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A Variational Method for Flicker Removal in High
Speed Video Sequences

Ali Kanj, Hugues Talbot, Jean-Christophe Pesquet, and Raoul Rodriguez Luparello

Abstract

Deflickering of color image sequences constitutes a fundamental task in many video applications. Recently, it has received
increased attention with the popularity of consumer-level high speed video acquisition devices, for instance in newer smartphone
generations or sports/action cameras. These are capable of acquiring videos at more than 100 frames per second. In this context,
flicker corresponds to undesirable intensity and chroma variations due to the interaction between the acquisition frequency on the
one hand, and the alternating current powering artificial light sources on the other. Non-uniform periodic flicker is not easy to
correct since its estimation requires object tracking, and since most tracking techniques assume consistent illumination. In this
paper, we adopt a new optimization approach to solve this problem. We propose causal and non-causal robust correction schemes
using a block matching technique paired with color variation estimation. A post processing step is introduced to remove block
artifacts in an efficient manner. A multi-resolution approach is also developed to reduce computation time without affecting the
quality of our results. We demonstrate the efficacy of our method both on simulated and real data.

Index Terms

High speed imaging, illumination variation, color correction, motion compensation, mutliresolution, Majoration-Minimization.

I. INTRODUCTION

In video processing, flickering is generally defined as an undesirable appearance fluctuation in an image sequence. This
effect can arise at any acquisition frequency and it can be caused by a wide variety of phenomena such as sensor artifacts,
video transmission problems, illumination changes, and more. Illumination can change over time for desirable reasons, e.g. a
light appliance being turned on or off in a movie. Flicker can be transient or periodic, it may affect the whole frame or just a
small portion of it.
In this work, we investigate a specific form of flicker, termed periodic flicker, which is more prevalent in high-speed video.
When the acquisition frame rate of an artificially lit sequence approaches or exceeds twice the frequency of the AC current
(100 or 120 Hz in most countries), then illumination artifacts may become visible, typically over the whole frame. These
include not only luminance but also chrominance changes. If the motion in the sequence is simple and the illumination comes
from similar sources, then periodic flicker may be easy to estimate and remove. However, when the motion in the sequence is
complex and the scene is illuminated from several sources with different properties (incandescent, fluorescent, etc), or itself
contains lighting appliances, the problem of flicker removal becomes highly challenging. Saturation and other sensor effects
can produce additional unsightly effects. This problem has become more critical with the advent of consumer-level high speed
video acquisition devices, such as in newer smartphone generations or sports/action cameras.
Methods for video luminosity stabilization have been studied in the literature, for instance for underwater image sensing,
surveillance systems, camcorder videos, archived videos, image-video compression and time lapse videos. Modeling the flicker
effect differs from an application to the other. For instance, sunflicker effect, constitutes a big challenge in underwater image
sensing. This non-periodic effect is created from refracted sunlight casting fast moving patterns on the seafloor. Shihavuddin
et al. [1] proposed a removal method which consider sunflicker effect as a dynamic texture. They proposed to warp the
previous illumination field to the current frame so as to predict the current one, and then to find the homography between the
previous and current frames in order to finally remove sunflicker patterns from images. Flicker is also present in indoor smart
surveillance cameras in the presence of fluorescent lamps, complicating feature tracking. Ozer et al. [2] proposed to eliminate
the background which contains reflective surfaces and shadows, and to track the regions of interest only. Camcorded videos
are flicker-affected when scrolling stripes are observed along the video. This problem is due the fact that the higher frequency
backlight of the screen is sampled at a lower rate by the camcorder. In this case, flicker is defined by a periodic rectangular
signal. Baudry et al. [3] used the temporal discrete Fourier transform (DFT) to estimate the flicker parameters.
We can classify existing methods for flicker removal in archived videos into two categories depending on whether they use a
linear or a non-linear model. Decencière [4] proposed a linear model linking the observed image to the original image. Rosmalen
et al. [5] used also an affine model taking into account spatial dependency. In [5], [6], flicker parameters are estimated by
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interpolation, but these methods may fail to resolve block mismatching problems caused by occlusions or blotches due to
outliers. Ohuchi et al. [7] used the same affine model together with an M-estimator to find flicker parameters. They considered
objects in motion as outliers, which may lead to failures in the presence of large objects. Kokaram et al. [8] proposed a model
to reduce the accumulating error taking the previous restored frame as a reference. They used also a linear model with a robust
regression together with registration. Zhang et al. [9] offer a method to generate reference images followed by a proposal to
correct flicker by a linear model involving an M-estimator. Non-linear models have also been studied. Among them, [10], [11]
find flicker parameters by optimizing a non-linear model using histogram matching. Pitié et al. [12] improved on Naranjo’s
model by taking spatial variations into account. In [13], authors expanded these works by developing a method for finding
parameters at the pixel level, allowing for non-linear flicker distortions. Separately, [14], [15], [16] computed differences of
grey-scale histograms between degraded and reference images. In image sequence coding, flicker may appear when similar
regions between two images are incoherently encoded. Ren et al. [17] proposed a block-matching, adaptive multiscale motion
method to address this problem. This method may encounter problems in presence of thin objects or outliers and tends to
smooth image details. A low pass filtering approach is used in [18] to compensate for flicker. It is also worth mentioning the
work by Fuh et al. [19], where a model is developed for dealing with affine shape and intensity transformations. A pixel-
recursive model was also developed in [20] to estimate simultaneously motion and illumination variation parameters. Note that
most of these works consider grey-level sequences and none specifically deal with periodic flicker.
In [21], we proposed a rigid registration method using point descriptors that is robust to illumination variations and which can
be combined with a method for stabilizing brightness variations in image sequences using a Least Square adjustment approach.
This deflickering method was designed for high speed videos in the presence of a single source illuminating the scene, by
assuming a global displacement between frames. However, in general, the source consists of high definition image quality
(HD), high-speed acquisition (up to 2000 frames per second) while the scene is illuminated by various artificial sources and
contains complex motion. In these contexts, the method in [21] is no longer suitable. This paper aims at studying periodic
flickering effects in these high speed imaging scenarios, and introduces a novel removal approach. Our method is based on a
robust regression model, which is optimized to find flicker parameters on the one hand, and to remove blocks artifacts on the
other. We also pay attention to the computation cost of the proposed approach which needs to be compatible with (almost)
real-time processing requirements and an accelerated multiresolution procedure is subsequently proposed to reach this goal.
The rest of this paper is organized as follows. In Section II, we briefly formulate the flicker problem in high speed video
acquisition. In Section III, we describe the assumptions we make in order to estimate the appropriate flicker correction model.
In Section IV, we propose a causal method for video color correction based on a block matching approach and a novel
block artifact removal scheme. Our approach leverages a novel Majorization-Minimization (MM) strategies. In Section V, we
introduce a non-causal extension for video color correction allowing the use of two reference sources for each affected frame.
In Section VI, an accelerated pyramidal approach is proposed. Section VII reports some experimental results, and finally,
some conclusions are drawn in Section VIII.

