ3+X1,t+X2,t, 0, c3).

Thus the sum process (X1,t+X2,t) is univariate NBAR, the intensity process (Yt) is ARG(1), and

the conditional distribution of X1,t given (X1,t + X2,t, Yt) is binomial Bin(X1,t + X2,t,
β1

β1+β2
),

which is independent of Yt.
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3.1.2 Linear prediction

By iterated expectation we derive the linear prediction:

E[Xt+1|Xt] = E[Yt|Xt]

β1

β2

+

κ1δ1c1 + κ1c1X1,t

κ2δ2c2 + κ2c2X2,t


=

κ1c1 + α1β1c3 α1β2c3

α2β1c3 κ2c2 + α2β2c3


︸ ︷︷ ︸

:=A

Xt +

κ1δ1c1 + β1δ3c3

κ2δ2c2 + β2δ3c3

 , (2.10)

The matrix A plays a key role when studying the stationarity properties of the process (see

subsection 3.1.4).

3.1.3 Nonlinear predictions

The conditional Laplace transform of Xt+1 given Xt is:

E[exp(−u1X1,t+1 − u2X2,t+1)|Xt] = exp
(
− a1(u1, u2)X1,t − a2(u1, u2)X2,t − b(u1, u2)

)
,

where: a1(u1, u2) = log[1 + (1− e−u1)κ1c1] + α1 log
(

1 + β1c3(1− e−u1) + β2c3(1− e−u2)
)
,

a2(u1, u2) = log[1 + (1− e−u2)κ2c2] + α2 log
(

1 + β1c3(1− e−u1) + β2c3(1− e−u2)
)
,

b(u1, u2) = δ1 log[1 + (1− e−u1)κ1c1] + δ2 log[1 + (1− e−u2)κ2c2]

+ δ3 log
(

1 + β1c3(1− e−u1) + β2c3(1− e−u2)
)
.

The bivariate NBAR with single common factor is also compound autoregressive. By applying

this formula recursively, we get the higher horizon Laplace transform, which is also exponential

affine in Xt:

Corollary 4. The conditional Laplace transform of (Xt) at horizon h is:

E[e−u1X1,t+h−u2X2,t+h |Xt] = exp
(
− a(h)

1 (u1, u2)X1,t − a(h)
2 (u1, u2)X2,t − b(h)(u1, u2)

)
, (2.11)
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where: a
(h)
1 (u1, u2) = a1(a(h−1)

1 (u1, u2), a(h−1)
2 (u1, u2)),

a
(h)
2 (u1, u2) = a2(a(h−1)

1 (u1, u2), a(h−1)
2 (u1, u2)),

b(h)(u1, u2) = b(a(h−1)
1 (u1, u2), a(h−1)

2 (u1, u2)), h ≥ 2.

This formula can be used for non-linear prediction at any horizon.

3.1.4 Stationarity condition

Let us now discuss the stationarity of the bivariate count process. First, a necessary condition

for mean-variance stationarity is that the means µ1 = E[X1,t] and µ2 = E[X2,t] are positive and

finite. In this case they satisfy the following system, obtained by taking expectations in equation

(2.10):

(1− β1c3α1 − κ1c1)µ1 = β1c3δ3 + κ1c1δ1 + β1α2c3µ2,

(1− β2c3α2 − κ2c2)µ2 = β2c3δ3 + κ2c2δ2 + α1β2c3µ1.

Thus a necessary condition for mean-variance stationarity is:

1− κ1c1 − α1β1c3 > 0, and 1− κ2c2 − α2β2c3 > 0. (2.12)

A necessary and sufficient condition for the strict stationarity of a CaR process has been derived

in Darolles, Gouriéroux and Jasiak (2006), Prop. 7.

Proposition 3 (DGJ (2006)). The process (Xt) is strictly stationary if and only if all the

eigenvalues of matrix:

M :=

∂a1(0,0)
∂u1

∂a1(0,0)
∂u2

∂a2(0,0)
∂u1

∂a2(0,0)
∂u2

 ,

are in modulus smaller than 1.

For a bivariate NBAR with single intensity, we check that M = A, where matrix A is defined

in (2.10). Thus Proposition 3 can be equivalently written as follows:
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Corollary 5. The process (Xt) is strictly and mean-variance stationary if and only if the pa-

rameters satisfy inequalities (2.12) and

(1− κ1c1 − α1β1c3)(1− κ2c2 − α2β2c3) > α1α2β1β2c
2
3. (2.13)

Proof. See Appendix 3.

As an illustration of a stationary NBAR process, we plot, in Figure 2, a simulated sample

path of the joint process (Xt, Yt). The parameters are set to c1 = c2 = c3 = 1, β1 = β2 = 0.5,

δ = 1.4, α1 = α2 = 1, and κ1 = κ2 = 0.2.
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Figure 2: Paths of count processes (X1,t), (X2,t), in full and dashed line, respectively, as well as
path of intensity process (Yt), in dotted line.

We observe in Figure 2 the co-movement of the two count processes driven by the single

common intensity (Yt). The magnitude of the serial (cross-)correlation is measured by the max-

imal modulus of the eigenvalues of matrix A. For this set of parameters the two eigenvalues are

equal to 0.8, 0.4, respectively, which explains the serial clustering of intensities as well as of the

mortality events of the two types.
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3.1.5 Conditional overdispersion

Let us now define the notion of conditional over-dispersion in the bivariate framework.

Definition 3: The bivariate process (Xt) features conditional over-dispersion if for any

θ1, θ2 ≥ 0 such that θ1 + θ2 ≥ 1, we have:

V[θ1X1,t+1 + θ2X2,t+1|Xt] ≥ E[θ1X1,t+1 + θ2X2,t+1|Xt]. (2.14)

The definition of over-dispersion in the bivariate framework has to be interpreted in terms of

costs: θ1, θ2 are the unitary costs of the two types of events and θ1X1 + θ2X2 their total cost.

The condition θ1 + θ2 ≥ 1 is introduced, since a measure of over-dispersion is not homogeneous,

that is not invariant by a change of numeraire. Thus condition (2.14) is the condition of over-

dispersion on the total cost. Typically for car insurance the event of type 1 can correspond to

claims for which the policyholder is totally at fault, with normalized cost θ1 = 1, whereas claims

of type 2 are those for which he/she is partially at fault with normalized cost θ2 < 1.

Condition (2.14) is also equivalent to:

V[θX1,t+1 + (1− θ)X2,t+1|Xt] ≥ E[θX1,t+1 + (1− θ)X2,t+1|Xt], (2.15)

for any θ ∈ [0, 1], or:

min
θ∈[0,1]

(
V[θX1,t+1 + (1− θ)X2,t+1|Xt]− E[θX1,t+1 + (1− θ)X2,t+1|Xt]

)
≥ 0. (2.16)

The LHS is a constrained quadratic optimisation, which admits either an interior, or a boundary

solution, depending on the values of the parameters and on those of Xt. This condition is given

in Appendix 4.
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3.2 Bivariate count process with common matrix intensity factor

3.2.1 The model

Let us now replace the univariate common factor by a symmetric positive definite matrix inten-

sity Yt :=

Y11,t Y12,t

Y12,t Y22,t

. The NBAR model is based on the matrix extension of the gamma

distribution, i.e. the Wishart distribution.

