DESIGN OF A FUEL-EFFICIENT TWO-STROKE DIESEL ENGINE FOR MEDIUM PASSENGER CARS: COMPARISON BETWEEN STANDARD AND REVERSE UNIFLOW SCAVENGING ARCHITECTURES

<u>Galpin, J.</u>, Colliou, T., Laget, O., Rabeau, F., De Paola, G. IFP Energies nouvelles, Institut Carnot IFPEN TE

Rahir, P. Groupe Renault

CONTENT

1. INTRODUCTION

- CONTEXT
- OVERVIEW OF SCAVENGING ARCHITECTURES
- BENCHMARK OF SCAVENGING CONFIGURATIONS

2. SYSTEM SIMULATION ANALYSIS

- INTRODUCTION
- SIMULATION METHODOLOGY
- RESULTS
- CONCLUSIONS

3. 3D CFD ANALYSIS

- INTRODUCTION
- SIMULATIONS DETAILS
- QUALITATIVE RESULTS
- QUANTITATIVE RESULTS

4. MAIN CONCLUSIONS & PERSPECTIVES

1. INTRODUCTION

- CONTEXT
- OVERVIEW OF SCAVENGING ARCHITECTURES
- BENCHMARK OF SCAVENGING CONFIGURATIONS
- 2. SYSTEM SIMULATION ANALYSIS
 - INTRODUCTION
 - SIMULATION METHODOLOGY
 - RESULTS
 - CONCLUSIONS
- 3. 3D CFD ANALYSIS
 - INTRODUCTION
 - SIMULATIONS DETAILS
 - QUALITATIVE RESULTS
 - QUANTITATIVE RESULTS
- 4. MAIN CONCLUSIONS & PERSPECTIVES

INTRODUCTION CONTEXT

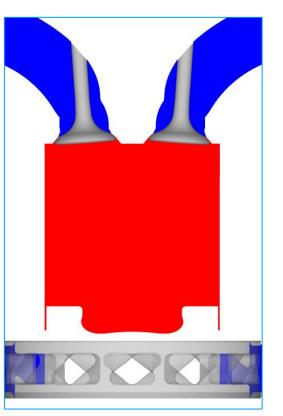
REWARD project

- REal World Advanced Technologies foR Diesel Engine
- H2020 project funded by the European Union
- A consortium formed by European industries, R&I providers and Universities
- Improving Diesel engine efficiency
- Main targets
 - $\geq 5\%$ improved fuel economy
 - $\geq 3 \text{ dB}$ less noise
 - $\geq 50\%$ less particles emission
 - Compliance with post Euro 6 limits under Real Driving conditions

Development a fuel efficient 2-stroke Diesel engine

- Target = Medium / class C vehicles
- Partners = Groupe Renault, CMT-Universitat Politècnica de València, Czech Technical univ., AVL, Delphi and IFP Energies Nouvelles

INTRODUCTION CONTEXT

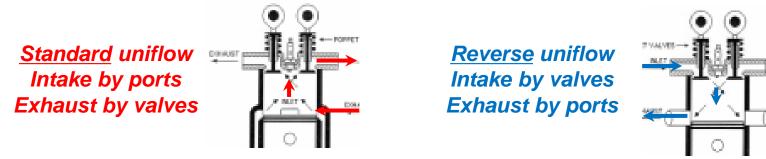

Diesel engine market for automotive applications = 4-stroke

But a renewed interest of 2-stroke Diesel engines

- Larger power density
- Reduction of the number of cylinders
 - Compactness
 - Weight reduction thus potential cost reduction
- Natural operation with IGR \Rightarrow NOx in transient (no EGR latency)

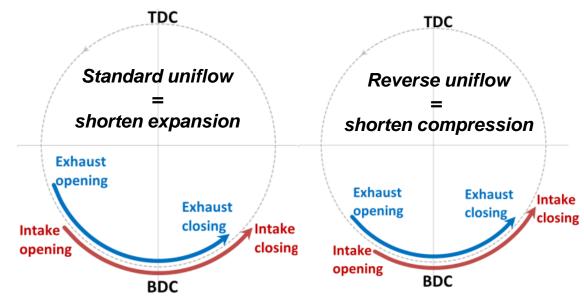
Key point is scavenging

- Combustion each revolution \Rightarrow small time devoted to gases transfers
- Scavenging = quasi overlapping of the intake & exhaust
- Targeted features
 - Trap fresh gases as much as possible
 - Short-circuiting as low as possible