II. FLICKER ANALYSIS

A. Brightness variations
Flicker characteristics differ between applications. In archived movies, flicker is defined as unnatural temporal fluctuations

in perceived image intensity that do not originate from the original scene, and which are often due to imprecisions in the
shutter. These artifacts present global, sudden and random variations of luminance and contrast between consecutive frames
of a sequence (see Figure 1(a)).
Time-lapse acquisitions are very slow and sometime irregular sequence acquisitions, that are used in animations, advertisement,
or documentary films. They are typically used to accelerate rates of changes, for instance to show how a plant grows. Flicker
may occurs when luminosity is varying depending on the time of day under natural lighting, or because of artificial lighting
especially if the recording takes place at night and also according to the weather. This kind of flicker is defined as a correlated
random luminosity variation (see Figure 1(b)), and usually it can be compensated in a causal manner refering to a past frame
in each sequence portion which induces some luminosity distortions in the corrected sequence.
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(a) Flicker in archived videos
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(b) Flicker in time-lapse videos

Fig. 1. Comparison between several types of flicker.
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In high speed video acquisition, flicker corresponds to an undesirable periodic intensity variation due to the interaction
between the lighting and acquisition frequencies (See Figure 5). Assuming negligible motion and a simple camera model, at
the acquisition speed, each pixel value on a frame corresponds to the integration of a lighting function. Standard light sources
such as incandescent or fluorescent lamps powered by an alternating current are subject to light flux variations at a frequency
ν of about 100 or 120Hz1. At usual video rates (25-30 frames per second), these variations are integrated over a long enough
period. Assuming approximately sinusoidal variations, we have at a given pixel s and time t:

fps, tq “
f0ps, tq

T

ż t`T

t

`

1`∆psq cosp2πντ ` ϕq
˘

dτ

“ f0ps, tq
´

1`∆psq
sinp2πνpt` T q ` ϕq ´ sinp2πνt` ϕq

2πνT

¯

„ f0ps, tq (1)

where T " 1{ν is the exposure time, ϕ P r0, 2πr is a phase shift, f0ps, tq is the field intensity in the absence of illumination
variations, and ∆psq is the magnitude of these variations. Therefore, the intensity / chroma variations are usually not perceptible.

In contrast, at high acquisition frame rates, the integration of the lighting function is performed over a very short interval
T ! 1{ν. Then, we get

fps, tq „ f0
`

s, tq
`

1`∆psq
`

cosp2πνt` ϕq ´ πνT sinp2πνt` ϕq
˘˘

(2)

and the intensity variations are no longer negligible.

B. Chromatic variations

In the lighting field, the color temperature provides information on the general hue of the emitted light: from the “warm”
hues - where the red is dominating - like sunrise or sunset colors, to the “cold” hues - where the blue color is dominating - like
in the intense midday sun colors, or over a snow field. The color temperature is given usually in Kelvin (K), corresponding
to the equivalent black-body temperature radiation. As the color temperature increases, so does the proportion of blue in light
(see Figure 2).

Fig. 2. Chroma alterations with light temperature variations.

With most light sources, power variations are accompanied with changes in lighting temperature, inducing visible periodic
chroma alterations. For example, while using classical incandescent lamps (see Figure 3), the lamp filament temperature is
proportionately varying to the power alterations, so with each AC period, the light color becomes first red and gradually
transforms into blue.

Fig. 3. Rapid illumination / chromatic changes in a high-speed video sequence under incandescent lighting.

Fluorescent and LED light sources, while based on a different light emitting principle, are also subject to high-speed chroma
variations (see an example in Figure 4).

1Corresponding to twice the frequency of the alternating current.
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Fig. 4. Illumination / chromatic changes in a high-speed video sequence under fluorescent lighting.

III. ASSUMPTIONS FOR FLICKER CORRECTION

A. Vector model

To address this periodic illumination and color variation problem, we assume that we know the acquisition frame rate and the
local mains AC frequency. We therefore can estimate the period of the flickering effect. We also assume that general intensity
variations integrated over few flickering periods are slow. In Figure 5, the acquisition frame rate is 1000 images/second and
the AC mains power frequency is 100Hz.
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Fig. 5. The blue curve shows the luminosity variation in an affected image sequence. In red, we show the intensity variation in the absence of periodic flicker.

In order to check our assumption regarding the influence of periodic flicker on chroma variations, we acquired a sequence
affected with periodic flicker due to a single source and no motion. In Figure 6, we plotted the cross-channel correlations
between a pixel in a manually selected reference image and a subsequent frame in the same period. We observe that the vast
majority of pixel colors transform linearly from the flicker-affected frame to the reference image, except at the extremal range
values, due to sensor saturation effects.

R1  G1 B1

R2

G2

B2

Fig. 6. Cross-channel correlation between a flicker-affected frame and a reference image.