Definition 3. The bivariate NBAR process with symmetric matrix intensity is such that:

• The countsX1,t+1 andX2,t+1 are conditionally independent given Yt+1, Xt and (Z1,t+1, Z2,t+1),

with Poisson distributions:

X1,t+1 =(d) P
(

Tr(BYt+1) + κ1Z1,t+1

)
, X2,t+1 =(d) P

(
Tr(DYt+1) + κ2Z2,t+1

)
,

where the symbol Tr denotes the trace of a matrix and matrices B,D are symmetric

nonnegative definite [in this case the traces Tr(BYt+1) and Tr(DYt+1) are nonnegative2],

and parameters κ1, κ2 are nonnegative.

• Given Xt, variables Z1,t+1, Z2,t+1 driving the specific intensities are independent, with

conditionally gamma distribution γ(δ1 +X1,t, c1) and γ(δ2 +X2,t, c2), respectively.

• The conditional distribution of the common matrix intensity factor Yt+1 is Wishart3, char-

acterized by the conditional Laplace transform:

E[e−Tr(ΓYt+1)|Xt] = 1
det(Id + ΓΣ)δ3+α′Xt

(2.17)

where α′Xt = (α1, α2)Xt = α1X1t + α2X2t, the matrix scale parameter Σ = (σi,j)1≤i,j≤2

is symmetric positive definite, the scalar shape parameter δ3 is larger or equal to 1/2, and

the argument Γ = (γi,j)1≤i,j≤2 is any symmetric positive definite matrix4.

2Indeed, by commuting within the trace operator, we have Tr(BYt+1) = Tr(B1/2Yt+1B1/2), which is the trace
of a symmetric positive definite matrix.

3This is the Wishart distribution with scale matrix parameter Σ/2 and degree of freedom parameter 2(δ3 +
α′Xt). In order for it to be properly defined for any values of Xt, we require that 2α3 > 1.

4For any symmetric positive definite Γ, we have det(Id + ΓΣ) = det[Γ1/2(Id + Γ1/2ΣΓ1/2)Γ−1/2] = det(Id +
Γ1/2ΣΓ1/2) > 0 since the last matrix is clearly symmetric positive definite.
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The matrix intensity Yt+1 has two effects. First, it introduces serial dependency between Xt

and Xt+1 through δ3 + α′Xt, since E[Yt+1|Xt] = (δ3 + α′Xt)Σ. On the other hand, given Xt,

the different components of Yt+1 are correlated. Thus Yt+1 introduces also contemporaneous

dependence between X1,t+1 and X2,t+1.

Example 2. Let us consider the case whereB = diag(1, 0), D = diag(0, 1), that is, Tr(BYt+1) =

Y11,t+1, Tr(DYt+1) = Y22,t+1. By equation (2.17), the conditional Laplace transform of (Y11,t+1, Y22,t+1)

given Xt is:

E[e−u1Y11,t+1−u2Y22,t+1 |Xt] = 1[
det(Id+ diag(u1, u2)Σ)

]δ3+α′Xt

= 1[
1 + u1σ11 + u2σ22 + u1u2(σ11σ22 − σ2

12)
]δ3+α′Xt , ∀u1, u2 ≥ 0.

Both Y11,t+1 and Y22,t+1 are marginally gamma distributed given Xt, with the same shape

parameter. In particular, when κ1 = κ2 = 0, the conditional marginal distributions of X1,t+1

and X2,t+1 given Xt are negative binomial. Hence the terminology of bivariate NBAR process.

The joint distribution of Y11,t+1 and Y22,t+1 given Xt is called bivariate gamma [see Vere-Jones

(1967)]. A simple calculation gives:

Corr[Y11,t+1, Y22,t+1|Xt] = σ2
12

σ11σ22
≥ 0.

which lies between 0 and 1, since Σ is positive definite. Let us now analyze the following two

limiting cases:

• If σ11σ22 − σ2
12 = 0, the Laplace transform is the Laplace transform of a single gamma

variable, i.e. Y11,t+1 = Y22,t+1. We get the bivariate NBAR process with a single stochastic

factor (see Section 4.1).

• If σ12 = 0, Y11,t+1 and Y22,t+1 are conditionally independent and gamma distributed. Then

the intensity (Yt) introduces only specific risks (conditional on Xt).
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3.2.2 Nonlinear predictions

They can be derived by using the conditional Laplace transform of Xt+1 given its own past:

E[e−u1X1,t+1−u2X2,t+1 | Xt] = E
(
E[e−u1X1,t+1−u2X2,t+1 | Yt+1] | Xt

)
= E

[
exp

(
− (1− e−u1)(TrBYt+1 + κ1Z1,t+1)− (1− e−u2)(TrDYt+1 + κ2Z2,t+1)

)
| Xt

]
= exp

(
− a1(u1, u2)X1,t − a2(u1, u2)X2,t − b(u1, u2)

)
, (2.18)

where

a1(u1, u2) = log[1 + (1− e−u1)κ1c1] + α1 log det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
,

a2(u1, u2) = log[1 + (1− e−u2)κ2c2] + α2 log det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
,

b(u1, u2) = δ1 log[1 + (1− e−u1)κ1c1] + δ2 log[1 + (1− e−u2)κ2c2] + δ3 log det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
.

The bivariate process (Xt) is also CaR, and thus the h−step-ahead conditional Laplace trans-

form E[e−u1X1,t+h−u2X2,t+h |Xt] can be computed recursively as in equation (2.11). Then, by

mimicking Corollary 1, the corresponding conditional p.m.f. P[X1,t+1 = n1, X2,t+1 = n2|Xt] can

be obtained by considering the double Taylor’s expansion of E[e−u1X1,t+h−u2X2,t+h | Xt] with

respect to e−u1 and e−u2 . This calculation is omitted.

Finally, by equation (2.18), process (Xt) has the CaR representation:

X1,t+1

X2,t+1

 =
X1t∑
i=1

Z1,i,t+1 + Z2,i,t+1

Z3,i,t+1

+
X2t∑
j=1

 Z4,j,t+1

Z5,j,t+1 + Z6,j,t+1

+

ε1,t+1 + ε3,t+1

ε2,t+1 + ε4,t+1

 , (2.19)

where all the terms on the RHS are mutually independent count variables when i and t vary.

The distributions of Z1,i,t+1, Z6,j,t+1, ε1,t+1, ε2,t+1 are NB(1, κ1c1), NB(1, κ2c2), NB(δ1, κ1c1),

NB(δ2, κ2c2), respectively, whereas the distributions of the pairs (Z2,i,t+1, Z3,i,t+1), (Z4,i,t+1, Z5,i,t+1),

and (ε1,t+1, ε2,t+1)] have joint Laplace transforms exp(−α1L(u1, u2)), exp(−α2L(u1, u2)) and

exp(−δ3L(u1, u2)), respectively, with function L(u1, u2) given by: L(u1, u2) = log det
[
Id + (1−

e−u1)BΣ + (1 − e−u2)DΣ
]
. Moreover all these (univariate or bivariate) variables are mutually

independent.
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3.2.3 First two conditional moments

The conditional mean of the process is, by the law of iterated expectation:

E[X1,t+1|Xt] = Tr(BE[Yt+1 | Xt]) + κ1(X1,t + δ1) = (δ3 + α′Xt)Tr(BΣ) + κ1c1(X1,t + δ1),

E[X2,t+1|Xt] = (δ3 + α′Xt)Tr(DΣ) + κ2c2(X2,t + δ2),

or in matrix form:

E[Xt+1|Xt] =

α1Tr(BΣ) + κ1c1 α2Tr(BΣ)

α1Tr(DΣ) α2Tr(DΣ) + κ2c2


︸ ︷︷ ︸

:=A

Xt +

δ3Tr(BΣ) + κ1c1δ1

δ3Tr(DΣ) + κ2c2δ1

 . (2.20)

The corresponding conditional (co-)variances are given in the next proposition:

Proposition 4.