INTRODUCTION OVERVIEW OF SCAVENGING ARCHITECTURES

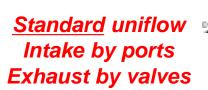
Туре	Outline	Advantages	Drawbacks
Transfer ports only		 No camshaft Low friction Simplicity Large ports permeability 	 Long piston skirt / deflector Fixed intake/ exhaust timings and diagrams Short-circuiting

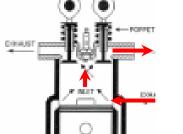

INTRODUCTION BENCHMARK OF SCAVENGING CONFIGURATIONS

First step of the project = Standard or Reverse uniflow ?

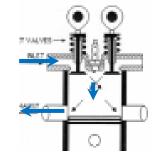
<u>Question 1 = Shorten expansion or shorten compression ?</u>

- No flexibility on the ports diagram
 - No flexibility on the transfer ports diagram
 - Symmetric diagram centered around BDC
 - Exhaust occurs earlier than intake
- System code simulations
 - LMS Imagine.Lab Amesim code
 - Several intake & exhaust diagrams investigated

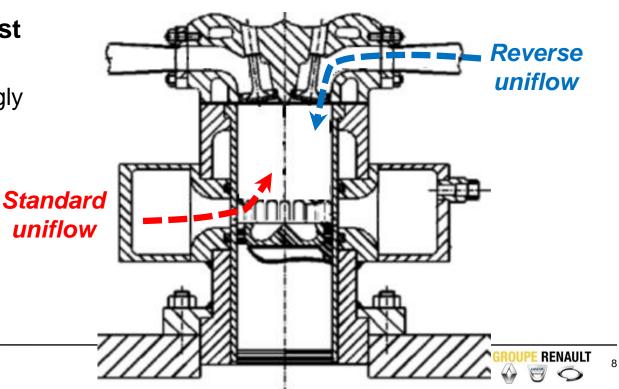



FP Energies

RENAULT


INTRODUCTION BENCHMARK OF SCAVENGING CONFIGURATIONS

First step of the project = Standard or Reverse uniflow ?



<u>Reverse</u> uniflow Intake by valves Exhaust by ports

<u>Question 2</u> = Which conf. provides the most efficient scavenging ?

- Geometries upstream the cylinder differs strongly between both configurations
- Effects on the scavenging ?
- <u>3D CFD simulations</u>
 - CONVERGE CFD 2.2
 - Several geometries tested

1. INTRODUCTION

- CONTEXT
- OVERVIEW OF SCAVENGING ARCHITECTURES
- BENCHMARK OF SCAVENGING CONFIGURATIONS

2. SYSTEM SIMULATION ANALYSIS

- INTRODUCTION
- SIMULATION METHODOLOGY
- RESULTS
- CONCLUSIONS
- 3. 3D CFD ANALYSIS
 - INTRODUCTION
 - SIMULATIONS DETAILS
 - QUALITATIVE RESULTS
 - QUANTITATIVE RESULTS
- 4. MAIN CONCLUSIONS & PERSPECTIVES

