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Abstract

The bottom pressure distribution beneath large amplitude waves is stud-
ied within linear theory in time and space domain, weakly dispersive Serre-
Green-Naghdi system and fully nonlinear potential equations. These ap-
proaches are used to compare pressure fields induced by solitary waves, but
also by transient wave groups. It is shown that linear analysis in time domain
is in good agreement with Serre-Green-Naghdi predictions for solitary waves
with highest amplitude A = 0.7h, h being water depth. In the meantime,
when comparing results to fully nonlinear potential equations, neither linear
theory in time domain, nor in space domain, provide a good description of
the pressure peak. The linear theory in time domain underestimates the peak
by an amount similar to the overestimation by linear theory in space domain.
For transient wave groups (up to A = 0.52h), linear analysis in time domain
provides results very similar to those based on the Serre-Green-Naghdi sys-
tem. In the meantime, linear theory in space domain provides a surprisingly
good comparison with prediction of fully nonlinear theory. In all cases, it has
to be emphasized that a discrepancy between linear theory in space domain
and in time domain was always found, and presented an averaged value of
20%. Since linear theory is often used by coastal engineers to reconstruct
water elevation from bottom mounted sensors, the so-called inverse problem,
an important result of this work is that special caution should be given when
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doing so. The method might surprisingly work with strongly nonlinear waves,
but is highly sensitive to the imbalance between nonlinearity and dispersion.
In most cases, linear theory, in both time and space domain, will lead to
important errors when solving this inverse problem.

Keywords: Bottom pressure distribution, Linear wave theory,
Serre-Green-Naghdi system, fully nonlinear equations, travelling waves,
transient waves.

1. Introduction

For various experimental reasons, the measurement of water waves prop-
agating in shallow water environments such as surf zones or coastal areas
is a difficult task. These measurements are often performed using bottom
mounted pressure sensors. The data collected might be inverted to provide
the related water elevation. However, the function used to perform this in-
version is subject to question. Indeed, when considering very long waves, like
tides and tsunamis, the pressure is hydrostatic as long as dispersive effects
can be neglected, and recovering surface elevation from the bottom pressure
does not imply any particular difficulty.

On the other hand, the propagation of water waves in coastal areas are more
complex. In such areas, one may find wind waves, which are not long waves
even in the coastal zone. The corrections related to their dispersive behaviour
might play a significant role. The wave behaviour near the coast (cliffs or
vertical barriers) in the process of the wave reflection should also be taken
into account. For instance, the relation between wave elevation, and bottom
pressure is not straight forward, due to the interaction of incident and re-
flected wave (Touboul and Rey, 2012; Touboul and Pelinovsky, 2014).

Anyway, spectral methods based on transfer functions are often used to re-
construct the water elevation taking into account the assumption of linearity
of waves (Cavaleri, 1980; Wang et al., 1986; Bishop and Donelan, 1987; Kuo
and Chiu, 1994; Baquerizo and Losada, 1995; Zaslavsky and Krasitsky, 2001;
Tsai et al., 2005; Huang and Tsai, 2008). The reasons why this assumption
might be questioned are twofold. First, when considering the transfer func-
tion between elevation and pressure, nonlinear terms are obviously neglected
within the linear assumption. Secondly, the linear dispersion relation does
not take nonlinear dispersion into account. In shallow water environment,
nonlinear dispersion becomes predominant with respect to linear dispersive



effects. Beyond these two reasons, when considering the inverse problem,
i.e. reconstructing water waves elevation starting from pressure records, the
problem is ill-posed, and further difficulties appear.

Since the work of Bishop and Donelan (1987), the linear hypothesis is of-
ten considered not to hold for large amplitude waves. Indeed, these authors
found the linear prediction to underestimate the elevations of about 15% for
largest waves. Thus, several authors found an expression when considering
nonlinear periodic waves or solitary waves (Escher and Schlurmann, 2008;
Constantin et al., 2010, 2011; Pelinovsky et al., 2015). The pressure map
beneath these waves might be found in Constantin (2012); Oliveras et al.
(2012); Clamond and Constantin (2013). However, since the possible errors
involved in the process are twofold, it might be possible that they compen-
sate each other, providing a better correspondence than expected. Indeed,
depending on how nonlinear dispersive effect compare with frequency disper-
sion effect, nonlinear terms involved within the transfer function might be
compensated by nonlinear error in dispersion relation.