V[X1,t+1|Xt] = (δ3 + α′Xt)
[
Tr(BΣ) + Tr(BΣBΣ)

]
+ (δ1 +X1,t)(κ1c1 + κ2

1c
2
1),

V[X2,t+1|Xt] = (δ3 + α′Xt)
[
Tr(DΣ) + Tr(DΣDΣ)

]
+ (δ2 +X2,t)(κ2c2 + κ2

2c
2
2),

Cov[X1,t+1, X2,t+1|Xt] = (δ3 + α′Xt)Tr(BΣDΣ).

Proof. See Appendix 5.

Each component is conditionally over-dispersed. Indeed V[Xj,t+1|Xt] > E[Xj,t+1|Xt], j =

1, 2, since Tr(BΣBΣ) and Tr(DΣDΣ) are positive5. Moreover, since Tr(BΣDΣ) is also positive,

the model implies a positive conditional correlation between X1t and X2t.

3.2.4 Stationarity condition

The following proposition is a direct consequence of Proposition 3:

Proposition 5. The process (Xt) is strictly stationary if and only if the eigenvalues of matrix

A defined in (2.20) are smaller than 1 in modulus, or equivalently, if and only if, the following

5Since B and ΣBΣ are both symmetric positive definite.
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conditions (2.21) and (2.22) are satisfied:

1− α1Tr(BΣ)− κ1c1 > 0, 1− α2Tr(DΣ)− κ2c2 > 0, (2.21)[
1− α1Tr(BΣ)− κ1c1

][
1− α2Tr(DΣ)− κ2c2

]
> α1α2Tr(BΣ)Tr(DΣ). (2.22)

3.2.5 Level of conditional overdispersion

Let us now analyze the coefficient of conditional overdispersion. In the univariate NBAR model,

this coefficient, given by (2.6), is necessarily smaller than 2 under the stationarity condition.

This is no longer the case in the Wishart intensity based bivariate NBAR model. For instance,

if κ1 = κ2 = 0, Σ = Id2, then coefficient of conditional over-dispersion over X1t is:

1 + Tr(B2)
Tr(B) = 1 + b211 + b222 + 2b212

Tr(B) ≤ 1 + [Tr(B)]2

Tr(B) = 1 + Tr(B). (2.23)

sinceB is nonnegative definite, and there is equality if and only if detB = b11b22−b212 is zero. Thus

a sharp upper bound of (2.23) is 1 + Tr(B). On the other hand, for this model, the stationarity

condition of Proposition 5 becomes

α1Tr(B) + α2Tr(D) < 1.

Thus Tr(B) and Tr(D) can take arbitrarily large values so long as α1, α2 take correspondingly

small values. Thus the coefficient of conditional over-dispersion can be as large as possible.

3.2.6 Stationary distribution

The bivariate stationary distribution has no tractable expression (unless in the special case of

Example 2). Nevertheless, the two first marginal moments of the latter can be easily derived from

their conditional counterparts derived in section 3.2.3. They are summarized in the following

corollary, whose proof can be found in a standard textbook on VAR [see Lütkepohl (2005)]:
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Corollary 6. The expectation of the process is given by:

E[X1,t]

E[X2,t]

 = (Id2 −A)−1

δ3Tr(BΣ) + κ1c1δ1

δ3Tr(DΣ) + κ2c2δ2

 ,

and the sequence of cross-covariance functions

Γ(h) :=

Cov(X1,t+h, X1t) Cov(X1,t+h, X2t)

Cov(X2,t+h, X1t) Cov(X2,t+h, X2t)

 , ∀h ≥ 0

are equal to:

Γ(0) =
∞∑
h=0

Ah
[
V1 + E[X1t]V2 + E[X2t]V3

]
(A′)h, (2.24)

and

Γ(h) = AhΓ(0), ∀h ≥ 1,

where the symmetric positive definite matrices V1, V2, V3 are defined by:

V1 = δ3


[
Tr(BΣ) + Tr(BΣBΣ)

]
Tr(BΣDΣ)

Tr(BΣDΣ)
[
Tr(DΣ) + Tr(DΣDΣ)

]
+

δ1(κ1c1 + κ2
1c

2
1) 0

0 δ2(κ2c2 + κ2
2c

2
2)

 ,

V2 = α1


[
Tr(BΣ) + Tr(BΣBΣ)

]
Tr(BΣDΣ)

Tr(BΣDΣ)
[
Tr(DΣ) + Tr(DΣDΣ)

]
+

κ1c1 + κ2
1c

2
1 0

0 0

 ,

V3 = α2


[
Tr(BΣ) + Tr(BΣBΣ)

]
Tr(BΣDΣ)

Tr(BΣDΣ)
[
Tr(DΣ) + Tr(DΣDΣ)

]
+

0 0

0 κ2c2 + κ2
2c

2
2

 .

3.2.7 Smoothing the common factor

The common factor (Yt) is the source of contemporaneous conditional dependence between the

two count variables. Thus it is useful to infer the unobserved path of the common factor, that is

`(Yt|Xt), when analyzing the common risk, or systemic risk. Due to the Markov chain structure

[see (2.9)], the conditional density of Yt given Xt depends only on Xt and Xt−1. By the Bayes
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theorem, this density is equal to:

`(yt|xt) ∝ `(yt|xt−1)`(xt|xt−1, yt), (2.25)

where `(yt|xt−1) is the density of a Wishart distribution W2
(
Σ/2, 2(δ3 + α′xt−1)

)
. Then we

remark that X1t and X2t are independent given Xt−1 and Yt, and both conditional distributions

are the convolution of a Poisson distribution and a negative binomial distribution. Thus we have:

`(xt|xt−1, yt) =
[ x1t∑
i=0

Tri(Byt)e−Tr(Byt)

i!
κx1t−i

1 Γ(δ1 + x1t − i+ x1,t−1)
(x1t − i)!Γ(δ1 + x1,t−1)(κ1 + 1)δ1+x1t−i+x1,t−1

]
×
[ x2t∑
j=0

Trj(Dyt)e−Tr(Dyt)

j!
κx2t−j

2 Γ(δ2 + x2t − j + x2,t−1)
(x2t − j)!Γ(δ2 + x2,t−1)(κ2 + 1)δ2+x2t−j+x1,t−1

]
.

Since Wishart random matrices can be simulated using standard statistical packages, E[Yt|Xt]

can be approximated using importance sampling. More precisely, let yj,t, j = 1, ..., N be i.i.d.

draws from the Wishart distribution W2
(
Σ/2, 2(δ3 + α′xt−1)

)
, then we have:

∑N
j=1 yj,t`(xt|xt−1, yj,t)∑N
j=1 `(xt|xt−1, yj,t)

−−−−→
N→∞

E[Yt|Xt]. (2.26)

4 Statistical Inference

In this section we first discuss the identification of parameters in both the univariate and the

bivariate models. Then we discuss the maximum likelihood estimation approach and a GMM

approach based on conditional Laplace transforms.

4.1 Identification of the univariate NBAR model

As NBAR models involve unobservable intensity processes, we need to discuss which parameters

can be identified from the observation of the count process(es) only. Since the conditional Laplace

transform characterizes the dynamics of the process, it is equivalent to study how this Laplace

transform depends on the model parameters.