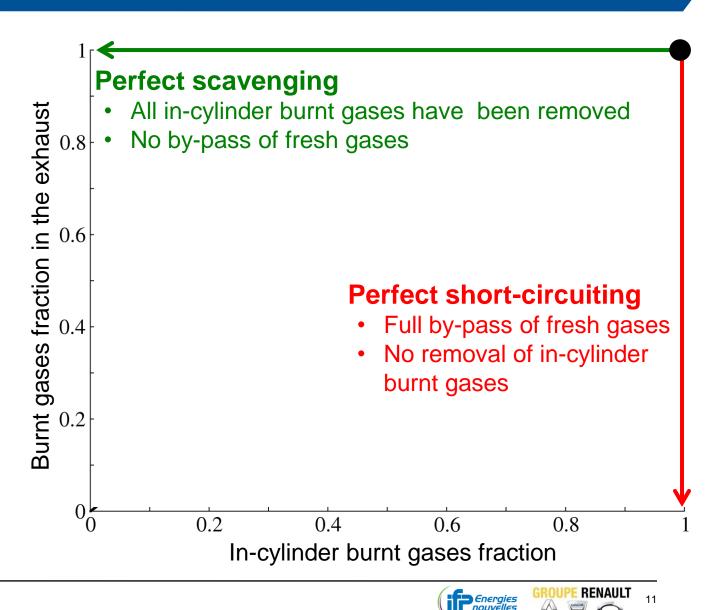
SYSTEM SIMULATION ANALYSIS

Purpose

- Benchmark between standard and reverse uniflow on 3 operating points
 - 3000rpm x 11bar (FL)
 - 2000rpm x 7bar
 - 1500rpm x 4bar
- Comparison based on Fuel consumption
- No assessment of the emissions

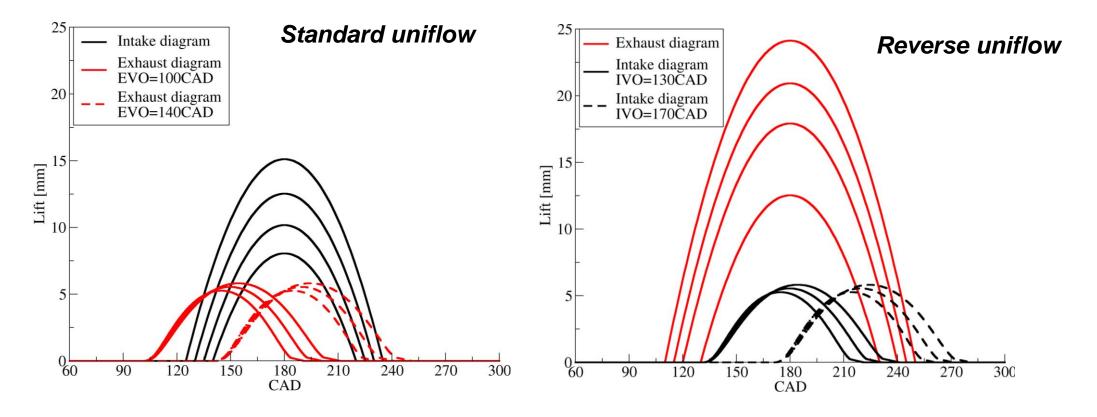
Engine configuration

- Based on a Renault K9K engine
 - 4-stroke
 - 4 cylinders 1,460cm³
- and adapted to the study
 - SCE
 - Supercharger added


Displaced volume	400 cm ³
Stroke	76 mm
Bore	88 mm
Connecting Rod	180 mm
Geometrical compression ratio	16.0
Numbers of valves / ports	4 / 12
Supercharging	Turbocharger and supercharger

SYSTEM SIMULATION ANALYSIS SIMULATION METHODOLOGY

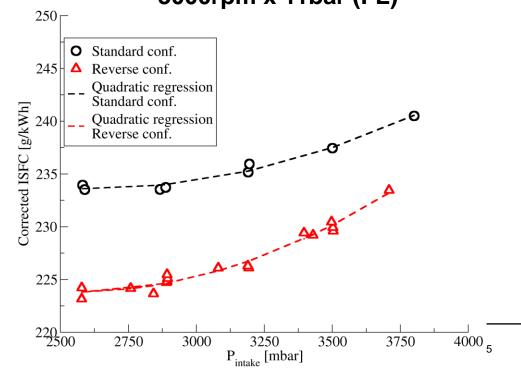
Fixed parameters


- P_{intake}-P_{exhaust} fixed per operating point
- Combustion law
 - Dual Flame Model (IFP drive lib.)
 - CA50 = 10 CAD after TDC
- Fixed turbocharger and mechanical compressor efficiencies
- Scavenging curve (hypothesis)