In accordance with these observations, we subsequently assume a linear color transformation model between a reference and
flicker-affected one. We model the color illumination transform by a 3ˆ3 matrix M s,t between two pixels s and s1 referring
to the same (possibly displaced) physical area in the scene at times t and tref respectively:

M s,t “

»

–

r1ps, tq g1ps, tq b1ps, tq
r2ps, tq g2ps, tq b2ps, tq
r3ps, tq g3ps, tq b3ps, tq

fi

fl . (3)

Using this matrix, we have
fps1, trefq “M s,t fps, tq `wps, tq, (4)

where fps, tq P R3 is the vector of chrominance values of pixel s at time t and wps, tq P R3 corresponds to some additive
noise. This model plays a prominent role in the approaches developed in the remainder of the article.
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B. Selecting reference frames

In theory, any frame in a flicker period could serve as a reference, but it is preferable for the reference frame to be as little
affected as possible by the flicker effect. Practically, this means selecting the brightest frame over a period, at time tref, as a
reference image. For this purpose, we use the average pixel intensity in each image along the sequence. As seen in Figure 5,
changes in global illumination not related to flicker may only induce low frequency variations in the luminosity of the scene.

IV. CAUSAL METHOD FOR PERIODIC FLICKER REMOVAL

In the case of multiple light sources illuminating the scene, the flicker effect is spatially variant, so we cannot model the
illumination variation by a single matrix for all pixels in the frame. In addition, most videos contain background and moving
objects, and so matching pixels between frames needs to be performed.

A. Tracking

Classical optical flow methods [22], [23] assume constancy of illumination and they are sensitive to the presence of
illumination variations. In our approach, we propose a localized color transform estimation method. Since tracking single
pixels is impractical, we use a block-matching method, assuming that each spatial block Bk indexed by k can be assigned its
own model parameters, i.e. p@s P Bkq M s,t “ ĂMk,t, which means that all pixels indexed by s of the block Bk are processed
using the same color transformation matrix ĂMk,t. More precisely, we propose to divide all frames into non-overlapping blocks
of identical sizes, typically 64ˆ64, and to perform a joint block-matching / color transform estimation between flicker-affected
frames and the previous reference frame.

In accordance with our experimental model, for a given block Bk in frame t, the optimal transform matrix xMk,t and
displacement vector pdk,t P R2 are those that minimize the following energy function:

JpĂMk,t,dk,tq “
ÿ

sPBk

Φ
`

ĂMk,t fps, tq ´ fps´ dk,t, trefq
˘

, (5)

where Φ: R3 Ñ r0,`8r is a cost function. In the following, an optimal value of ĂMk,t in R3ˆ3 will be sought while the
optimal value of the candidate displacement vector dk,t between two corresponding blocks will be searched within a finite set
W Ă R2 (see Figure 7).

f(·, t)

B1 B2 B3

Bn

B1 B2 B3

Bn

f(·, tref)

s0 = s � dk,t
Bks Bk0

s0

Fig. 7. Block matching scheme.

In the next section, we describe an iterative method allowing to solve this optimization problem for a wide class of cost
functions Φ.

B. Iterative optimization strategy

In the optimization of a cost function gpuq with respect to parameters u, we seek an estimation of the unknown parameter
û minimizing (or maximizing) g. In our context, our cost function measures the error of matching blocks between the target
image and the reference image, hence our problem is the minimization:

Find û “ argmin
uPRN

gpuq. (6)

Most optimization algorithms operate within a general iterative approach consisting, at each iteration to get closer to the
minimum by solving an easier minimization sub-problem.



6

Initialization: Set up0q P RN .
for n “ 0, 1, . . . do

upn`1q “ argmin
uPRN

qupnqpuq.

end
Algorithm 1: General Majorization-Minimization algorithm.

1) Majorization-Minimization approaches: The general MM algorithm was first proposed in [24]. It consists of finding an
iterative solution to the optimization problem (6), where Φ is assumed to be differentiable. It relies upon the following concept:

Definition 1: Let g : RN Ñs´8,`8s. Let υ P RN . The function qυ : RN Ñs´8,`8s is a tangent majorant function of
g at υ if p@u P RN q fpuq ď qυpuq and fpυq “ qυpυq.

The MM algorithm minimizes the considered tangent majorant function of g at each iteration n P N. It can be summarized
by the following algorithm and Figure 8.

u(n+1) u(n)

qu(n)g

Fig. 8. Illustration of an MM algorithm for the minimization of function g : RN Ñs´8,`8s. At iteration n P N, we use a majorant function qupnq of g
at a point upnq, and then we define upn`1q as a minimizer of qupnq .

A typical choice of majorant function is a stricly convex quadratic function [25]. It ensures a unique solution to the sub-
problem in Algorithm 1. The following property will be instrumental to build such a majorant function:
Property (Descent Lemma [26]) If g is β-Lipschitz differentiable on RN , a tangent majorant function of g at υ P RN is
defined as

p@u P RN q qυpuq “ gpυq `∇gpυqJpu´ υq ` µ

2
}u´ υ}2 (7)

where µ P rβ,`8r.
This property holds in our context, provided that Φ is a differentiable cost function with a Lipschitzian gradient. In our case,

we have to minimize a function of two-variables ĂMk,t and dk,t. For every pĂMk,t, xMk,tq P pR3ˆ3q2 and pdk,t, pdk,tq P W2,
our aim is thus to construct a surrogate function Q

xMk,t,pdk,t
pĂMk,t,dk,tq of JpĂMk,t,dk,tq satisfying the following tangent

majorization property:
#

JpĂMk,t, pdk,tq ď Q
xMk,t,pdk,t

pĂMk,t, pdk,tq

JpxMk,t, pdk,tq “ Q
xMk,t,pdk,t

pxMk,t, pdk,tq.
(8)

The proposed algorithm is shown as Algorithm 2.
Note that this algorithm constitutes an original contribution of this work since it mixes a discrete optimization step with

respect to dk,t with a continuous optimization with respect to ĂMk,t. The first step is performed by an exact search, while
the second one employs the surrogate function Q. Property (8) is instrumental for proving the convergence of our method as
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Initialization: Set xM
p0q

k,t P R3ˆ3 and pd
p0q
k,t PW .