Let us first consider the univariate NBAR model, when Yt is not observed, but the count
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process Xt is observed. Since in equation (2.3), the conditional Laplace transform depends on

parameters β, c, δ through ρ := βc and δ only, β and c are not separately identifiable. Thus,

without loss of generality, we can introduce the following identification restriction:

Identification Restriction 1. Scale parameter c = 1.

Under this restriction, parameters β and δ are identifiable.

4.2 Identification of the bivariate NBAR model

Let us now turn to the bivariate NBAR model with common matrix intensity factor, when (Xt)

is observed but (Yt, Z1,t, Z2,t) are not observed. We prove in Appendix 6 that there is no loss of

generality to assume that:

Identification Restriction 2. • Scalar parameters c1 = c2 = 1.

• Matrix Σ = Id2.

• Matrix B is diagonal, with b11 ≥ b22.

Then we have the following identification theorem:

Proposition 6. Under Identification Restriction 2, and the extra condition b11 6= b22,
6 we can

identify the model parameters as follows:

• Parameters κ1, κ2, α1, α2, δ1, δ2, δ3 are identified;

• b11 and b22 are identified;

• d11 and d22 are identified;

• d12 is identified up to a sign, i.e., we can assume without loss of generality that d12 is

nonnegative.

The proof, as well as the discussion of the case where b11 = b22, are provided in Appendix 6.

4.3 Maximum likelihood estimation

We provide below the expressions of the log-likelihood functions. In particular, for bivariate

NBAR models, these functions involve series expansions and can be computationally demanding.

6That is to say, Tr2(B) − 4 det(B) = (b11 + b22)2 − 4b11b22 = (b11 − b22)2 > 0.
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4.3.1 Univariate NBAR

For observed counts X1, X2, ....,XT , the log-likelihood function is:

log `(θ) =
T∑
t=2

log p(xt|xt−1, θ), (2.27)

where p(xt|xt−1, θ) is the p.m.f. of a NB(xt−1 + δ, β):

p(xt|xt−1, θ) = βxtΓ(δ + xt + xt−1)
Γ(δ + xt−1)(β + 1)δ+xt+xt−1xt!

,

and θ = (β, δ) is the identifiable model parameter.

4.3.2 Bivariate NBAR with single common factor

After integrating out the value of Yt, the conditional p.m.f. of the bivariate NBAR with single

common factor is:

p(xt|xt−1, θ) =
x1t∑
i=0

x2t∑
j=0

[ κx1t−i
1 Γ(δ1 + x1t − i+ x1,t−1)

(x1t − i)!Γ(δ1 + x1,t−1)(κ1 + 1)δ1+x1t−i+x1,t−1

κx2t−j
2 Γ(δ2 + x2t − j + x2,t−1)

(x2t − j)!Γ(δ2 + x2,t−1)(κ2 + 1)δ2+x2t−j+x1,t−1

×
∫ ∞

0

e−β1y(β1y)i

i!
e−β2y(β2y)j

j!
yδ+α1x1,t−1+α2x2,t−1e−y

Γ(δ + α1x1,t−1 + α2x2,t−1)dy
]

=
x1t∑
i=0

x2t∑
j=0

[ κx1t−i
1 κx2t−j

2 Γ(κ1 + x1t − i+ x1,t−1)Γ(κ2 + x2t − j + x2,t−1)
Γ(κ1 + x1,t−1)(κ1 + 1)κ1+x1t−i+x1,t−1Γ(κ2 + x2,t−1)(κ2 + 1)κ2+x2t−j+x1,t−1i!j!(x1t − i)!(x2t − j)!

× Γ(δ + α1x1,t−1 + α2x2,t−1 + x1t + x2t − i− j)
Γ(δ + α1x1,t−1 + α2x2,t−1)(1 + β1 + β2)x1t+x2t−i−j

]
.

4.3.3 Bivariate NBAR with common matrix intensity factor

The same approach is still possible but is more computationally intensive. We get:

p(xt|xt−1, θ) =
x1,t∑
i=0

x2,t∑
j=0

κ
x1,t−i
1 Γ(δ1 + x1,t − i+ x1,t−1)κx2,t−j

2 Γ(δ2 + x2,t − j + x2,t−1)
Γ(δ1 + x1,t−1)(κ1 + 1)δ1+x1,t−i+xt−1Γ(δ2 + x2,t−1)(κ2 + 1)δ2+x2,t−j+xt−1i!j!(x1t − i)!(x2t − j)!

× E
[
(TrBYt)i(TrDYt)je−TrDYt−TrBYt |xt−1, θ

]
, (2.28)

23



where

E
[
(TrBYt)i(TrDYt)je−TrDYt−TrBYt |xt−1, θ

]
= (−1)i+j ∂i+j

∂si1∂s
j
2
E
[
e−s1TrDYt−s2TrBYt |xt−1, θ

]
|s1=s2=0

= (−1)i+j ∂i+j

∂si1∂s
j
2

1
det(Id + s1B + s2D)δ3+α′xt−1

|s1=s2=0 .

For each pair (i, j), the RHS of the equation above is a function of x1,t−1 and x2,t−1 only. Its

functional form can be obtained by a symbolic computation package such as Mathematica. In

total, to compute the likelihood function, we have to compute (N1 +1)(N2 +1) partial derivatives

symbolically, where N1 (resp. N2) is the maximal observed value of process (X1t) (resp. of (X2t)).

Thus the downside of this ML approach is that when N1 and N2 are large, higher order partial

derivatives tend to be complicated, and the number of partial derivatives to compute is large.

The Generalized Method of Moments (GMM) proposed below is still consistent without this

computational burden.

4.4 Laplace transform based GMM

In the literature of (continuously valued) affine processes, GMM has been suggested by Singleton

(2001), who used moment conditions derived from the conditional characteristic function. Here,

since the process (Xt) is nonnegative, we use instead the (real) conditional Laplace transform

of Xt given Xt−1. Let us denote by U a grid of positive real numbers; then, by the conditional

Laplace transform formula we get a set of moment conditions:

E
[
Zu,v(X1,t−1, X2,t−1)

(
e−uX1,t−vX2,t − e−a1(u,v)X1,t−1−a2(u,v)X2,t−1−b(u,v)︸ ︷︷ ︸

=E[e−uX1,t−vX2,t |Xt−1]

)]
= 0, ∀u, v ∈ U ,

(2.29)

where Zu,v(X1,t−1, X2,t−1) can be any instrumental function. For convenience we choose Z to

be:

Zu,v(X1,t−1, X2,t−1) = 1√
V[e−uX1,t−vX2,t |Xt−1]

, (2.30)
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in order that the integrand in equation (2.29) has unitary unconditional variance. Using the

compound autoregressive property, the expression of Z can be obtained explicitly since:

V[e−uX1,t−vX2,t |Xt−1] = E[e−2uX1,t−2vX2,t |Xt−1]−
[
E[e−uX1,t−vX2,t |Xt−1]

]2
= exp

(
− a1(2u, 2v)X1,t−1 − a2(2u, 2v)X2,t−1 − b(2u, 2v)

)
− exp

(
− 2a1(u, v)X1,t−1 − 2a2(u, v)X2,t−1 − 2b(u, v)

)
.