SYSTEM SIMULATION ANALYSIS SIMULATION METHODOLOGY

Variable parameters

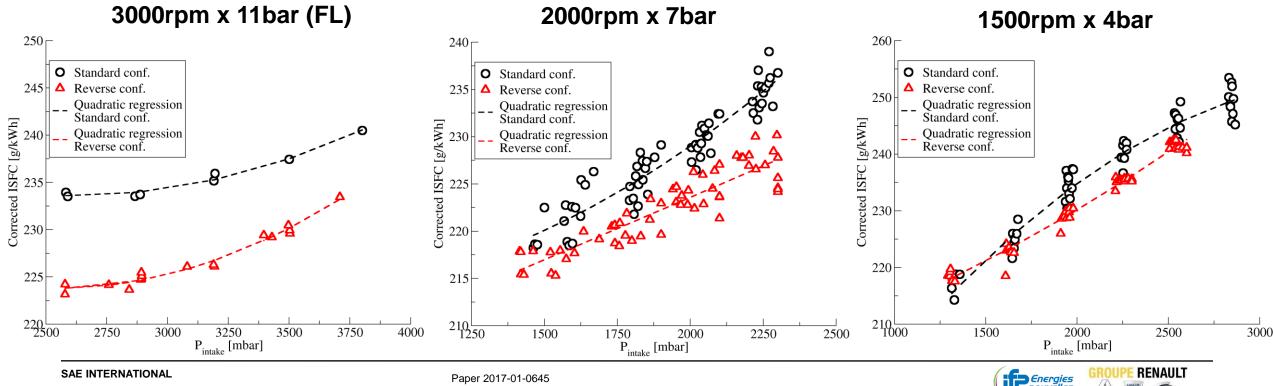
- Several combinations intake/exhaust diagrams investigated
- Intake pressure P_{intake} (P_{intake}-P_{exhaust} is kept fixed)



SYSTEM SIMULATION ANALYSIS RESULTS

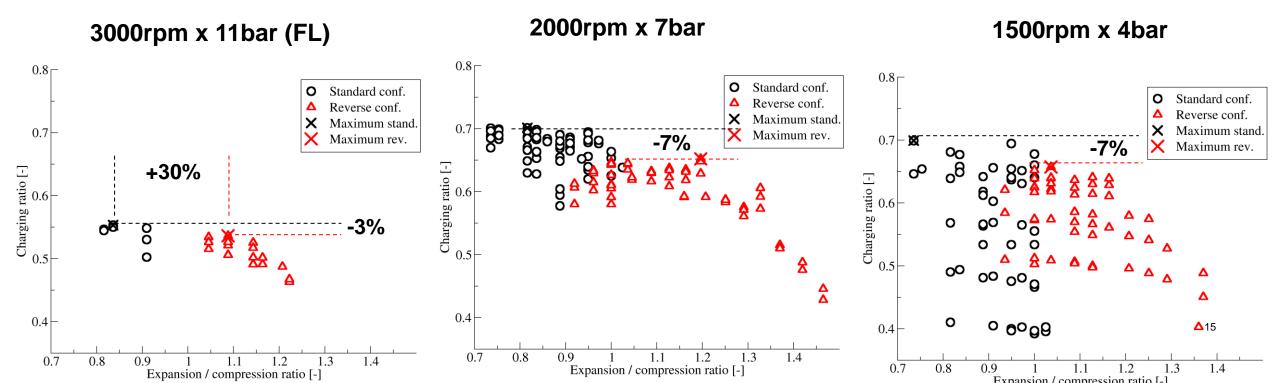
Corrected ISFC

- ISFC + penalty due to the supercharger work
- Most promising combinations intake/exhaust diagrams plotted
- Corrected ISFC 7 when P_{intake} 7 due to the supercharger
- 10g/kWh benefit for the reverse configuration
- Large ISFC ⇒ pre-design study, optimizations not yet performed 3000rpm x 11bar (FL)



SYSTEM SIMULATION ANALYSIS RESULTS

Corrected ISFC


- 3000 rpm x 11bar \Rightarrow 10g/kWh benefit for the reverse configuration ٠
- 2000rpm x 7bar \Rightarrow small benefit for the reverse configuration (>5 g/kWh)
- 1500rpm x 4bar \Rightarrow negligible benefit •

SYSTEM SIMULATION ANALYSIS RESULTS

Analysis of the fresh gases masses

- Charging ratio = mass of trapped fresh gases / reference mass based on the intake conditions
- Expansion / compression ratio = V_{cylinder} @ exhaust opening / V_{cylinder} @ intake closure
- Larger expansion for the reverse configuration
- Penalty on the charging ratio \Rightarrow but penalty $\div 2$ for the FL point
- Compensation of expansion benefit and charging penalty