for n “ 0, 1, . . . do
pd
pn`1q
k,t “ argmin

dPW
JpĂM

pn`1q

k,t pdq,dq,

where ĂM
pn`1q

k,t pdq “ argmin
MPR3ˆ3

Q
xM
pnq

k,t ,
pd
pnq
k,t

pM ,dq

xM
pn`1q

k,t “ ĂM
pn`1q

k,t ppd
pn`1q
k,t q.

end
Algorithm 2: Proposed MM algorithm.

follows:

JpxM
pn`1q

k,t , pd
pn`1q
k,t q “ JpĂM

pn`1q

k,t ppd
pn`1q
k,t q, pd

pn`1q
k,t q

ď JpĂM
pn`1q

k,t ppd
pnq
k,t q,

pd
pnq
k,t q

ď Q
xM
pnq

k,t ,
pd
pnq
k,t

pĂM
pn`1q

k,t ppd
pnq
k,t q,

pd
pnq
k,t q

ď Q
xM
pnq

k,t ,
pd
pnq
k,t

pxM
pnq

k,t ,
pd
pnq
k,t q

“ JpxM
pnq

k,t ,
pd
pnq
k,t q. (9)

These inequalities prove that J is a decreasing sequence. It is converging because it is bounded from below by zero.
In our particular case, we optimize (5). As already mentioned, Property (7) holds since Φ is a differentiable cost function with

a Lipschitzian gradient. Without loss of generality, let the Lipschitz constant be normalized to 1. Let pĂMk,t, xMk,tq P pR3ˆ3q2

and pdk,t, pdk,tq PW2. Applying the Descent Lemma to Φ yields

Φpϕq ď Φpϕ˚q `∇Φpϕ˚q
Jpϕ´ ϕ˚q `

1

2
}ϕ´ ϕ˚}

2 (10)

where
#

ϕ “ ĂMk,t fps, tq ´ fps´ dk,t, trefq,

ϕ˚ “ xMk,t fps, tq ´ fps´ pdk,t, trefq “ ek,s,t.
(11)

This leads to the following inequality:

JpĂMk,t,dk,tq ď
ÿ

sPBk

Φpek,s,tq

`
ÿ

sPBk

∇Φpek,s,tq
JpĂMk,t fps, tq ´ fps´ dk,t, trefq ´ ek,s,tq

`
1

2

ÿ

sPBk

}ĂMk,t fps, tq ´ fps´ dk,t, trefq ´ ek,s,t}
2. (12)

The right-hand side term of the inequality defines the majorant function of J whose expression simplifies to

Q
xMk,t,pdk,t

pĂMk,t,dk,tq

“ C `
ÿ

sPBk

∇Φpek,s,tq
J
ĂMk,t fps, tq

`
1

2

ÿ

sPBk

`

}ĂMk,t fps, tq}
2 ´ 2pfps´ dk,t, trefq ` ek,s,tq

J
ĂMk,t fps, tq

˘

(13)

where C is a constant independent from ĂMk,t. This can be rewritten as

Q
yMk,t,pdk,t

pĂMk,t,dk,tq

“
1

2

@

ĂMk,t , ĂMk,t

ÿ

sPBk

fps, tq fps, tqJ
D

F

`
@

ĂMk,t,
ÿ

sPBk

`

∇Φpek,s,tq ´ fps´ dk,t, trefq ´ ek,s,t

˘

fps, tqJ
D

F ` C (14)
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where
@

¨ , ¨
D

F
is the Frobenius scalar product, defined by

@

A,B
D

F
“ trpABJ

q. The function Q
xMk,t,pdk,t

p¨,dk,tq is quadratic
and convex, its gradient being given by

∇
ĂMk,t

Q
xMk,t,pdk,t

pĂMk,t,dk,tq

“ ĂMk,t

ÿ

sPBk

fps, tq fps, tqJ

`
ÿ

sPBk

`

∇Φpek,s,tq ´ fps´ dk,t, trefq ´ ek,s,t
˘

fps, tqJ. (15)

For every candidate vector dk,t PW , the majorant function thus admits as minimizer:

ĂMk,tpdk,tq

“

´

ÿ

sPBk

`

fps´ dk,t, trefq ` ek,s,t ´∇Φpek,s,tq
˘

fps, tqJ
¯

R:k,t, (16)

where
Rk,t “

ÿ

sPBk

fps, tqfps, tqJ (17)

and p¨q: denotes the pseudo-inverse operation. By plugging the above expression in Algorithm 2, we generate a sequence

pxM
pnq

k,t , pdpnqk,t qnPN of estimates for the 11 scalar parameters for each block (9 for color correction and 2 for translation).

C. Choice for the cost function Φ

Typical choices for Φ are the squared Euclidean norm, yielding a standard least squares approach, the separable Huber
function, which constitutes a smoothed version of the `1 norm and is useful for performing robust regression as well as smooth
approximations of the `0 pseudo-norm.

1) Squared Euclidean norm: When Φ “ } ¨ }2{2, we obtain ∇Φpek,s,tq “ ek,s,t and the standard least squares solution is
recovered:

ĂMk,tpdk,tq “
´

ÿ

sPBk

fps´ dk,t, trefqfps, tq
J
¯

R:k,t. (18)

and so the convergence of Algorithm 2 is ensured in one iteration.
2) Huber function: The Huber function is useful in robust regression. As a differentiable approximation of the `1 norm, it

is well-known to be less sensitive to outliers than the squared Euclidean norm, which makes the estimation of displacement
and color transformation parameters more accurate, and thus block artifacts are reduced in the corrected sequence.