To our knowledge, the combined effect of these two mechanism has not been
discussed yet. The main purpose of this work is to investigate the ability of
linear theory to correlate surface elevation with bottom pressure distribution.
To achieve this goal, two cases are considered. First, a strongly nonlinear
solitary wave is considered. Then, a strongly nonlinear transient wave group
is studied. This approach allows to vary the respective role of frequency and
nonlinear dispersion. In the first case, linear and nonlinear dispersive effects
are of same order. In the second case, the frequency dispersion is predomi-
nant.

These two reference cases are propagated using alternatively the fully non-
linear potential equations, and the weakly dispersive, fully nonlinear Serre-
Green-Naghdi system. The bottom pressure evolution is obtained numeri-
cally in both cases. The bottom pressure obtained in the framework of the
fully nonlinear potential equations serves as reference, while the distribution
obtained in the framework of Serre-Green-Naghdi system provides a fully
nonlinear weakly dispersive solution.

In all cases, bottom pressure distribution is computed using the linear the-
ory in both time and space domain, and compared with the distributions
obtained numerically. This approach provides new insight in interpreting
the respective roles of linear dispersion, nonlinear dispersion, and nonlinear
terms involved in the transfer function.

Numerical models used in this work are presented in section 2 (fully nonlinear
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potential equations), and in section 3 (Serre-Green-Naghdi system). Results
of computations for traveling solitary waves and transient wave groups dis-
cussed respectively in sections 5.1 and 5.2. In these sections, the respective
roles of various terms involved in linear transfer functions to correlate sur-
face elevation with bottom pressure are emphasized. It is generally admitted
that linear theory in time domain should not be used to reconstruct eleva-
tion from bottom pressure distribution (Bishop and Donelan, 1987; Oliveras
et al., 2012) when wave fields are nonlinear, and this result finds a new con-
firmation here. In the meantime, conclusions about linear theory in space
domain are not straightforward. These new results are discussed in section
6.

2. Numerical solution of the fully nonlinear equations

2.1. Basic equations of the problem

As it is classically done, the fluid is assumed to be inviscid and incom-

pressible. The further hypothesis of irrotational motion allows the velocity
to derive from a velocity potential, u = V¢, where the velocity potential
¢(z, z,t) has to be solution of Laplace’s equation. Here, x and z refer re-
spectively to the horizontal and vertical space coordinates, whereas t denotes
time. The coordinate z = 0 corresponds the location of the free surface at
rest, while an horizontal impermeable bed is located at z = —h. Finally, the
numerical domain is closed at its two remaining extremities x = 0 and x = L
by vertical impermeable walls.
Accordingly to the dynamic free surface condition, the pressure at z = n(x, t)
has to be nil. Together with the kinematic free surface condition, which ex-
presses the impermeability of the free surface, and the bottom condition,
Lapalce’s equation might be solve.

(Agb:O in —h<z<n(xt),
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Here, g is the acceleration due to gravity, and p the water density. Once
the velocity potential and its gradient are known in the fluid, the bottom
pressure is obtained by using Bernoulli’s equation
2
gzgh—%—@ on z=—h (2)

2.2. Numerical approach

The system of equations (1) is solved using a classical Boundary Integral
Equation Method (BIEM). The free surface is treated with a mixed Euler
Lagrange (MEL) time marching scheme. The numerical approach used here is
fully documented in Touboul and Kharif (2010) for general cases, and its use
to investigate the propagation of solitonic waves can be found in Chambarel
et al. (2009); Touboul and Pelinovsky (2014); Chen et al. (2015).
The method is based on the use of Green’s third identity, to solve Laplace’s
equation for the velocity potential.

oG
| ey Sre.Qe
0 on 9% (3)
| Srmee. = ()
an on
where G is the free space Green’s function. The fluid domain boundary 02
is 0Q2p U 02, which correspond respectively to solid boundaries and to the

free surface boundary. Since P and Q) refer to two points of the fluid domain,
and since ¢(Q) is given by

0 if Q is outside the fluid domain €2
c¢(Q) =< a if Qis on the fluid boundary 92 (4)
2m if Q is inside the fluid €2

« being the inner angle delimited by the adjacent panels of the boundary,
a discretization of this integral equation can be obtained. Time stepping
is performed by means of a fourth order Runge & Kutta scheme, with a
constant time step. The bottom pressure is calculated by using a finite-
difference method.