Clear benefit of the reverse uniflow for the full load point \Rightarrow -10 g/kWh

but the advantages are negligible at low loads/speeds

- Reverse configuration allows a larger expansion but there is a penalty of the trapped mass
- For the full load point, the penalty is small compared to the expansion benefit
- For the other mid-load points, both effects compensate

Conclusions drawn by assuming the same scavenging between both uniflow configurations

1. INTRODUCTION

- CONTEXT
- OVERVIEW OF SCAVENGING ARCHITECTURES
- BENCHMARK OF SCAVENGING CONFIGURATIONS
- 2. SYSTEM SIMULATION ANALYSIS
 - INTRODUCTION
 - SIMULATION METHODOLOGY
 - RESULTS
 - CONCLUSIONS

3. 3D CFD ANALYSIS

- INTRODUCTION
- SIMULATIONS DETAILS
- QUALITATIVE RESULTS
- QUANTITATIVE RESULTS

4. MAIN CONCLUSIONS & PERSPECTIVES

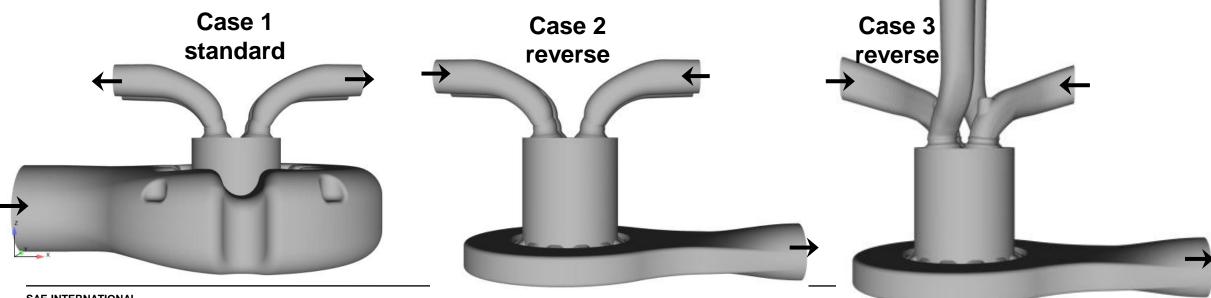
3D CFD ANALYSIS INTRODUCTION

Purpose

- Study of the efficiency of the scavenging for the standard and reverse configurations
- CONVERGE code
- Comparison of the
 - Scavenging curves
 - Charging, trapping ratios
 - Swirl
- Single operating point 3750rpm x 11bar
- Single intake/exhaust diagrams issued from the previous study

Engine configuration

• Same as previously



3D CFD ANALYSIS INVESTIGATED CASES

Three investigated cases

- Benchmark of the uniflow configurations
 - Case 1 : standard uniflow
 - Case 2 : reverse uniflow with intake ducts typed for enabling filling
- Benchmark of intake ducts in rev. uniflow
 - Case 2 : reverse uniflow with intake ducts typed for enabling filling
 - Case 3 : reverse uniflow with intake ducts typed for enabling swirl

nouvelles

SAE INTERNATIONAL

3D CFD ANALYSIS SIMULATIONS DETAILS

Methodology

- From the end of the expansion to the beginning of the compression
- Best intake and exhaust diagrams issued from the previous study ٠

Automatic grid generation

 Base size = 4mm Refinement up to 0.5mm 			Reverse Uniflow
 750,000 cells Numerical setup 	Intake duration	125 CAD	100 CAD
 k-ε RNG No-slip hydraulically smooth walls with a standard law-of-the-wall CFL_{convective} < 1 CFL_{acoustic} < 50 	Intake opening	117 CAD ATDC	150 CAD ATDC
	Exhaust duration	95 CAD	120 CAD
1 day on 64 Intel Xeon E5 @ 2.60GHz	Exhaust opening	105 CAD ATDC	120 CAD ATDC