We can write ek,s,t in vector form as follows:

ek,s,t “

»

—

–

e
pRq
k,s,t

e
pGq
k,s,t

e
pBq
k,s,t

fi

ffi

fl

, (19)

and we have then
Φpek,s,tq “

ÿ

cPtR,G,Bu

φhpe
pcq
k,s,tq, (20)

where, by using Huber’s definition ([27]),

p@a P Rq φhpaq “

#

1
2a

2 if |a| ď ε,

εp|a| ´ 1
2εq, otherwise,

(21)

with ε ą 0. The gradient of our cost function is given by

∇Φpek,s,tq “

»

—

–

φ1hpe
pRq
k,s,tq

φ1hpe
pGq
k,s,tq

φ1hpe
pBq
k,s,tq

fi

ffi

fl

, (22)

where the derivative of φh is

p@a P Rq φ1hpaq “

$

’

&

’

%

ε if a ą ε,

´ε if a ă ´ε,
a, otherwise.

(23)

Using this cost function, if the initialization of the parameters is performed arbitrarily, convergence can be somewhat slow
(up to 100 iterations), therefore the initialization step is very important. We propose to first estimate parameters, in particular
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the translation vectors, using the quadratic approach, and use them as initial values for the subsequent iterations. This procedure
reduces the number of required iterations by a factor of more than 20.
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(b) Initialization with the quadratic solution

Fig. 9. The convergence of our iterative algorithm depends of the parameters initialization. This test was performed on an image of the bird sequence.

In qualitative terms, the smaller ε is, the more effective is the algorithm at reducing the outliers and the algorithm converges
more slowly to an optimal best corrected solution. As illustrated in Figure 9 (and observed on several sequences), a suitable
choice for ε appears to be around 0.2.
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Fig. 10. Huber function: PSNR of the processed image for the bird sequence as a function of ε.

3) Other cost functions: We tested our iterative optimization strategy with other more complex criteria. We considered
some non-convex functions for the majorant function, typically the Welsch and Geman-McClure functionals providing smooth
approximations of the `0 pseudo-norm.

Welsch function. Using Welsch’s definition [28], we can write:

Φpek,s,tq “
ÿ

cPtR,G,Bu

φwpe
pcq
k,s,tq, (24)

where, for every a P R,

φwpaq “
λw

2

´

1´ exp p´
a2

C2
w

q

¯

, (25)

Cw and λw being positive constants. For a given value of Cw, the parameter λw is set in order to ensure that the Lipschitz
constant Lw of the derivative (Hessian maximum value) is equal to 1:

Lw “ φ2wp0q “
λw

C2
w

“ 1 ñ λw “ C2
w, (26)

where φ2w denotes the second-order derivative of φw. According to our experiments, a suitable choice for the parameter Cw is
then 0.15.

Geman-McClure function The Geman-McClure M-estimator proposed by [29] can also be tested. It is defined as

Φpek,s,tq “
ÿ

cPtR,G,Bu

φgpe
pcq
k,s,tq, (27)

where, for every a P R,

φgpaq “
λg a

2

2Cg
2
` a2

, (28)
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and Cg and λg are positive constants. For a given value of Cg, the parameter λg must also be chosen so as to ensure that the
Lipschitz constant Lg is normalized to 1:

Lg “ φ2gp0q “
λg
C2

g

“ 1 ñ λg “ C2
g . (29)

The choice of the parameter Cg which appears to provide the best results when running the MM algorithm is 0.11.
4) Comparison between different cost functions: In order to evaluate the performance of the color correction strategy using

our iterative algorithm with different cost functions, a PSNR (Peak Signal-to-Noise Ratio) similarity measure is performed
on the processing results of a synthetic flicker sequences produced from a flicker-free, naturally lit video. We constructed the
majorant function Q using the different approximations of norms/pseudo-norms with convexity (quadratic and Huber functions)
and non-convexity properties (Welsch and Geman-McClure functions).
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Fig. 11. Similarity comparison: PSNR average of the processed sequence using different cost functions. The sequence is acquired with a large local motion
and a periodic artificial flicker has been added. The studied sequence images are illustrated in Figure 23.

We observe that the Huber function provides the best PSNR. This observation was confirmed on several other video sequences.
It allows us to gain approximately 4 dB along the processed sequence (see Figure 11).

D. Flicker compensation

Once the optimal color transform between the reference and the current frames has been found for each block, it is applied on
each. This yields a flicker-compensated frame. Reproducing the same procedure for each frame yields a flicker-compensated
sequence. This procedure is quite simple, however there is no guarantee for the optimization procedure that we have just
described to yield similar color-correction matrices for neighboring blocks. As a result, the boundary between blocks may
become perceptible in the flicker-compensated results. This may happen for instance when the translation parameters are not
estimated precisely enough due to the arbitrary process of image division into blocks, which implies that some blocks may
include strong intensity edges or outliers. A variable-size block matching could be implemented to alleviate this issue, but at
the expense of an increased complexity. To alleviate this issue, a post processing step is required.

E. Block artifact removal

Following the flicker compensation step, we propose to re-process each frame of the affected video to remove block artifacts
in an efficient manner. We base our approach on the color transformation matrices and translation parameters that we have
already found. The simple idea of interpolating the color matrices near the boundaries of the blocks does not yield accurate
enough results in practice.
Instead, we re-estimate a new color correction matrix M s,t for each pixel s in a frame, taking into account its neighborhood and
its position in the block relative to neighboring blocks. For each pixel s, we reuse the pair pxMks,t, pdks,tq already estimated for
its corresponding block of index ks. In the optimization process, we now include a regularization term weighted by a positive
constant λ. A new energy function is then defined as

KpM s,tq “
ÿ

s1PBks

Φ
`

M s,t fps
1, tq ´ fps1 ´ pdks,t, trefq

˘

`
λ

2

ÿ

s1PVs

}M s,t ´ xMks1 ,t}
2
F

looooooooooooooomooooooooooooooon

RgpMs,tq

, (30)
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where Vs is a neighbourhood of the pixel s to be processed, and } ¨ }F denotes the Frobenius norm. The previous optimization
problem can also be solved by an iterative Majorize-Minimize strategy, still grounded on the use of Descent Lemma 7. At
iteration n` 1, we construct a new majorant function called P

