
HAL Id: hal-01729734
https://hal.science/hal-01729734

Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of a Screw Dislocation in a � 011 � Copper
Nanowire

Jean-Marc Roussel, Marc Gailhanou

To cite this version:
Jean-Marc Roussel, Marc Gailhanou. Stability of a Screw Dislocation in a � 011 � Copper Nanowire.
Physical Review Letters, 2015, 115 (7), pp.075503. �10.1103/PhysRevLett.115.075503�. �hal-01729734�

https://hal.science/hal-01729734
https://hal.archives-ouvertes.fr


Stability of a Screw Dislocation in a h011i Copper Nanowire

Jean-Marc Roussel* and Marc Gailhanou
Aix Marseille Université, CNRS, IM2NP UMR 7334, 13397 Marseille, France

(Received 15 April 2015; published 13 August 2015)

The stability of a screw dislocation in a free h011i copper nanowire is investigated using atomistic
calculations. This study reveals a strong anisotropy of the Eshelby potential well (EPW) that traps the
dislocation. Moreover the depth of the EPW is found to vanish when the radius of the nanowire decreases.
It is demonstrated that this behavior is due to the dissociated state of the dislocation.
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Axial screw dislocations may appear in metal nanowires
either during growth [1] or under mechanical loading [2].
Understanding the stability of these defects in such small
objects is of fundamental interest. The case of a single
perfect screw dislocation in an isotropic cylinder was
addressed by Eshelby with a well-known solution based
on the elasticity theory [3,4]. This solution should,
however, be revisited in the case of metal nanowires where
additional ingredients are to be considered. First, face-
centered-cubic (fcc) crystalline nanowires preferentially
grow along a h011i orientation [5] and therefore require
an anisotropic description of the energetic barrier that
stabilizes the screw dislocation. Second, in such fcc nano-
wires, the screw dislocation is made of two parallel
Shockley partial dislocations separated by a distance that
may be comparable to the diameter of the wire. If the latter
has no effect on the energetic barrier in the classical theory,
its influence remains unknown at the nanoscale. It is the
aim of this work to study both this size effect and the
influence of the anisotropy on the energetics of the Eshelby
dislocation by performing atomistic simulations of copper
nanowires which currently attract lots of attention [6].
In his pioneering article [3], Eshelby shows, using

isotropic elasticity, that a screw dislocation can occupy a
metastable state along a wire by causing its torsion. This
so-called Eshelby twist that was observed afterwards in
whiskers [7] reappears today more dramatically in nanowires
[8–10], a smaller radius producing a larger twist [11]. To
leave its metastable state and reach the lateral surface of the
wire, the screw dislocation (parallel to the cylindrical wire
axis) must overcome an energy barrier whose maximum is
located roughly halfway and whose height does not depend
on the radius of the wire in the isotropic theory. This barrier
is illustrated in Fig. 1 with the case of a fcc copper wire
having the h100i orientation and a circular cross section of
radius R ¼ 30 nm. The variation of the elastic strain energy
of the wire ΔE (per unit length) is plotted as a function of
the relative position x ¼ ξ=R of the screw dislocation.
According to Eshelby’s original derivation ΔE writes

ΔE ¼ Ed lnð1 − x2Þ − Etx2ðx2 − 2Þ; ð1Þ

whereEd ¼ Et ¼ C0
44b

2=ð4πÞ for this h100i orientation that
behaves isotropically. b is the magnitude of the Burgers
vector equal to the lattice parameter a ¼ 3.62 Å for this
orientation and C0

44 ¼ 82 GPa is the shear elastic constant.
In Eq. (1), the first term is due to both the screw dislocation
and its image that is located at the positionR2=ξ to cancel the
traction on the lateral free surface. The second term in Eq. (1)
comes from the Eshelby twist αE ¼ bð1 − x2Þ=ðπR2Þ of the
wire that is necessary to cancel the torque induced by the
screw dislocation. In terms of forces, the image force tends to
drive the dislocation out of the cylinder while the torsion
tends to attract the dislocation at the center. In the isotropic
case, the energy core of the dislocation is considered as
constant with ξ=R and has no role on ΔE. In Fig. 1, ΔE is
also recovered by performing atomistic simulations with a
tight-binding potential that mimics the interactions between
copper atoms. Details on the simulations are given in
Ref. [11] and in the Supplemental Material [12]. In the
present work, the molecular statics (MS) calculations are
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FIG. 1 (color online). Isotropic Eshelby potential well that
stabilizes the perfect screw dislocation in a h100i nanowire of
radius R ¼ 30 nm. The energy ΔE per unit length is plotted as a
function of the position x ¼ ξ=R from either the elasticity theory
using (solid line) Eq. (1) or (square) our MS atomistic simu-
lations. In the latter, a small cylinder of radius r0 ¼ 1 nm
containing the dislocation core is excluded.
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performed to simulate an infinite twisted copper nanowire
containing a perfect screw dislocation that is located at
different ξ=R positions from the center. MS simulations
directly give access to the elastic strain energy and the fully
relaxed positions of each atom in such nanowires. Figure 1
shows that for this orientation the MS simulations agree very
well with the prediction made by Eshelby. The dislocation is
in a metastable equilibrium at the center, being trapped
in a potential well of depth Etð1 − ln 2Þ=2 and radius

xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=

ffiffiffi
2

pq
¼ 0.54 for any R as expected in the

classical theory.
For a real h011i fcc metal nanowire, two important

properties might change Eshelby’s conclusions on the
stability of a screw dislocation. First, the two-fold sym-
metry of a h011i axis leads to an anisotropy of the shear
modulus that controls the depth of the potential well.
Second, in metal, the perfect h011i screw dislocation
dissociates into two Schockley partials separated by a
distance that can be significant in comparison to the radius
of the nanowire [4]. Figure 2 shows a typical snapshot
resulting from our simulations. Initially, a perfect screw
dislocation parallel to the wire axis, with Burgers vector
b ¼ 1=2a½011� ¼ 2.56 Å, is created at a given distance ξ
and direction. Then during the quenched molecular dynam-
ics, the screw dislocation first dissociates into two
Schockley partials in a f111g plane separated by a stacking
fault whose width 2δ is around 14 Å for large radii. Then, a
second relaxation regime is observed where the two partials
glide together in the f111g slip plane. Depending on its
initial position and the wire torsion, the pair of partial
dislocations either reaches a metastable state near the center
or moves out of the nanowire. During this stage, the kinetic
energy of the system can be neglected in comparison with
the searched well potential. The torsion α is dynamically
adjusted according to the instantaneous positions of the
partials. For this purpose, the above expression of αE can be
used for each partial dislocation since it remains valid for

the present anisotropic case of a circular cylinder [17]. Thus,
for a mean relative position x, the torsion α now writes

α ¼ b½1 − x2 − ðδ=RÞ2�=ðπR2Þ; ð2Þ

where the separation distance 2δ tends to reduce α. Values
of α given by Eq. (2) are confirmed by our MS simulations.
By performing a large set of MS simulations, we

obtained the map of the Eshelby potential well for a
h011i copper wire containing the dissociated dislocation.
The case of a large radius (R ¼ 30 nm) is first shown in
Fig. 3. Clearly, the potential well exhibits a strong
anisotropy with a barrier that is maximum along the
½011̄� direction and roughly 3 times smaller in the
perpendicular [100] direction. The position of the maxi-
mum xmax also varies with the direction. Along [100], the
potential well is significantly closer to the center
(xmax ≈ 0.43) while along ½011̄� it is higher (xmax ≈ 0.58)
than the isotropic value. Interestingly, the ΔE curves
obtained for large R in Fig. 3 can be reproduced quite
well by using again the expression of Eq. (1) with a term Ed

that now varies directionally. The latter is the only
parameter which has to be adjusted since in Eq. (1) the
coefficient Et related to the torsion is known Et ¼
C44C55b2=½ðC44 þ C55Þ2π� and takes the value Et ¼
1.36 eV=nm [11]. The agreement between Eq. (1) and
our simulations shown in Fig. 3 is obtained for Ed ¼
1.18 eV=nm along ½011̄� and Ed ¼ 1.79 eV=nm along
[100]. Furthermore, the 2D potential well resulting from
the simulations is fairly well fitted using a sin 2θ depend-
ence of Ed, where θ is the azimuth of the dislocation.
Within this simple formulation, it is also convenient to
express the maximum height in the form
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FIG. 2 (color online). Typical nanowire (slice) studied in this
work using atomistic simulations. A free h011i crystalline
nanocylinder of copper (here of radius R ¼ 10 nm) contains a
pair of Shockley partial dislocations. Only copper atoms with
high energy are shown, revealing a screw dislocation dissociated
in a (11̄1) plane containing the wire axis.
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FIG. 3 (color online). Molecular statics calculation of the full
2D (inset) Eshelby potential well of a screw dislocation in a free
h011i crystalline cylinder of copper with large radius R ¼ 30 nm.
Profiles along the two main [100] and ½011̄� directions are plotted
according to our MS simulations (symbols) and modeled using
Eq. (1) (solid lines).
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ΔEmax ¼ Et½2β2 ln β þ ð1 − β2Þ� ð3Þ

and the radius xmax ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
with β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed=ð2EtÞ