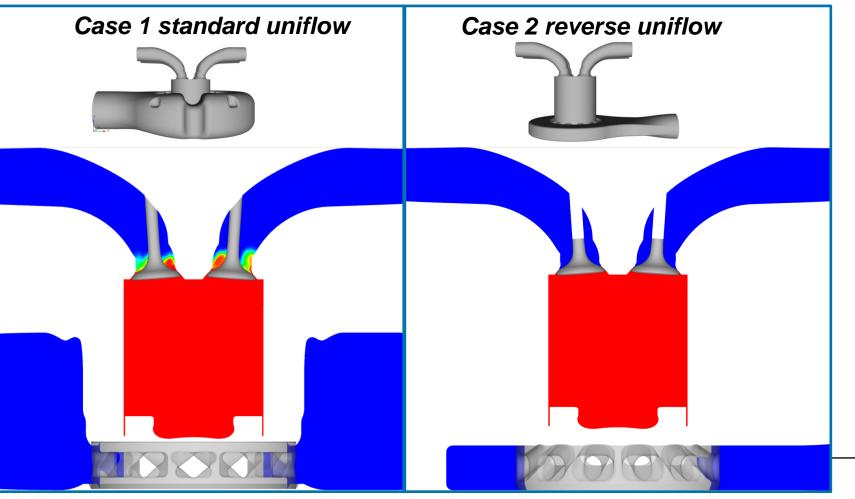
0

3D CFD ANALYSIS QUALITATIVE RESULTS

Qualitative results

- In-cylinder tracer fields
- Center slice

Case 1 standard uniflow

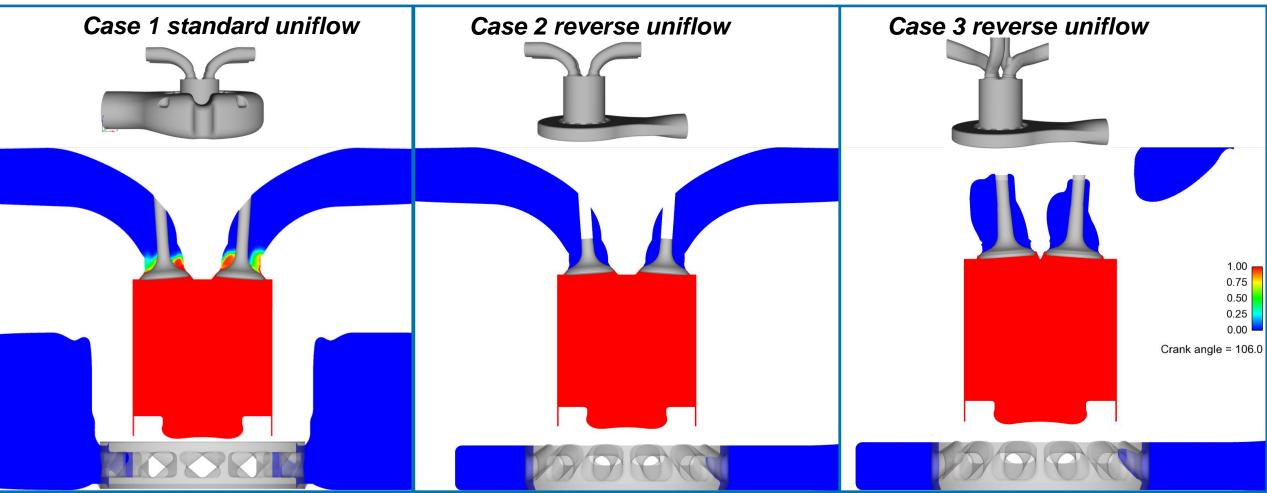


3D CFD ANALYSIS QUALITATIVE RESULTS

Qualitative results

- In-cylinder tracer fields
- Center slice

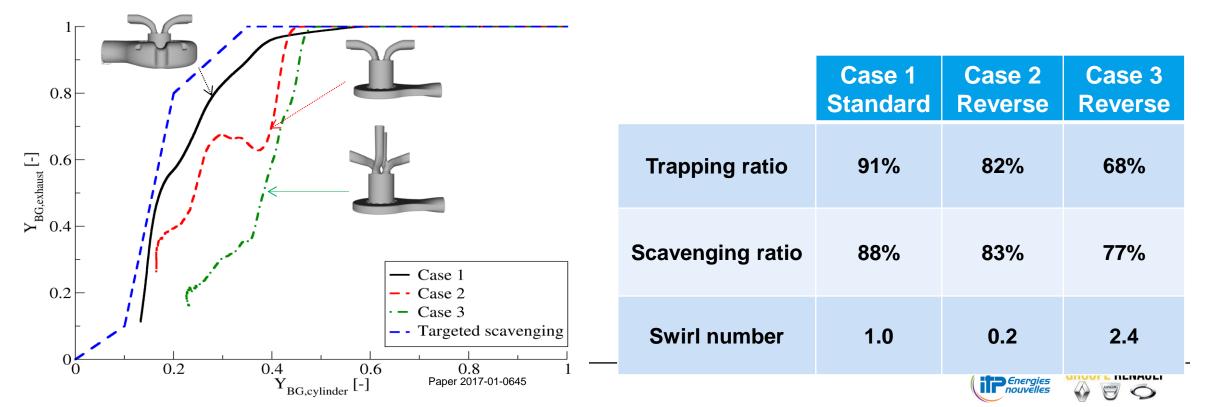
RENAULT


0

PEnergies nouvelles

3D CFD ANALYSIS QUALITATIVE RESULTS

Qualitative results


- In-cylinder tracer fields
- Center slice

3D CFD ANALYSIS QUANTITATIVE RESULTS

Quantitative results

- Best scavenging for the standard uniflow (case 1)
- For the reverse uniflow, swirl penalizes the efficiency of the scavenging
- Scavenging characteristics
 - Charging ratio = mass of trapped fresh gases / reference mass based on the intake conditions
 - Scavenging ratio = mass of trapped fresh gases / total in-cylinder mass of gases

INTRODUCTION 1.

- - CONTEXT

•

2.

INTRODUCTION

OVERVIEW OF SCAVENGING ARCHITECTURES

SIMULATION METHODOLOGY

SYSTEM SIMULATION ANALYSIS

BENCHMARK OF SCAVENGING CONFIGURATIONS

- CONCLUSIONS
- 3. 3D CFD ANALYSIS

RESULTS

- •
- INTRODUCTION
- SIMULATIONS DETAILS
- QUALITATIVE RESULTS •
- QUANTITATIVE RESULTS
- 4. MAIN CONCLUSIONS & PERSPECTIVES

MAIN CONCLUSIONS & PERSPECTIVES