M̌
pnq
s,t q

as follows:

P
M̌
pnq
s,t
“ Q

M̌
pnq
s,t ,

pdks,t
p¨, pdks,tq `Rg. (31)

where M̌
pnq

s,t is the estimate of the color correction matrix at the previous iteration. The minimizer of (31) is obtained by
setting to zero the gradient of P

M̌
pnq
s,t

. The gradient of the regularization term is expressed as

∇RgpM s,tq “ λ
´

|Vs|M s,t ´
ÿ

s1PVs

xMks1 ,t

¯

, (32)

where |Vs| is the number of pixels considered in the neighborhood of s. Refering to (15) and (32), the minimizer of the
surrogate function P

M̌
pnq
s,t

is

M̌
pn`1q

s,t “

´

ÿ

s1PBks

`

fps1 ´ pdks,t, trefq ` e
pnq
s1,t

´∇Φpe
pnq
s1,tq

˘

fps1, tqJ ` λ
ÿ

s1PVs

xMks1 ,t

¯´

Rks,t ` λ|Vs|I3

¯´1

, (33)

where I3 is the 3ˆ 3 identity matrix and

e
pnq
s1,t “ M̌

pnq

s,t fps
1, tq ´ fps1 ´ pdks,t, trefq. (34)

Note that this formulation ensures that, if we set λ to zero, we recover the previous solution xMks computed on block Bks .
In addition, in terms of computational complexity, this removal procedure needs only to be applied to pixels s for which Vs

is not a subset of Bks .

F. An outline
As will be illustrated in Section VII, this causal method compensates the periodic flicker in an image with respect to a

previous reference frame. When the flicker is not uniform in some image regions for some reason (different light source,
higher noise level, etc), some local luminance distortions at the boundary between flicker periods may however remain in the
corrected sequence. In the next section, we propose an improvement of our method which is also suitable for aperiodic flicker
removal.

V. NON-CAUSAL METHOD USING TWO REFERENCE FRAMES

Most state of the art deflickering methods use a single reference to process the current frame. Some consider the previous
corrected frame as a reference to maintain constancy in luminosity variation, and especially when processing non-periodic
flicker, this approach may accumulate restoration errors from one image to another. In this context, in order to avoid luminosity
distortions between flicker periods in the corrected sequences, we propose a new strategy consisting of processing each frame
with respect to a preceeding and a following reference frames, depending on its position between these two. This approach
is called “non-causal” because it uses both past and future frames. Obviously it can only be used offline, so the moniker
“non-causal” is only descriptive. As already explained in Section III, the previous and next reference frames are respectively
the last and next maximum intensity frames in the current period, which are better in terms of signal-to-acquisition noise ratio
and in terms of matching similar contents. Figure 12 shows the benefits which can be drawn from the proposed approach.
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Fig. 12. The blue curve shows the brightness variation of images in a flicker-affected sequence. In black, we display the intensity averages of the corrected
frames using a single reference image by flicker period (causal approach). The red curve shows the desired solution that better aligns brightness levels using
two reference frames using our non-causal approach.
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A. Tracking step

We continue to use the same joint block-matching / color transform estimation principle. More precisely, we find for each
spatial block Bk indexed by k its two similar blocks in the previous and next reference frames respectively, and we assign to
this block its own model parameters. The global color correction matrix then reads:

ĂMk,t “ αtĂMk,t{tref1 ` p1´ αtq
ĂMk,t{tref2 , (35)

where αt “ ptref2´ tq{ptref2´ tref1q is a linear interpolation factor, ĂMk,t{tref1 and ĂMk,t{tref2 are the same correction matrices
for all pixels of the block Bk, which are computed with respect to their similar blocks in the two reference sources at instants
tref1 et tref2.

Following the same methodology as described above, for a block Bk in a frame at an instant t, we minimise the following
energy function:

JpĂMk,t{trefi ,dk,t{trefiq

“
ÿ

s1PBk

Φ
`

ĂMk,t{trefi fps
1, tq ´ fps1 ´ dk,t{trefi , trefiq

˘

, (36)

where i P t1, 2u, dk,t{trefi is a translation vector between two spatial blocs corresponding to instants t and trefi and Φ: R3 Ñ

r0,`8r is a differentiable cost function with a Lipschitzian gradient. For every i P t1, 2u, the optimal pair
`

xMk,t{trefi ,
pdk,t{trefi

˘

can be computed by following the same optimization method as in Section IV-B. For each block in the current image, two
color correction matrices (each comprising 9 parameters) and two translation vectors are estimated with respect to the two
associated reference frames, the final color correction matrix xMk,t is deduced from the linear interpolation formula (35).

f(t)

↵t 1 � ↵t

{Mk,t/tref2
, dk,t/tref2

}{Mk,t/tref1
, dk,t/tref1

}

B1 B2 B3

Bn

B1 B2 B3

Bn

B1 B2 B3

Bn

f(·, tref1) f(·, tref2)

Bks01 Bks02

Bks

f(·, t)

Fig. 13. Two reference sources tracking method

B. Block artifact removal step

For each pixel s in the block Bks , we re-use the two pairs
`

xMks,t{tref1 ,
pdks,t{tref1

˘

and
`

xMks,t{tref2 ,
pdks,t{tref2

˘

already
found. As in the artifact removal step for the causal method, we add to the loss function a regularization term weighted by a
positive multiplicative constant λ. The new energy function is defined as

KpM s,t{tref1 ,M s,t{tref2q “
ÿ

s1PBks

Φ
`

M s,t{tref1 fps
1, tq ´ fps1 ´ pdks,t{tref1 , tref1q

˘

`
ÿ

s1PBks

Φ
`

M s,t{tref2 fps
1, tq ´ fps1 ´ pdks,t{tref2 , tref2q

˘

`
λ

2

ÿ

s1PVs

}αtM s,t{tref1 ` p1´ αtqM s,t{tref2 ´
xMks1 ,t}

2
F, (37)
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where xMks1 ,t “ αtxMks1 ,t{tref1
` p1´αtqxMks1 ,t{tref2

is the color correction matrix estimate for the block containing pixel s1.
Although various choices for Φ are possible, for simplicity, we choose Φ “ } ¨ }2{2, leading to a least squares approach. The
solution is thus readily given by