p
. Thus,

for a given Et and Ed < 2Et, the barrier decreases and
moves to the center when Ed increases.
In order to quantify a possible size effect on the stability

of the pair of partial dislocations we focus our analysis
along the ½211̄� direction imposed by one of the two f111g
gliding planes containing the nanowire axis. Different radii
are considered in Fig. 4 with R ranging from 3 to 30 nm.
Clearly the pair of dislocations is less stable in small
nanowires. Both the depth of the potential well and the
position of its maximum xmax decrease markedly when R
decreases. Moreover, our simulations show that this nano-
size effect is directly due to the dissociated state of the screw
dislocation. Indeed in Fig. 4, if one prevents the dissociation
by freezing the dislocation core as in the previous isotropic
case, the energetic barrier becomes invariant with R. This
effect vanishes for R ¼ 30 nm where allowing (or not
allowing) the dissociation gives similar results.
We now wonder how to rationalize this decrease of the

Eshelby barrier for small nanowires. How can the depth of
the potential well for a pair of partial dislocations be smaller
than the one obtained for a single perfect screw dislocation
having an equivalent Burgers vector? To study this influ-
ence of the dissociation mechanism one needs to estimate
the different forces acting on each partial dislocation. Only
dislocation Volterra fields are considered [12] and surface
stress effects are neglected [11]. To simplify further we
assume that the only effect of anisotropy is contained in Ed

and we use the isotropic elasticity theory of dislocations.

In this framework the considered configuration is shown
schematically in Fig. 5 to define all the quantities of
interest. The two partial dislocations have equal and
opposite edge Burgers vector components (þbe for the
dislocation 1 at ξ1 ¼ ξþ δ and −be for the dislocation 2 at
ξ2 ¼ ξ − δ) and equal screw components, bs ¼ b=2. In the
isotropic case, image dislocations and image forces are well
described in the literature [18]. The Burgers vectors and the
expected positions ξ10 and ξ20 along the X axis for the image
10 of the dislocation 1 and the image 20 of the dislocation 2
are reported in Fig. 5 accordingly. Using Eshelby’s image
forces [18] and following the line of thought of Weinberger
and Cai [2] who envisaged the same configuration, we
obtain the following expression for f1, the X component of
the force (per unit length) exerted on the dislocation 1:

f1 ¼
κ110

ξ10 − ξ1
þ κ120

ξ20 − ξ1
þ κ12
ξ1 − ξ2

þ ft1 þ fs1;

κ110 ¼
μ

2π
½b2e=ð1 − νÞ þ b2s �;

κ12 ¼
μ

2π
½−b2e=ð1 − νÞ þ b2s �;

κ120 ¼ κ12 þ
μ

2π

b2e
1 − ν

ξ20

ξ2

ðξ20 − ξ2Þðξ1 − ξ2Þ
ðξ20 − ξ1Þ2

; ð4Þ

where for an isotropic wire having a shear modulus μ
and a Poisson ratio ν, the coefficient κ110 > 0 leads to an
attraction with image 10, κ12 > 0 induces a repulsion with
dislocation 2 while the role of the image 20 is captured
through the more complicated term κ120 > 0 that also tends
to attract the dislocation 1 out of the nanowire. On the
contrary in Eq. (4), the force induced by the torsion

ft1 ¼ −
μb2s
πR2

ξ1

�
2 −

�
ξ1
R

�
2

−
�
ξ2
R

�
2
�

ð5Þ

and the force (per unit length) due to the extension of the
stacking fault (of energy γ per unit surface) fs1 ¼ −γ are
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FIG. 4 (color online). Eshelby potential wells along the ½211̄�
direction obtained from our MS simulations (symbols) in free
h011i copper nanowires of different radii R ¼ 3, 4, 5, 6, 10, and
30 nm containing a b ¼ 1=2a½011� screw dislocation. The
decrease of the Eshelby barrier happens only when the disloca-
tion is dissociated into two Shockley partials and for R < 30 nm.
This is shown by considering frozen dislocation cores for R ¼ 6
and 30 nm. The solid lines are given by our model expressed in
Eq. (7).