3. Numerical solution of the Serre-Green-Naghdi equations

3.1. The Serre-Green—Naghdi equations
The Serre-Green-Nagdhi equations were initially introduced by Serre (1953),
and later on rederived by Green and Naghdi (1976). These equations can
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be obtained by considering a thin layer of an incompressible, inviscid fluid.
The shallow water approximation is introduced in Euler equations by as-
suming that the horizontal velocity field is independent from depth. Thus,
it corresponds to an ab initio guess of the structure of the vertical velocity
component. Vertical integration of the Euler equations leads to the formu-
lation of the Serre-Green-Naghdi system, which reads, in its classical form,
and for one dimension of propagation,

ou, ou, 0o _
ot uax g(‘?x_
Vo [1 (P P (ou)?
cor |37 \otor " "oz \ Bz ’ (5)
do  0O(ou)
E—i_ O = 0.

Here, u refers to a layer averaged horizontal velocity component, and o is
the local depth, which corresponds to the surface elevation for problems
in constant depth h (0 = n + h). A review of nonlinear shallow water
theories was made by Barthélemy (2004), while a comprehensive derivation
of the Serre-Green-Naghdi system can be found in Borzi et al. (2005). The
system can be equivalently rewritten in a conservative form, leading to the
formulation

%_}_ do 1 0 ( ,D%
Dt Yor 30 0z ’

"D
(6)
Do o
Dt + or
The symbol D/Dt should be understood as a material derivative, meaning
that D/Dt = 0/0t + ud/0x.
Once this system of equations is solved, the bottom pressure distribution can

be obtained by
2 2 2 2
p__C 0*u 0°u B %
p 9773 <8t8m MR (890) ) ™

as it was pointed out by Pelinovsky and Choi (1993) and Pelinovsky (1996)
The Serre-Green-Naghdi equations are often used in the framework of
high amplitude water waves propagating in shallow water, since they provide
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fully nonlinear solutions of the problem, under the assumption of weak disper-
sion. In its classical formulation, these equations are especially appreciated
since they correspond to a Galilean invariant model, which is conservative
for a positive definite energy (Le Metayer et al., 2010).

3.2. Numerical approach

In this work, we perform a numerical solution of the SGN system. The
method of solution used corresponds to the numerical scheme introduced by
Pearce and Esler (2010). The solution algorithm is pseudo-spectral. The
equations system (5) is transformed in a vorticity-divergence form, as de-
tailed in Pearce and Esler (2010). This allows time-derivatives to appear
implicitly in the divergence equation only. Thus, the difficulty reduces to
solve a nonlinear equation at each time-step in order to determine the diver-
gence tendency. This equation can be solved by iterating in spectral space
to determine each Fourier component. The time stepping is then performed
by using standard multi-step schemes (Euler of time step dt/2 and centered
leap frog of time step dt for the initial time stepping, centered leap frog of
time step 2dt for the following time steps). However, these authors imple-
mented a hyper-diffusive term to dissipate the turbulent down-scale cascade
of enstrophy. This ad-hoc diffusive parameter was chosen to be equal to
Cuip = 8.107% within our simulations, as it was suggested in Pearce and
Esler (2010). k8

4. Initial conditions

4.1. Travelling solitary wave

Highly nonlinear solitary waves are considered as a reference wave using
both approaches. The waves considered in both cases involve a nonlinear
parameter of A/h = 0.7.

First, the Boundary Integral Element Method, is initiated using Tanaka’s
solution (Tanaka, 1986), as it was done in Touboul and Pelinovsky (2014).
A rectangular wave tank of length L and constant depth A with two vertical
solid walls located at its ends. The horizontal length of the domain, L, is
assumed to be large enough to avoid any perturbation generated from the
vertical walls during the computational time of the simulations. For the
results concerning propagative waves, a single solitary wave is considered,
initially located at Xo/h = 10. Time evolution of pressure and elevation
are provided at X/h = 20, which corresponds to the center of the numerical
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wave tank. The number of collocation points was considered to be Npg =
750 on the free surface, while Ngo = 700. The nondimensional time step
(t = t+/g/h) was taken equal to dt = 1072