„

M̌ s,t{tref1

M̌ s,t{tref2



“

»

—

–

ř

s1PBks

fps1 ´ pdks,t{tref1 , tref1qfps
1, tqJ ` λαt

ř

s1PVs

xMks1 ,t

ř

s1PBks

fps1 ´ pdks,t{tref2 , tref2qfpks1 , tq
J
` λp1´ αtq

ř

s1PVs

xM s1,t

fi

ffi

fl

„

Rks,t ` λα
2
t |Vs|I3 λαtp1´ αtq|Vs|I3

λαtp1´ αtq|Vs|I3 Rks,t ` λp1´ αtq
2|Vs|I3

´1

.

(38)

The comparison results with the causal approach are shown and discussed in the final section of this article.

VI. PYRAMIDAL ACCELERATED APPROACH

Processing time is particularly important in video processing, and thus for high speed imaging, it is a challenge to meet
real time constraints during the processing of long image sequences. At each iteration of Algorithm 2, we have to carry out
the search of an optimal displacement vector for each block over the window W . This block matching process requires a
significant amount of processing time, especially when processing HD images (1920ˆ1080 pixels). Subsequently, we propose
a multi-resolution algorithm to accelerate this step.

A. Algorithm

In order to process a current image with respect to a previous reference, (without loss of generality, we consider here only
the causal approach), for each block Bk, we estimate first the translation parameters represented by pdSN

k “ ppdSN

kx
, pdSN

ky
q between

the two images at the most reduced scale (SN “ 1
2N ), using a small search grid for the displacement vector, say for instance

p˘2,˘2q At the next higher resolution SN´1 “
1

2N´1 , these estimated parameters become the new centers of the search grid
p2pdSN

kx
˘ 2, 2pdSN

ky
˘ 2q, which are used to improve the estimate of the displacement vector. We repeat this process at all the

scale levels up to scale S0 “
1
20 “ 1, to find the final estimation of displacement vector and color transformation parameters

ppdS0

k ,
xM

S0

k q in the current original frame. Figure 14 illustrates the proposed approach.
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Fig. 14. Multiresolution scheme with the most reduced scale is SN “ 1
4

.
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B. Complexity

To perform the block matching-based method, the complexity of the used method depends on the search grid area around
the target block and the size of this block. In order to deduce the computation time gain, we can compare the complexity of
the pyramidal approach with respect to our standard causal block matching approach.

Considering a block Bk in the current original frame (at the full resolution), the complexity of applying the causal method
on this block can be expressed as

Co9pm1 ` 1qpm2 ` 1qw1w2 (39)

where m1,m2 are the horizontal and vertical search pixels interval respectively (i.e. W “ t´m1

2 , . . . ,
m1

2 uˆt´
m2

2 , . . . ,
m2

2 u),
and w1, w2 are the width and height sizes (in pixel) of the processed block

In the pyramidal approach, we assume that horizontal and vertical search intervals are constant at all resolution levels but
reduced by a factor 2c with respect to the full resolution approach. The complexity of the pyramidal approach is thus

Cp9
N
ÿ

i“1

´m1

2c
` 1

¯´m2

2c
` 1

¯w1

2i
w2

2i

“
pm1 ` 2cqpm2 ` 2cqw1w2

22c

4

3

´

1´
1

4N`1

¯

. (40)

Then the gain in terms of processing time of the pyramidal approach with respect to the standard algorithm is given by

Co
Cp

“
3ˆ 4c´1

1´ 1
4N`1

pm1 ` 1qpm2 ` 1q

pm1 ` 2cqpm2 ` 2cq
. (41)

In our context where we often process HD images, we found it sufficient to reduce the resolution twice (N “ 2), i.e. up
to SN “ 1

22 . For simplicity we chose to reduce the search interval by the same factor by choosing c “ 2, which is consistent
with the case already discussed in Figure 14 where m1 “ m2 “ 16 and the constant search interval is in a range of five pixels
(i.e. ˘2). This yields about an 8 times improvement in speed.

The pyramidal approach was tested on the causal method using the Huber solution to verify whether or not the processing
results keep the same quality while reducing the resolution of images and decreasing the computation time. Figure 15 shows
that the PSNR average is almost unchanged with or without applying the pyramidal approach.
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Fig. 15. PSNR measure for the pyramidal approach and the causal approach using Huber solution on the Bird sequence.

VII. RESULTS AND DISCUSSION

In this section, we present some experimental results to demonstrate the efficacy of the proposed approaches.
First, our color correction method was tested on synthetic periodic/non-periodic flicker sequences produced from a flicker-

free, naturally lit video and also on a real, studio-lit video affected with periodic flicker and featuring multiple light sources
and complex motion. The artificial non-periodic flicker was created in such a manner to exhibit large differences in brightness
between the different periods. Plotting the global luminosity versus the image sequence index allows us to evaluate the
performance of the methods. Figure 16 shows the result of processing the real degraded image sequences using the causal
method. The luminosity variation graphs in Figures 17-19 show that brightness levels are well restored in the color-corrected
videos, and even in the presence of different acquisition and lighting conditions, different geometrical motions and also at
varying frame rates.
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(a) Video sequence 1: including complex motions at
1000 fps
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(b) Video sequence 2: including rotation, translations, scale
changes, focusing and defocusing effects
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(c) Video sequence 3: including fast rotations at 240 fps

Fig. 16. Luminosity fluctuation and restoration in some real sequences with different acquisition properties: complex motions, different lighting conditions
and acquisition frame rates.

(a) Degraded frames (b) Processed frames

Fig. 17. Video sequence 1 acquired at 1000 fps, illuminated by three light sources, it includes complex motions, saturation effects, noise at the background
and some outliers.