FIG. 5 (color online). The two partial dislocations have equal
and opposite edge Burgers vector components (þbe for the
dislocation 1 at ξ1 ¼ ξþ δ and −be for the dislocation 2 at
ξ2 ¼ ξ − δ) and equal screw components, bs ¼ b=2. To model
the Eshelby barrier, we simplify the problem to the case of an
isotropic circular cylinder where two image dislocations 10 and 20
are needed at ξ10 ¼ R2=ξ1 and ξ20 ¼ R2=ξ2 to cancel the traction
on the lateral surfaces.
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both negative and drive the dislocation 1 towards the center.
Permuting indexes [19], one gets from Eq. (4) the force
component f2 exerted on dislocation 2 along X and by
integration one obtains the energy Eðξ1; ξ2Þ ¼ Eðξ; δÞ of
the cylinder containing the two partial dislocations. This
simple model will enable us to capture the variation of the
potential well ΔE with R observed in Fig. 4 providing that
we know how the dissociation distance 2δ varies with ξ for
a given R. This latter point is solved in the Supplemental
Material [12] where using Eq. (4) and applying the
condition −∂E=∂δjξ ¼ f1 − f2 ¼ 0, we derive the follow-
ing expression of δ that minimizes E [12]:

δ ≈ a1 þ
1

R2
½a2 þ a3fðxÞ�; ð6Þ

with x ¼ ξ=R, and fðxÞ is a polynomial function fðxÞ ¼
3
4
ð1 − x2Þ−2 − 1

4
ð1 − x2Þ−1 − ð1 − x2Þ þ 1

2
derived for be ¼

b=
ffiffiffiffiffi
12

p
and ν ¼ 1=3. By adjusting the parameters a1, a2,

and a3, Eq. (6) reproduces remarkably well the dependency
of δ with x for R ranging from 3 nm to 30 nm in our
simulations [12]. At the center for ξ ¼ 0, the distance
between partials is found to be smaller in thinner wires and
it increases linearly with 1=R2. Equation (6) also tells that δ
increases with ξ for any radius R.
Using again forces f1 and f2 from Eq. (4) and integrat-

ing we finally get ΔE for a dissociated screw dislocation:

ΔE ¼ Ed

�
3

4
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2 − y2Þ2 − 4x2y2

p
1 − y2R

�

þ 1

4
ln

�ð1 − x2 þ y2Þ
ð1þ y2RÞ

�

−
1

2

�
y2

ð1 − x2 þ y2Þ2 −
y2R

ð1þ y2RÞ2
�

−
1

4
ln

�
y
yR

�
þ R
4δ∞

ðy − yRÞ
�

− Et½x2ðx2 − 2þ 2y2Þ − y2ð2 − y2Þ þ y2Rð2 − y2RÞ�;
ð7Þ

with x ¼ ξ=R, y ¼ δ=R and yR ¼ δR=R where δR denotes
the half dissociation distance for ξ ¼ 0 in Eq. (6). In
Eq. (7), one can still recognize each interaction that
contributes to building the full potential well. The first
logarithmic term originates from the interactions between
the dislocations and their own images (1 with 10 and 2 with
20). The second and the third lines in Eq. (7) contain the
terms that come from the crossed interactions between
dislocation and image (1 with 20 and 2 with 10). Then in the
fourth line, the two terms account for the direct interaction
between dislocations 1 and 2 and depend only on the
increase of the relative dissociation distance y with respect
to its value yR at the center. Finally, in Eq. (7), the term with

the prefactor Et is due to the torsion. Only this latter term
and the term proportional to y − yR in Eq. (7) are positive.
They increase with x in contrary to the other negative terms
that decrease with x.
For large R, Eq. (7) tends to Eq. (1) since y2R ≪ 1 and

y ≈ yR from Eq. (6). This situation is found for R ¼ 30 nm
in Fig. 4 with Ed ¼ 1.60 eV=nm. Below 30 nm for copper,
the role of the relative dissociation distance yR increases. A
constant value of y equal to yR does induce a decrease of
the Eshelby barrier when yR increases. However, it is only
by taking into account the way y varies with x and R from
Eq. (6) that we obtain a good agreement with the results of
our simulations in Fig. 4. In this latter case where all terms
count in Eq. (7), the R dependence of both ΔEmax and xmax

of the potential well are quantitatively reproduced. The
model also predicts the existence of a critical radius below
which the dissociated dislocation becomes unstable. This
radius is estimated to be around 1.5 nm from the atomistic
simulations.
To conclude, we have examined the stability of a screw

dislocation in a h011i copper nanowire. We find that the
crystallographic anisotropy of the wire leads to a marked
anisotropic Eshelby potential well (EPW) with a two-fold
symmetry. In addition, we show that the dissociated state of
the screw dislocation into two partials induces a depend-
ence of the EPW with the radius R of the nanowire. By
diminishing R from 30 to 3 nm for copper, both our
molecular statics simulations and our model based on
elasticity theory of dislocations predict a decrease of the
EPW barrier ΔEmax by almost a factor 3 and a reduction of
the EPW radius xmax from roughly 0.5 to 0.3 in the h211i
directions. The pair of partials is found to be unstable
for R < 1.5 nm.
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