Secondly, within the framework of the Serre-Green-Naghdi system, a soliton
expression is known, as derived by Su and Gardner (1969) and Zheleznyak
and Pelinovsky (1985), and also described in Le Metayer et al. (2010). This
solution reads

o=h+n=h+ Asech’(y) and

u = VL, where

n-+h

The two solutions mentioned above are obviously not equivalent. Indeed, the
Tanaka solution, which is obtained numerically, accounts for a steady solution
of the fully nonlinear, and fully dispersive Euler equations. In the meantime,
the Serre-Green-Naghdi system accounts for full nonlinearity, but only week
dispersion. Since a solitary wave finds its existence through an equilibrium
between frequency dispersion, and nonlinear dispersion, this difference can
be observed in the solution shape. Indeed, as it appears in figures 2 and 3,
the Tanaka soliton, for such value of the nonlinear parameter, is thinner than
the Serre-Green-Naghdi one.

Anyway, it has to be mentioned that no numerical simulation was performed
to investigate the Serre-Green-Naghdi case. Indeed, both elevation and bot-
tom pressure are known analytically, as it is demonstrated in Pelinovsky et al.
(2015). The results presented in the framework of a travelling solitary waves



within the Serre-Green-Naghdi system refer to this analytical solution:

p — pgh :
- = h -
ot asech(y) 9 (1 + asechQ(y)) 7

Q= Hsec(y) (1 + asecl?(y)) [1 = seck()sinn(y)]

+3a’sech’ (y) sinh?(y)

4.2. Transient wave group

In this work, transient wave groups are also considered. In both equation
systems, fully nonlinear potential equations and Serre-Green-Naghdi system,
the procedure used to produce an initial condition is similar. A first simu-
lation is performed using both numerical methods. A Gaussian initial wave,
with no initial velocity, is allowed to collapse under gravity. This initial
Gaussian presented an amplitude equal to A/h = 2 and a standard deviation
value of ¥/h = /(2)/5. This simulation is performed with both numerical
tools. In both cases, two dispersive wave trains are obtained, propagating
in opposite directions. The radiated wave train propagating in the (—z) di-
rection is isolated, and space-time coordinates are reverted. Then, the wave
train considered is used as initial condition for both numerical approaches.
The dynamics of the wave group obtained is illustrated on figure 1, in the
framework of Serre-Green-Naghdi simulations. The initial wave group is
propagated, and the effects of dispersion lead to the formation of a high
wave. Defocusing is then observed. It has to be emphasized that the high
wave obtained is not of Gaussian shape anymore, since half of the waves
resulting from the collapse were discarded within the initial condition prepa-
ration procedure. This procedure is standard, and has often been used to
investigate dispersive focusing mechanism of rogue wave formation in shallow
water (see e.g. Kharif et al. (2000); Pelinovsky et al. (2000); Kharif and Peli-
novsky (2003)). In both numerical frameworks, the procedure was designed
to produce a focused wave of maximum A/h = 0.52.

5. Results and discussion

5.1. Travelling solitary waves

On Figure 2, the free surface elevation associated to a travelling solitary
wave of initial nonlinear parameter A/h = 0.7 is plotted as a function of the
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Figure 1: Evolution of the normalized water elevation corresponding to a focused wave of
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Figure 2: Evolution of the normalized water elevation corresponding to a travelling soliton
of initial A/h = 0.7 obtained with Serre-Green-Naghdi equations (—) in the travelling
frame of reference z — ct.

Evolution of the corresponding normalized bottom pressure obtained with Serre-Green-
Naghdi equations (—), with linear theory applied in time domain () and with linear
theory applied in space domain (—).

normalized coordinates x — ct, where x and t refer to the non-dimensional
space and time coordinates. The velocity c¢ refers here to the exact soliton
velocity V', obtained in the framework of equation (8). Here, with the non-
linear parameter A/h = 0.7, the velocity is taken to be ¢ = 1.3038. On
this figure, several curves, corresponding to several computations of the bot-
tom pressure evolution are also presented. The red curve corresponds to the
temporal bottom pressure evolution obtained in the framework of the Serre-
Green-Naghdi system. The green and yellow curves both correspond to the
bottom pressure distribution obtained by means of linear theory.