Then a simple GMM estimator is obtained by minimizing the error of the empirical counter-

parts of these orthogonality conditions:

θ̂T = arg min
θ

[ 1
T − 1

T∑
t=2

g(Xt−1, Xt, θ)
]′
W
[ 1
T − 1

T∑
t=2

g(Xt−1, Xt, θ)
]
,

where g is a vector function of dimension
[
Card(U)

]2
given by:

gZ,u,v(Xt−1, Xt) = Zu,v(X1,t−1, X2,t−1)(e−uX1,t−vX2,t−e−a1(u,v)X1,t−1−a2(u,v)X2,t−1−b(u,v)), ∀u, v ∈ U , Z ∈ Z,

and W is a symmetric positive definite weighting matrix. To ensure the asymptotic consistency,

the number of moment conditions [Card(U)]2 has to be larger than the number of parameters.

Then, under standard regularity conditions, the GMM estimator is consistent and asymptotically

normally distributed:

√
T (θ̂T − θ0) −→(d) N

(
0, (G′WG)−1GWΩW ′G(G′W ′G)−1

)
,

where θ0 is the true parameter value, G = E[∇g(Xt−1, Xt, θ0)], with ∇ representing the differ-

ential with respect to argument θ, and Ω = E[g(Xt−1, Xt, θ0)g(Xt−1, Xt, θ0)′]. Moreover, the

optimal choice of the weighting matrix W is given by W = Ω−1, and for this choice we have:

√
T (θ̂T − θ0) −→(d) N

(
0, (G′Ω−1G)−1

)
.

Finally, the model parameters need to satisfy the nonlinear stationarity constraints given by

Proposition 5. In Appendix 7, we propose an alternative re-parametrization of the model that

ensures that these conditions are automatically satisfied.
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5 Application to the diffusion of a disease

5.1 The data

We consider chickenpox cases in French regions. Chickenpox, also called varicella, is a highly

contagious disease which spreads easily through the coughs and sneezes of an infected person.

The data are downloaded from the Sentinelles Network7, which is a group of physicians collecting

real-time epidemiological data to be used for analysis and forecasting. The website provides, for

each region, the weekly number of chickenpox cases, from the first week of 1990 until the first

week of 2016, that is a total of 1358 observations. The left panel of Figure 3 plots the histogram

of the weekly count in the Ile-de-France region (IdF, the greater Paris Area).
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Figure 3: Histogram of the weekly count of chickenpox cases in IdF, as well as the corresponding
transformed variable.

This distribution is different from a negative binomial-type distribution due to i) zero-

inflation, i.e. a large proportion of weeks with no chickenpox cases; and ii) a high proportion

of extremely large observations. Thus the initial weekly counts are not suitable for a NBAR

type model. Hence, we consider, for each region with index i (i = 0 for Ile-de-France, and i > 0

for other regions), the integer part of the weekly count divided by 1000. These new variables

can take any nonnegative integer values. The right panel of Figure 3 plots the histogram of the

transformed count variable X0,t for IdF.

7See their website: https://websenti.u707.jussieu.fr/sentiweb/?lang=en
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The Metropolitan France has a total of 21 regions, among which IdF is the most populous.

While the bivariate NBAR model is extendable to higher dimensions, such an extension may

suffer from curse of dimensionality. Instead we will focus on the pairwise analysis between IdF

and another region, to understand how the chickenpox is transmitted. For expository purpose, we

limit ourselves to 6 non-IdF regions: Provence-Alpes-Côte-d’Azur (PACA), Haute Normandie,

Rhone-Alpes, Centre and Bourgogne (Burgundy). These regions are either neighbors of the IdF

(such as Haute Normandie and Burgundy), or are well connected with Paris, both economically,

and through high speed train (such as PACA and Rhone-Alpes, which house the Marseille and

Lyon Metropolitan Areas, respectively).

Table 1 reports summary statistics of the count processes (Xi,t) of these regions. For com-

parison purpose, we also provide the size of the population of each region (in million).

Mean Variance Maximum Variance
Mean Population Mean

Population

Ile-de-France 1.32 2.87 21 2.17 12.1 0.110
Picardie 0.189 0.453 9 2.38 1.8 0.105

Bourgogne 0.0603 0.0744 4 1.23 1.6 0.037
Centre 0.136 0.197 4 1.44 2.5 0.054

Haute-Normandie 0.133 0.218 5 1.64 1.8 0.073
Provence-Alpes-Côte-d’Azur 0.634 1.35 14 2.13 4.8 0.132

Rhône-Alpes 0.715 0.915 7 1.28 6.0 0.119

Table 1: Summary Statistics

We see that i) all count variables Xi,t feature (marginal) over-dispersion; ii) the marginal

mean of variable X0,t is significantly larger than that of other regions. This can be explained by

either the superior size of the IdF, or the larger concentration of the population.

The next figure plots the auto-correlation (ACF) and cross-correlation functions (CCF) of

the two count processes corresponding to IdF and PACA, respectively.
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Figure 4: ACF and CCF of the two count processes.

The two ACF’s show that both processes have rather persistent autocorrelation. They are

positive up to two months and a half, and become negative around 6 months. The CCF confirms

that there are Granger directional causality from one process to the other, as well as instantaneous

causality.

5.2 Estimation of bivariate NBAR

For each region i = 1, ..., 6, we estimate a bivariate NBAR model with matrix common factor

for the joint process (X0t, Xit). We use the GMM approach, and choose the grid set U defining

the instruments to be 0.1, 0.2,...,1. In order to account for the stationary condition, we first

reparameterize the parameters as discussed in Appendix 7. Once the model is estimated, we

use the inverse transformation to recover the corresponding estimates of the initial parameters.

Table 2 reports parameter estimates for each pair (X0,t, Xi,t).
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Picardie Bourgogne Centre Haute PACA Rhone
Normandie Alpes

κ1 0.119 0.018 0.091 0.057 0.514 0.098
(0.053) (0.005) (0.039) (0.029) (0.047) (0.015)

κ2 0.047 0.162 0.040 0.038 0.023 0.204
(0.010) (0.015) (0.026) (0.039) (0.018) (0.027)

α1 0.035 0.019 0.064 0.226 0.809 0.018
(0.001) (0.001) (0.001) (0.002) (0.001) (0.019)

α2 0.484 3.041 0.956 0.094 0.543 0.531
(0.012) (0.013) (0.006) (0.011) (0.004) (0.032)

b11 0.830 1.041 0.986 0.840 0.150 0.737
(0.197) (0.181) (0.133) (0.23) (0.214) (0.154)

b22 0.203 0.019 0.382 0.193 0.011 0.012
(0.007) (0.114) (0.099) (0.046) (0.164) (0.090)

d11 0.136 0.038 0.140 0.065 0.204 0.227
(0.190) (0.028) (0.064) (0.113) (0.157) (0.075)

d22 0.009 0.007 0.074 0.027 0.017 0.08
(0.061) (0.038) (0.002) (0.017) (0.058) (0.066)

d12 0.011 0.010 0.081 0.037 0.039 0.095
(0.050) (0.030) (0.006) (0.028) (0.034) (0.008)

δ1 3.434 1.113 1.660 3.223 0.624 1.422
(0.397) (0.204) (0.315) (0.426) (0.174) (0.492)

δ2 1.744 0.088 0.377 1.488 4.588 0.716
(0.182) (0.004) (0.030) (0.025) (0.129) (0.159)

δ3 0.535 1.046 0.540 0.653 0.711 0.929
(0.003) (0.009) (0.035) (0.013) (0.040) (0.007)

Table 2: Parameter estimates along with the standard deviations provided below each model
estimate in parenthesis.