(a) Degraded frames (b) Processed frames

Fig. 18. Video sequence 2 acquired at 240 fps, and so we have rapid illumination/ chromatic changes. It includes focusing/defocusing effects accompanied
by translation motions and scale changes.
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(a) Degraded frames (b) Processed frames

Fig. 19. Video sequence 3 acquired at 240 fps under multiple light sources, it includes very fast rotations.

Figure 21 presents other restoration examples on two sequences with artificial flicker allowing us to compare the proposed
causal and non causal methods visually. These examples feature large motion between frames, occlusions in the background
and compound motion: for example, in the Bird sequence, the camera is moving in the opposite of the bird’s direction. In
order to perform a quantitative comparison between causal and non-causal approaches, the similarity measures were computed
on a non-periodic flicker affected sequence, see Figure 20. It is clear in the figure above, that the non-causal approach provides

10 20 30 40 50
Frame index

60

80

100

120

140

160

180

Lu
m

in
os

ity
 a

ve
ra

ge

Degraded frames
Non-causal results
Causal results
Original frames

Fig. 20. Luminosity average vs. images sequence for the causal and non-causal approaches, on a non-periodic flicker affected video (Images sequence 4, see
Figure 21).

reasonable illumination correction results, as the sudden brightness changes are removed between different flicker periods.
The non-causal approach could be used for several applications in addition to high speed imaging, for instance, to stabilize
brightness variations in time lapse videos.

Figures 22, 23 and 24 show the benefits of deblocking used after flicker removal to alleviate blocking artifacts caused by
occlusions and complex displacements. In order to better assess the performance of the proposed method, we utilize PSNR
and and the structural similarity index (SSIM) to measure the similarity between the original and degraded images on the
one hand, and then between the original and restored sequences on the other hand. As shown by Figure 25(a), the PSNR
average increases from 21 to 48 dB after color correction of image sequence 5. A further 1 dB is gained on average after the
deblocking step. We compared our method to another deflickering procedure adapted from [10], which was initially tailored
for old grayscale movies, and that we extended to color sequences. This procedure compensates flicker globally and provides a
single matrix for the whole image at each timestep. It only improves the PSNR to 32 dB on average, so our gain is significant.
Similarly, our SSIM index is very close to 1 after restoration (see Figure 25(b)), and its improvement after removing blocking
artifacts and comparing to the global deflickering method is also significant.
Similarly, Figure 26 shows another test of our algorithms performed on the results of image sequence 6 (see Figure 24), and
also presents the improvement of PSNR and SSIM indexes after the ficker removal and deblocking procedures.

(a) Reference
frame

(b) Flicker-affected
frame

(c) Color correc-
tion result

(d) Deblocking re-
sult

(e) Zoom before
deblocking

(f) Zoom after de-
blocking

Fig. 22. Sequence with periodic flicker from studio lighting.

(a) Original image (b) Degraded im-
age

(c) Color correc-
tion result

(d) Deblocking re-
sult

(e) Zoom before
deblocking

(f) Zoom after de-
blocking

Fig. 24. Sequence 6 with global motion and periodic artificial flicker.
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(a) Degraded frames (b) Causal approach

(c) Non-causal approach

(d) Degraded frames (e) Causal approach

(f) Non-causal approach

Fig. 21. Video sequences 4-5: Comparison between causal and non-causal approaches for color correction on synthetic flicker sequences produced from a
flicker-free, naturally lit video.

(a) Original image (b) Degraded im-
age

(c) Color correc-
tion result

(d) Deblocking re-
sult

(e) Zoom before
deblocking

(f) Zoom after de-
blocking

Fig. 23. Sequence with large local motion and periodic artificial flicker.
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(b) Luminosity variation
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(c) SNR comparison
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Fig. 25. Similarity measures on video sequence 5.
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(b) Luminosity variation

0 5 10 15 20 25 30 35 40 45
Frame index

0

10

20

30

40

50

60

PS
NR

Deblocking filtering
Local deflickering
Global deflickering
Degraded frames

(c) SNR comparison

5 10 15 20 25 30 35 40 45
Frame number

0.96

0.97

0.98

0.99

1.00

SS
IM

 

Deblocking filtering
Local deflickering
Degraded frames

(d) SSIM comparison

Fig. 26. Similarity measures on video sequence 6.

VIII. CONCLUSION

This work introduced a novel flexible method for periodic flicker reduction, suitable for correcting high-speed color video
sequences taken under artificial lighting. Our approach mainly relies upon a joint optimized color matrix correction / motion
estimation step. We have designed causal and non-causal tracking methods involving blockwise color correction, followed
by a per-pixel regularization-based post-processing for removing block artifacts. In order to reduce the processing time, we
proposed a pyramidal strategy to estimate motion and color correction parameters at reduced scales, while maintaining close
to the same result quality. We have demonstrated the effectiveness of our method on real sequences affected with flicker from
studio lights, and on sequences perturbed with an artificial flicker.
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In future work, it would be interesting to incorporate variable block sizes in our estimation procedure. and to develop GPGPU
implementations of the proposed algorithms.
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[5] P. M. B. Van Roosmalen, R. L. Lagendijk, and J. Biemond, “Correction of intensity flicker in old film sequences,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 9, no. 7, pp. 1013–1019, 1999.
[6] X. Yang and M. N. Chong, “Enhanced approach to film flicker removal,” in International Symposium on Optical Science and Technology. San Diego,

USA: International Society for Optics and Photonics, 2000, pp. 39–47.
[7] T. Ohuchi, T. Seto, T. Komatsu, and T. Saito, “A robust method of image flicker correction for heavily-corrupted old film sequences,” in IEEE International

Conference on Image Processing, vol. 2, Vancouver, Canada, 2000, pp. 672–675.
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[12] F. Pitié, R. Dahyot, F. Kelly, and A. C. Kokaram, “A new robust technique for stabilizing brightness fluctuations in image sequences,” in Statistical

Methods in Video Processing. Springer Berlin Heidelberg, 2004, pp. 153–164.
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