The green line is the bottom pressure in space domain, meaning it is obtained
by applying linear theory to each component of the spatial Fourier transform
of the free surface. This reads

= _— kx)dk 1
pg 27 J_ cosh(kh) exp(ikz)dk. (10)
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Figure 3: Evolution of the normalized water elevation corresponding to a travelling soliton
of initial A/h = 0.7 obtained with full potential equations (—) in the travelling frame of
reference x — ct.

Evolution of the corresponding normalized bottom pressure obtained with full potential
equations (—), with linear theory applied in time domain () and with linear theory
applied in space domain (—).

where a;, are the components of the spatial Fourier transform of n(x).

The yellow line corresponds to the bottom pressure distribution in time do-
main, meaning it is obtained by applying linear theory to each components
of the temporal Fourier transform of the free surface.

p(ovt) _pgh’ o 1 * Qg

g = 2 ) cosh(k(@)h) exp(iwt)dw, (11)

where a,, are the components of the temporal Fourier transform of the wa-
ter elevation, related to ay with the relationship a, = ax/c. In both cases,
special care was taken to choose appropriate discretization and total length
(in both space and time) of the records, in order to avoid aliasing effects.

The two approaches are not equivalent, since in the latter case, the linear
dispersion relation is required to compute k(w), knowing w. Thus, the differ-
ence between linear theory in space domain (—) and SGN system (—) is only
due to the nonlinear effect involved in the transfer function between eleva-
tion and bottom pressure. On the other hand, the difference between linear
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theory in time domain () and SGN system (—) also contains the error due
to dispersion. Indeed, the linear dispersion is used to recompute the value of
the wavenumber k(w). Thus, linear dispersive effects are taken into account,
but nonlinear dispersive effects, which are supposed to be predominant, are
not. If, in the process of computing linear theory in time domain, the linear
dispersion relation had been replaced by equation (8), both linear theories
would have been perfectly equivalent.

The first striking result of this work is the good agreement between results
provided in the framework of Serre-Green-Naghdi system and linear theory in
time domain. Indeed, nonlinear effects involved within the transfer function
play a significant role, as it could be expected. But error due to nonlin-
ear dispersive effects seems to compensate this difference, providing a good
agreement between linear theory in time domain and Serre-Green-Naghdi
nonlinear result. It has to be mentioned that for such nonlinearity, the soli-
tary wave in SGN system presents a nondimensional kh = 1.5, for which the
SGN is known to deviate from linear water wave theory (see e.g Borzi et al.
(2005)).

Since dispersion is only included to low order of approximation in Serre-
Green-Naghdi system, the validity of this result has to be verified in the
framework of fully nonlinear potential equations. Figure 3 presents the free
surface elevation under travelling solitary of initial A/h = 0.7 plotted as a
function of the normalized coordinates x — ct, where x and t still refer to
the non-dimensional space and time coordinates. The velocity ¢ refers here
to the exact soliton velocity, obtained in the framework of Tanaka’s theory.
With the nonlinear parameter chosen to be A/h = 0.7, the velocity is taken
to be ¢ = 1.2785. The same curves as previously are also plotted in this fig-
ure. The red curve corresponds to the temporal bottom pressure evolution
obtained in the framework of the fully nonlinear potential equations, while
the green and yellow curves correspond to the bottom pressure distribution
obtained by means of linear theory, respectively in space and time domain.
In the framework of fully nonlinear potential equations, the agreement be-
tween linear theory and numerical results is not striking, as it was in the
framework of Serre-Green-Naghdi equations. On figure 3, the pressure curve
corresponding to the nonlinear computations (—) is overestimated by the lin-
ear theory in space domain (—), with a maximum overestimation of about
11%, while it is underestimated by the linear theory in time domain (),
with a miximum underestimation of about 15%. This confirms former results
by Bishop and Donelan (1987), who obtained similar values based on an ex-
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Figure 4: Evolution of the normalized water elevation corresponding to a focused wave of
maximum A/h = 0.52 obtained with Serre-Green-Naghdi equations (—) in the travelling
frame of reference x — ct.

Evolution of the corresponding normalized bottom pressure obtained with Serre-Green-
Naghdi equations (—), with linear theory applied in time domain () and with linear
theory applied in space domain (—).

perimental approach, or more recently Oliveras et al. (2012), who showed
linear theory in time domain could not be used when considering traveling
solitary waves. However, the behavior of linear theory in both space and
time domain is sensibly different in the framework of fully nonlinear poten-
tial equations and Serre-Green-Naghdi equations. These differences might be
explained through the inaccuracy of dispersive effects representation within
the Serre-Green-Naghdi system.