The results of the pairwise analysis have to be interpreted with caution. Each pairwise

model i, i = 1, ..., 6 is a dynamic model for the series (X0t, X1t) with the same benchmark X0t,

corresponding to greater Paris. When we focus on the transition joint p.m.f., the information

sets (X0t, Xit) depends on i, as the parameters and the underlying factor. These ones would have

to be indexed by i, i = 1, ..., n, even if this index has been omitted for expository purpose. These

pairwise models are well specified, if they can be derived from a joint model for (X0t, X1t, ..., X6t),

which is not explicitly written here. The existence of such an underlying joint model implies

minimal coherence restrictions between the pairwise models. Roughly speaking, these pairwise

models have to be such that the resulting individual dynamics of the benchmark process (X0t)

does not depend on i [see Gouriéroux and Monfort (2017) for a discussion of such coherency

conditions in a similar framework with stochastic volatilities]. We have checked that different
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(cross-)moments of X0t are approximated in a same way in the pairwise analyses. For instance we

provide in Table 3 first row the estimated expectation of X0t. They are not significantly different

and are close to the observed historical mean. The same remark applies to the estimates of

V[X0t] and of corr(X0t, X0,t−1), whose theoretical values are given by Corollary 6.

Picardie Bourgogne Centre Haute PACA Rhone
Normandie Alpes

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
Model implied E[X0t] 1.25 1.24 1.21 1.21 1.33 1.23
Empirical mean of X0t 1.31 1.31 1.31 1.31 1.31 1.31

Model implied E[Xit] 0.19 0.04 0.17 0.14 0.58 0.75
Empirical mean of Xit 0.19 0.06 0.14 0.13 0.63 0.72

Model implied V[X0t] 1.92 2.39 2.88 2.67 2.47 2.56
Empirical variance of X0t 2.87 2.87 2.87 2.87 2.87 2.87

Model implied V[Xit] 0.21 0.06 0.24 0.23 1.01 1.22
Empirical variance of Xit 0.45 0.07 0.19 0.21 1.35 0.91

Model implied corr(X0t, X0,t−1) 0.35 0.27 0.35 0.27 0.23 0.12
Empirical autocorrelation of X0t 0.41 0.41 0.41 0.41 0.41 0.41

Table 3: Model-implied theoretical moments vs their empirical counterparts

The other parameters that are not characterizing the dynamics of (X0t) depend in general

on i. In other words, each of these parameters include a fixed effect, linked to the size of the

region i or the density of its population. But the size and density are not sufficient to explain

the heterogeneity of the κ2 coefficient, which is the partial derivative of E[X1,t+1|Yt+1, Z1,t+1]

with respect to the standardized specific factor Z1,t+1.

By Proposition 5, the joint process is stationary if the largest eigenvalue of matrix A defined

in (2.20) is smaller than one in modulus. The estimated eigenvalues are reported in the following

table:

Picardie Bourgogne Centre Haute Normandie PACA Rhone-Alpes
The larger eigenvalue 0.39 0.25 0.36 0.28 0.41 0.15

The smaller eigenvalue 0.05 0.10 0.08 0.02 0.09 0.06

Table 4: Estimated eigenvalues of matrix A in the pairwise models

The largest estimated eigenvalues are quite similar and all smaller than 1.
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5.3 The effects of common and specific factors

The average importance of the common and specific factors can be deduced from the expressions

of the conditional first- and second-order moments. We get the following decompositions:

Common factor Specific factor
Average effect on E[X1,t+1|Xt] (δ3 + α′E[Xt])Tr(B) κ1(δ1 + E[X1t])
Average effect on E[X2,t+1|Xt] (δ3 + α′E[Xt])Tr(D) κ2(δ2 + E[X2t])
Average effect on V[X1,t+1|Xt] (δ3 + α′E[Xt])

[
Tr(B) + Tr(B2)

]
(κ1 + κ2

1)(δ1 + E[X1t])
Average effect on V[X2,t+1|Xt] (δ3 + α′E[Xt])

[
Tr(D) + Tr(D2)

]
(κ2 + κ2

2)(δ2 + E[X2t])

Table 5: Decompositions of the average contribution of common vs specific factors to conditional
first and second moments

These decompositions can be estimated pairwise. As an illustration we report the values for

the pair IdF and Picardie in Table 6.

Common factor Specific factor
Average effect on E[X1,t+1|Xt] 1.00 0.23
Average effect on E[X2,t+1|Xt] 0.16 0.02
Average effect on V[X1,t+1|Xt] 1.42 0.26
Average effect on V[X2,t+1|Xt] 0.18 0.02

Table 6: Decomposition (relative magnitude) common vs specific factors

From Table 5, we can also decompose the relative overdispersion effect due to the common

and specific factors on (X1t), which are Tr(B2)
Tr(B) and κ1, respectively. Table 7 reports the specific

and common effects for different pairwise models. The over-dispersion effect is systematically

much larger for the common matrix factor.

Picardie Bourgogne Centre Haute Normandie PACA Rhone-Alpes
Common 1.9 1.2 0.8 1.6 1.0 0.7
Specific 0.061 0.121 0.148 0.271 0.125 0.175

Table 7: Relative over-dispersion effect on X0t, of common vs specific factors

5.4 Recovering the underlying common factor Yt

Let us now illustrate the smoothing of the intermediate matrix intensity factor in the pairwise

model of IdF and Picardie. Figure 5 below plots the paths of E[Tr(BYt)|Xt] and E[Tr(DYt)|Xt]
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along with the paths of the two count processes (X1t) and (X2t). These smoothed values are

computed using equation (2.26) in which the number of draws at each time t is set to be N = 500.

The two smoothed intensities capture quite well the dynamics of the two count processes. This

is expected since the effect of the common intensity factor is much more important than the

region-specific factors.
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Figure 5: The upper panel plots the evolution of (X1t) (in red dotted line) and (X2t) (in black
full line) during 40 periods. The lower panel plots the smoothed paths of Tr(BYt) (in red dotted
line) and Tr(DYt) (in black full line).

6 Conclusion

We have introduced the Negative Binomial Autoregressive(NBAR(1)) process as an alternative

to the standard INAR(1) process and Poisson autoregressions, which cannot capture conditional

over-dispersion. The NBAR has two nice technical features. First, it is introduced jointly with an

intensity process by exploring the Poisson-gamma conjugacy. Secondly, it belongs to the family

of Compound Autoregressive processes. These two properties lead to tractable formulas for

nonlinear prediction as well as stationarity distribution, and allows for simple GMM estimation

method based on Laplace transform. The univariate NBAR process can be naturally extended

into the bivariate case with a matrix intensity process. The bivariate NBAR(1) model has been
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illustrated by a pairwise analysis of the diffusion of a disease in France with the Greater Paris as

the benchmark region.

Appendix 1 Review on Poisson, gamma and negative bi-

nomial distributions

Appendix 1.1 The elementary distributions

a) Poisson distribution P(λ) with parameter λ > 0:

Its p.m.f. is : p(x) = exp(−λ)λx

x! .

Its Laplace transform is : E[exp(−uX)] = e−λ(1−e−u), ∀u ∈ N.

b) Centered gamma distribution γ(δ, 0, c) with parameter δ, c > 0:

Its density function is : fY (y) = 1
Γ(δ) exp(−y/c)y

δ−1

cδ
1ly>0.