Conclusions

- Development of an efficient 2-stroke Diesel engine for medium passenger cars
- First step of the project = choice between standard or reverse uniflow
- Corrected ISFC assessment
 - 10 g/kWh benefit for the reverse conf. for the full load point
 - Benefit vanishes for mid-load points
- Feasibility of the scavenging
 - More efficient scavenging for the standard configuration
 - Previous ISFC benefit potentially lost in the scavenging

\Rightarrow The <u>standard</u> uniflow is preferred

MAIN CONCLUSIONS & PERSPECTIVES

Future steps

- Choice of the best suited stroke-to-bore ratio
- Optimization of the transfer ports geometry
- Definition of the combustion system
- Experimental test campaigns on SCE
- Extrapolation of the fuel consumption/emissions in normalized driving cycles

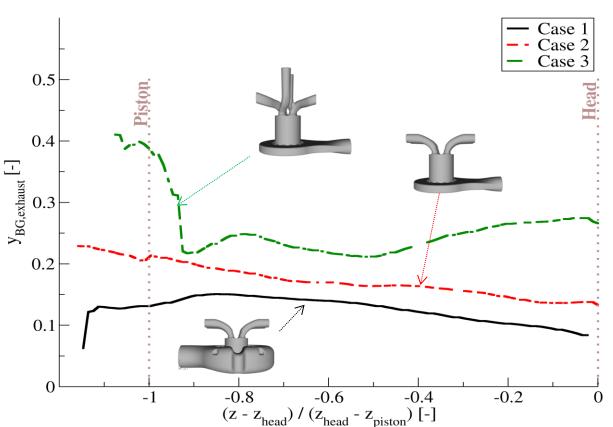
Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

Contact: jeremy.galpin@ifpen.fr



3D CFD ANALYSIS QUANTITATIVE RESULTS

IGR axial distribution at intake closure

- Case 1 = homogeneous distribution •
- Case 2 •
- $\Rightarrow 2$ Pockets of IGR in the piston or close to une mean Increasing ΔP or delaying slightly exhaust closure Possibility to pursue the scavenging with a tranning ratio _
- Case 3 = homogeneous distribution

