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Diffusion-coagulation can be simply described by a dynamic where particles perform a random walk on a lattice and coalesce with probability unity when meeting on the same site. Such processes display non-equilibrium properties with strong fluctuations in low dimensions. In this work we study this problem on the fully-connected lattice, an infinite-dimensional system in the thermodynamic limit, for which mean-field behaviour is expected. Exact expressions for the particle density distribution at a given time and survival time distribution for a given number of particles are obtained. In particular we show that the time needed to reach a finite number of surviving particles (vanishing density in the scaling limit) displays strong fluctuations and extreme value statistics, characterized by a universal class of non-Gaussian distributions with singular behaviour.

Introduction

The study of the kinetics of irreversible reaction-diffusion processes have been the subject of much interest during the last forty years [1][2][START_REF] Henkel | Non-equilibrium phase transitions: absorbing phase transitions[END_REF][START_REF] Ódor | Universality in non-equilibrim lattice systems[END_REF][START_REF] Krapivsky | A Kinetic View of Statistical Physics[END_REF]. From the theoretical point of view these processes can be sufficiently simple to offer the possibility of exact solutions [START_REF] Ovchinnikov | [END_REF][START_REF] Bramson | Wahrscheinlichkeitstheorie verw[END_REF][8][9][10][11][12][13][14][15][16][17][18][19][20] and their asymptotic behaviour can be classified among different universality classes [1,2,[21][START_REF] Schütz | Exactly solvable models for many-body systems far from equilibrium Phase Transitions and Critical Phenomena[END_REF][START_REF] Täuber | [END_REF]. They are important in nature as well as for applications [START_REF] Frielander | Smoke, Dust and Haze: Fundamentals of Aerosol Behavior[END_REF][START_REF] Zel | [END_REF][START_REF] Ovchinnikov | Kinetics of Diffusion Controlled Chemical Processes[END_REF][START_REF] Grindrod | Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations[END_REF].

The most simple examples are the single-species processes A + A → Ø (diffusionannihilation) and A + A → A (diffusion-coalescence) which belong to the same universality class. In both cases, above the critical dimension D c = 2 the density fluctuations can be neglected and the particle density x evolves according to the meanfield rate equation

dx dt = -Kx 2 , (1.1) 
where K is the reaction-rate constant. The solution for an initial density x(0) = 1 is then

x(t) = 1 1 + Kt . (1.
2)

The t -1 long-time decay is actually obtained on the Bethe lattice [START_REF] Ben Avraham | [END_REF]. It is corrected by a logarithmic factor at D c where x(t) ≃ (ln t)/t [START_REF] Bramson | Wahrscheinlichkeitstheorie verw[END_REF]10,11,18]. Below D c , where the density fluctuations are relevant, the kinetic exponent becomes D-dependent, x(t) ≃ t -D/2 , as shown by scaling arguments, numerical simulations and exact results [8][9][10][11][12][13]18]. A t -1/2 decay has been indeed observed experimentally in effectively one-dimensional systems [29][30][31].

In the present work we study the statistical properties of the diffusion-coalescence process (A + Ø → Ø + A and A + A → A) on the fully-connected lattice (complete graph) with N sites, the absorbing state consisting of one particle left. In the limit N → ∞ such a lattice can only be embedded in an infinite-dimensional space, thus one expects a mean-field behaviour. Our main motivation is to obtain, besides exact results for mean values, exact expressions for different probability distributions, in particular for extreme values. This is a continuation of previous works on stochastic processes on the fully-connected lattice by one of us [32,33].

Our main results can be summarized as follows in the scaling limit (s.l.). The mean number s of particles surviving at time t and its variance behave as:

s N (t) N s.l. = 1 t + 1 , ∆s 2 N (t) N s.l.
= κ(t) = 1 3(t + 1)

1 -3t + 1 (t + 1) 3 .

(1.

3)

The probability density S(σ, t) associated with the scaled variable

σ = s -s N (t) N 1/2 , (1.4) 
is a Gaussian with variance κ(t) given in (1.3). Let t be the time needed to reach a number v of surviving particles (first-passage time through v). Its statistical properties depend on the value of v.