Its Laplace transform is : E[exp(−uY )] = 1
(1 + cu)δ , ∀u ≥ 0.

c) Noncentral gamma distribution : γ(δ, β, c) with parameters δ, β, c > 0:

We have Y ∼ γ(δ, β, c), if and only if we can write:

Y |X ∼ γ(δ +X, 0, c), with X ∼ P(β).

Its density is : fY (y) = exp(−y/c− β)y
δ−1

cδ

{ ∞∑
x=0

1
Γ(δ + x)

1
x! (

yβ

c
)x
}

.

Its Laplace transform is : E[exp(−uY )] = 1
(1 + cu)δ exp( −βcu1 + cu

), ∀u ≥ 0.

d) Negative Binomial distribution : NB(δ, β) with parameters δ, β > 0:

We have X ∼ NB(δ, β) if and only if we can write:

X|Y ∼ P(βY ), with Y ∼ γ(δ, 0, 1),

Its p.m.f. is : p(x) = 1
(1+β)δ ( β

1+β )xΓ(x+ δ)
x!Γ(δ) .

Its Laplace transform is : E[e−uX ] = 1
[1 + β(1− e−u)]δ , ∀u ≥ 0.
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When β → 0, δ →∞ such that βδ → λ, the negative binomial distribution NB(δ, β) reduces

to the Poisson distribution P(λ).

Note that we have parametrized the negative binomial distribution in order to get directly its

interpretation as a Poisson mixture with a gamma mixing variable. In the literature it is often

parametrized by δ and probability parameter p = β
β+1 .

Appendix 1.2 A count-continuous distribution

Let us consider a couple (X,Y ), where X is a count variable and Y a real positive variable.

We assume that its joint density (with respect to ν ⊗ λ+, i.e. the product measure between the

counting measure ν on N and the Lebesgue measure λ+ on IR+) is:

f(x, y) =
exp[−y(β + 1− βc

c
)]

x!Γ(δ) yx+δ−1βx(1− βc
c

)δ, (a.31)

with βc 6= 1. This joint density can be written as:

f(x, y) =
[

exp(−βy)(βy)x

x!

][
1

Γ(δ)

(
1− βc
c

)δ
exp

(
−1− βc

c
y

)
yδ−1

]
,

where the first term on the RHS is the p.m.f. of P(βY ), and the second term is the density of

γ(δ, 0, c

1− βc ). Symmetrically, we can write:

f(x, y) =
[

Γ(x+ δ)
x!Γ(δ) (βc)x(1− βc)δ

] [
1

Γ(x+ δ)
yx+δ−1

cx+δ exp(−y/c)
]
,

where the first term on the RHS is the p.m.f. of NB(δ, βc

1− βc ), whereas the second-term is the

p.d.f. of γ(δ + x, 0, c). We deduce the following property :

Property A.1 : The pair (X,Y ) with joint distribution given in equation (a.1) is such that :

• the conditional distribution of X given Y is : P(βY );

• the conditional distribution of Y given X is : γ(δ +X, 0, c);

• the unconditional distribution of X is : NB(δ, βc

1− βc );
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• the unconditional distribution of Y is : γ(δ, 0, c

1− βc ).

Appendix 2 Proof of Proposition 2

Let us proceed by induction. Assume that equation (2.7) holds for a certain h, then:

E[exp(−uXt+h+1)|Xt] = E
[
E[exp(−uXt+h+1)|Xt+1]|Xt

]
= E

[(1 + βch−1(1− e−u)
)Xt+1

(
1 + βch(1− e−u)

)δ+Xt+1
|Xt

]
(a.32)

= 1(
1 + βch(1− e−u)

)δ(
1 + βcβ(ch−ch−1)(1−e−u)

1+βch(1−e−u)

)δ+Xt , (a.33)

= [1 + βch(1− e−u)]Xt[
1 + βc

1− (βc)h+1

1− βc (1− e−u)
]δ+Xt = [1 + βch(1− e−u)]Xt[

1 + βch+1(1− e−u)
]δ+Xt ,

where we have used the one-step-ahead conditional Laplace transform formula to pass from

equation (a.32) to equation (a.33). Thus equation (2.7) holds also for horizon h + 1. Thus it

holds for any horizon.

Appendix 3 Proof of Corollary 5

Let us first prove a lemma:

Lemma 1. Let A = (ai,j)1≤i,j≤2 be a matrix with nonnegative elements. Then the eigenvalues

of A are of modulus smaller than 1 if and only if:

α11 < 1, α22 < 1

, and (1− α11)(1− α22) > α12α21.

Proof. The eigenvalues are solutions of the determinantal equation:

x2 − xTrA+ detA = 0,
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with discriminant: ∆ = (TrA)2− 4detA = (α11−α22)2 + 4α12α21 ≥ 0. Thus this polynomial has

two real roots (or a double root). They are smaller than 1 in modulus if and only if:

− 1 < 1
2(Tr(A)−

√
∆), and

1
2(Tr(A) +

√
∆) < 1

⇐⇒
√

∆ < 2− Tr(A)

⇐⇒α11 + α22 < 2, and ∆ < (2− Tr(A))2

⇐⇒α11 < 1, and α22 < 1, and (1− α11)(1− α22) > α12α21.

Finally, we check that Corollary 5 is a direct consequence of Proposition 3 and the above

lemma.

Appendix 4 The overdispersion condition

Let us now derive the necessary and sufficient condition for a bivariate count process to be over-

dispersed (see Definition 3). Let us denote by v the vector (c, 1− c), e the unitary vector (1, 1),

Σt the conditional variance-covariance matrix, and mt the conditional expectation vector at time

t. Then the condition for global over-dispersion is:

min
v,v′e=1

v′Σtv − v′mt ≥ 0. (a.34)

The solution of the optimization minv,v′e=1 v
′Σtv− v′mt is the same as that of the optimization

of the Lagrangean:

L(λ, v) = v′Σtv − v′mt − λv′e,

where λ denotes the Lagrange multiplier associated with the constraint: v′e = 1. Differentiating

L(λ, v) with respect to v leads to the optimal value of v: v = 1
2Σ−1

t (mt + λe), and the objective
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function in (a.34) becomes:

1
4(mt + λe)′Σ−1

t (mt + λe)− 1
2m
′Σ−1
t (m+ λe)

= 1
4(mt + λe− 2mt)′Σ−1

t (mt + λe)

= 1
4(λe−mt)′Σ−1

t (mt + λe).

Using the constraint v′e = 1, we get the optimal value of λ:

λ = 2− e′Σ−1
t mt

e′Σ−1
t e

.

Thus condition (a.34) is equivalent to:

m′tΣ−1
t mt + λ2e′Σ−1

t e− 2λm′tΣ−1
t e ≥ 0

⇐⇒ (m′tΣ−1
t mt)(e′Σ−1

t e) + (3e′Σ−1
t mt − 2)(e′Σ−1

t mt − 2) ≥ 0 (a.35)

The optimisation problem above has been solved without taking into account the constraint that

both entries of v are nonnegative. Therefore, the global over-dispersion condition is equivalent

to equation (a.35) if both entries of vector:

1
2Σ−1

t (mt + λe) = 1
2Σ−1

t (mt + 2− e′Σ−1
t mt

e′Σ−1
t e

e)

are nonnegative. It is equivalent to:

V[X1,t+1|Xt] ≥ E[X1,t+1|Xt], V[X2,t+1|Xt] ≥ E[X2,t+1|Xt],

otherwise.