5.2. Transient wave group

As mentioned previously, solitary waves constitute very specific waves,
since they exist through an imbalance between nonlinearity and dispersion.
Thus, the way dispersive effects are taken into account in the transfer function
can be affected. Transient wave groups, involving strong nonlinear disper-
sion, are thus considered.

In figure 4, two curves describe the water elevation at the focusing point, ob-
tained in the framework of Serre-Green-Naghdi theory. The dark blue curve
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Figure 5: Evolution of the normalized water elevation corresponding to a focused wave
of maximum A/h = 0.52 obtained with full potential equations equations (—) in the
travelling frame of reference x — ct.

Evolution of the corresponding normalized bottom pressure obtained with full potential

equations (—), with linear theory applied in time domain () and with linear theory
applied in space domain (—).

corresponds to the time evolution of the free surface, recorded at the focusing
point, and plotted in the x — ct reference frame. Here, = and t still refer to
the space and time coordinate. ¢, however, does not correspond to an exact
soliton velocity, but is classically taken equal to ¢ = v/gh, which corresponds,
in the normalized reference frame, to ¢ = 1. On the other hand, the light blue
curve describes the spatial distribution of the free surface, presented at the
focusing time, and also plotted in the the x — ct reference frame. In this fig-
ure, bottom pressure distributions are also presented. As previously, the red
curve corresponds to the pressure obtained within the Serre-Green-Naghdi
equations, while the green and yellow curves are respectively obtained by
means of linear theory in space and time domain.

Here again, the agreement between linear theory in time domain, and pres-
sure distribution obtained within Serre-Green-Naghdi equations is striking.
The linear theory in space domain, however, does not provide very good re-
sult, since the maximum error observed is about 18%.

The same comparison is performed in the framework of the fully nonlinear
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potential equations. Results are displayed in Figure 5. The dark blue curve
still corresponds to the time evolution of free surface elevation, while the
light blue one is the spatial distribution at focusing time. The red curve is
the bottom pressure evolution beneath focusing point, obtained within the
fully nonlinear potential equations, while the green and yellow ones still cor-
respond to the linear theory respectively in space and time domain. The
result, here, is surprising. Indeed, the best agreement between nonlinear
equations and linear theory is obtained in space domain. This is a major
difference with the result obtained in the framework of Serre-Green-Naghdi
equations. It is probably due to the rate of deformation of the focused wave,
which is strongly connected to its dispersive behaviour. Still, the agreement
between linear theory in space domain and fully nonlinear potential equations
is striking, and has to be emphasized.

6. Conclusion

The bottom pressure distribution beneath several kind of travelling waves
was investigated within the framework of Serre-Green-Naghdi equations and
fully nonlinear potential equations. It was systematically compared to the
results provided by linear theory in space and time domains. The purpose of
this approach was to emphasized the role of nonlinearity and nonlinear dis-
persion when reconstructing the transfer function between bottom pressure
and surface elevation.

Results are found to be surprising. Indeed, when considering the weakly
dispersive model, the agreement between linear theory in time domain and
pressure distribution obtained from the Serre-Green-Naghdi system is strik-
ing. Effects of nonlinearity and dispersion seem to compensate, allowing
linear theory to provide a very good description of the bottom pressure evo-
lution. On the other hand, when considering fully nonlinear equations, which
are probably the closest case to reality, the linear analysis in time domain
never provides a very good description of this pressure term. This remark
encourages some caution when using SGN model for reconstructing water
elevations starting from pressure records, since the error in dispersion is of
amount similar to the error induced by the lack of nonlinearity in linear
theory. Contrarily, the best description is obtained within the framework
of transient focused wave, where a very good description is obtained with
linear theory in space domain. This result is striking, since was unsuspected.
However, this result is obtained thanks to a remarkable imbalance between
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errors in dispersion and nonlinearity. Its applicability cannot be generalized,
and might be used with caution.

In all cases, it has to be emphasized that a discrepancy between linear the-
ory in space domain and in time domain was always found, and presented
an averaged value of 20%.
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