Appendix 5 Proof of Proposition 4

The conditional variances and covariances of Yt+1 given Xt are obtained by differentiating the

conditional Laplace transform. We have:

37



Lemma 2. For any symmetric positive definite matrix S, we have:

V[Tr(SYt+1)|Xt] = (δ3 + α′Xt)Tr(SΣSΣ) ≥ 0. (a.36)

The RHS of the equation is necessarily nonnegative since both S and ΣSΣ are symmetric

positive definite. Thus we get:

V[Y11,t+1|Xt] = (δ3 + α′Xt)σ2
11, V[Y22,t+1|Xt] = (δ3 + α′Xt)σ2

22,

V[Y12,t+1|Xt] = (δ3 + α′Xt)
σ11σ22 + σ2

12
2 , Cov[Y11,t+1, Y22,t+1|Xt] = (δ3 + α′Xt)σ2

12,

Cov[Y11,t+1, Y12,t+1|Xt] = (δ3 + α′Xt)σ11σ12, Cov[Y22,t+1, Y12,t+1|Xt] = (δ3 + α′Xt)σ12σ22.

Then, by the variance decomposition formula, we get the conditional (co-)variance of Xt+1

given Xt announced in Proposition 4.

Appendix 6 Model identification

Appendix 6.1 Proof of Proposition 6

Let us first show that we can, without loss of generality, make Identification Restriction 2.

Equation (2.18) depends on (κ1, c1) (resp. (κ2, c2)) only through κ1c1 (resp. κ2c2); thus without

loss of generality, we can assume c1 = c2 = 1.

Second, for any symmetric positive definite matrix T , we have:

det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
= det

[
T [Id + (1− e−u1)BΣ + (1− e−u2)DΣ]T−1

]
= det

[
Id + (1− e−u1)TBTT−1ΣT−1 + (1− e−u2)TDTT−1ΣT−1

]
. (a.37)

Thus we can always replace the triplet (B,D,Σ) by the triplet (TBT, TDT, T−1ΣT−1), without

changing the conditional Laplace transform. As a consequence, since Σ is symmetric positive

definite, we can take T = Σ1/2 and T−1ΣT−1 becomes Id2. Thus we can assume, without loss

of generality, that Σ = Id2.
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Under this identification restriction, equation (a.37) becomes, for any orthogonal matrix O:

det
[
Id + (1− e−u1)B + (1− e−u2)D

]
= det

[
Id + (1− e−u1)OBO′ + (1− e−u2)ODO′

]
.

Thus B, C are still only identified up to a common orthonormal change of basis. Since B is

symmetric, it is diagonalizable within an orthonormal basis. Therefore, we assume without loss

of generality that B is diagonal, with b11 ≥ b22. Under these identification restrictions, equation

(a.37) becomes:

det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
= 1 + (1− e−u1)(b11 + b22) + (1− e−u2)(d11 + d22) + (1− e−u1)2b11b22

+ (1− e−u2)2(d11d22 − d2
12) + (1− e−u1)(1− e−u2)(d11b22 + d22b11) (a.38)

From equation (a.38), we identify b11 + b22 and b11b22, which allows the identification of

b11, b22.

Then the knowledge of d11 + d22 and d11b22 + d22b11 identifies d11, d22, so long as b11 6= b22.

Finally d11d22 − d2
12 = det(D) identifies d12 up to a sign, and the result of Proposition 6

follows.

Appendix 6.2 The limiting case b11 = b22

Let us now discuss the case where we know ex-ante that b11 = b22.

• If b11 = b22 = b is unknown, the conditional Laplace transform depends on B and D

through

det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
= 1 + (1− e−u1)2b+ (1− e−u2)(d11 + d22) + (1− e−u2)2(d11d22 − d2

12) + (1− e−u1)(1− e−u2)b(d11 + d22).

Thus we can only identify b, d11 + d22 and d11d22 − d2
12, but not separately the entries of

D.
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• If B = 0, we have:

det
[
Id + (1− e−u1)BΣ + (1− e−u2)DΣ

]
= 1 + (1− e−u2)(d11 + d22) + (1− e−u2)2(d11d22 − d2

12).

Thus we can only identify d11 + d22 and d11d22 − d2
12, but not separately the entries of D.

Appendix 7 An alternative parameterization

In the bivariate model with matrix common factor, the set of identifiable parameters is:

θ = (δ1, δ2, δ3, α1, α2, κ1, κ2, b11, b22, d11, d22, d12).

All these parameters are positive8, and satisfy the nonlinear constraints:

b11 ≥ b22, d11 ≥ d22, d11d22 ≥ d2
12,

as well as stationarity conditions (2.21) and (2.22). Since the numerical optimization with non-

linear inequality constraints is usually difficult, let us propose a re-parametrization of the model.

First, we set:

b11 = Tr(B)ρb, b22 = Tr(B)(1− ρb), (a.39)

d11 = Tr(D)ρd, d22 = Tr(D)(1− ρd), (a.40)

d12 =
√
d11d22ρ1, (a.41)

where Tr(B), T r(D) ≥ 0, ρb, ρd ∈]0.5, 1[, ρ1 ∈]0, 1[.

Since 1− α1Tr(B)− κ1, 1− α2Tr(D)− κ2 are positive, we set:

α1 = z1

Tr(B) , α2 = z2

Tr(D) , (a.42)

κ1 = (1− z1)(1− z3), κ2 = (1− z2)(1− z4), (a.43)

8Parameter d12 can be set positive due to the identification analysis.
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with z1, z2, z3, z4 ∈]0, 1[. However, these four new variables cannot be chosen arbitrarily, since

they have to satisfy condition (2.22), or equivalently:

z3z4(1− z1)(1− z2) > z1z2. (a.44)

We can remark that:

(1− z1)(1− z2) > (1− z1)(1− z2)z3z4 > z1z2,

that is z1 + z2 < 1. Thus we set:

z1 = ρ2ρ3, z2 = ρ2(1− ρ3), (a.45)

with ρ2 = z1 + z2 and ρ3 = z1
z1+z2

lying between 0 and 1. Thus (a.44) becomes:

z3z4 >
z1z2

(1− z1)(1− z2) (a.46)

Thus given z1, z2, the possible range of values of z3 and z4 is ] z1z2
(1−z1)(1−z2) , 1[. Thus we can set

z3 = z1z2

(1− z1)(1− z2)ρ4 + (1− ρ4) = ρ2
2ρ3(1− ρ3)

(1− ρ2ρ3)(1− ρ2 + ρ2ρ3)ρ4 + 1− ρ4, (a.47)

where ρ4 ∈]0, 1[. Hence (a.46) becomes:

z4 >

z1z2
(1−z1)(1−z2)

z1z2
(1−z1)(1−z2)ρ4 + (1− ρ4) . (a.48)

Finally z4 can be represented as

z4 =
z1z2

(1−z1)(1−z2)
z1z2

(1−z1)(1−z2)ρ4 + (1− ρ4)ρ5 + 1− ρ5 (a.49)

where ρ5 ∈]0, 1[. Thus we get a reparametrization:

θ′ = (Tr(B), T r(D), ρb, ρd, ρ1, ρ2, ρ3, ρ4, ρ5, δ1, δ2, δ2)
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We check that, the alternative parameterization (a.40), (a.41), (a.42), (a.43) and (a.45), (a.47),

(a.49) leads to a set of parameters θ that satisfy all the nonlinear constraints.
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