When v = O(N ) one obtains t N (x) s.l. = 1 x -1 , N ∆t 2 N (x) s.l. = χ(x) = 2 3 - 1 x + 1 3x 3 . (1.5)
where x = v/N . The fluctuations of the scaled variable

θ = N 1/2 t -t N (x) (1.6)
are also Gaussian, with variance χ(x) given by (1.5). When x → 0, i.e. when v = O(1), χ(x) diverges. This is the signal of a different scaling behaviour. As a function of v, the mean first-passage time and its variance are now given by

t N (v) N s.l. = 1 v , ∆t 2 N (v) N 2 s.l. = 2 π 2 6 -H v,2 + 1 v 1 v -2 , (1.7) 
where H v,2 = v s=1 1/s 2 is a generalized harmonic number. Since the variance is growing as N 2 the scaled time variable can be defined as:

θ ′ = t N , θ ′ = 1 v , θ ′ ≥ 0 . (1.8)
The associated probability density then reads

T ′ (v, θ ′ ) = (-1) v v!(v-1)! ∞ l=0 (-1) l (2l + 1) (l + v)! (l -v)! e -l(l+1)θ ′ , = 1 v!(v-1)! v-1 m=0 ∂ ∂θ ′ + m(m + 1) 1 2q 1/4 ∂ϑ 1 (z, q) ∂z z=0 , q = e -θ ′ . (1.9)
where ϑ 1 (z, q) is a Jacobi theta function. The probability density T ′ (v, θ ′ ) behaves asymptotically as †:

T ′ (v, θ ′ ) ≃    (2v+1)! v!(v-1)! exp [-v(v + 1)θ ′ ] , θ ′ ≫ 1 , 1 2 2v v!(v-1)! π θ ′ 2v+3/2 exp -π 2 4θ ′ , θ ′ ≪ 1 . (1.10)
It decays exponentially when θ ′ ≫ 1 and vanishes with an essential singularity at θ ′ = 0. The outline of the paper is the following. In section 2, we study the statistics of the number of particles surviving after k updates. After defining the model, the probability distribution is obtained by solving the eigenvalue problem associated with the master equation. The mean value and the variance are then deduced from a generating function. The section ends with a solution of the partial differential equation following from the master equation in the scaling limit. Section 3 is concerned with the statistical properties of the first-passage time through a given number v of surviving particles. A generating function for the probability distribution is first obtained, from which the mean value and the variance are deduced. For v = O(N ), as above, the probability density is obtained in the scaling limit by solving a partial differential equation. For v = O(1), where the fluctuations are much stronger and non-Gaussian, the scaling limit is deduced directly from the probability distribution. The discussion in section 4 is followed by six appendices where some calculational details are given. We consider a fully-connected lattice with N sites. Initially all the sites are singly occupied. The system evolves in time t via random sequential updates. Let s be the number of particles surviving after k -1 updates. During the kth update a site i is picked at random among the N . This site is occupied with probability s/N or empty with probability 1s/N . When the site is occupied, the selected particle jumps at random on one of the N sites. If the destination site j is occupied by another particle, † After this work was completed we have been informed by Paul Krapivsky that the asymptotic behaviour of T ′ (v, θ ′ ) in (1.10) was previously obtained for v = 1 in [START_REF] Krapivsky | A Kinetic View of Statistical Physics[END_REF], section 12.2.

the two particles coalesce. This occurs with probability (s -1)/N . Otherwise, nothing happens. These rules avoid a multiple occupation of the sites. The time t is incremented by 1/N for each update.

The evolution of the system during an update can be summarized as follows:

s(k) = s(k -1) -1 with probability s N i occupied × s -1 N j =i occupied , s(k) = s(k -1) with probability 1 - s N i empty + s N i occupied × 1 - s -1 N j empty or j=i . (2.1)
Thus the probability distribution S N (s, k) for the number s of surviving particles after k updates is governed by the following master equation:

S N (s, k) = 1 - s(s -1) N 2 S N (s, k -1) + s(s + 1) N 2 S N (s + 1, k -1) . (2.2)

Eigenvalue problem

Introducing a column state vector |S N (k) with components S N (s, k), s = 1, . . . , N , the master equation (2.2) can be rewritten in matrix form as

|S N (k) = T |S N (k -1)
where T is the transition matrix of the Markov chain given by:

T =           1 1×2 N 2 0 0 0 0 0 1-1×2 N 2 2×3 N 2 0 0 0 . . . . . . 0 0 0 1-s(s-1) N 2 s(s+1) N 2 0 . . . . . . 0 0 0 0 0 1-N (N -1) N 2           . (2.
3)

The eigenvalue problem T|v (n) = λ n |v (n) leads to the following system of equations

1 - s(s -1) N 2 -λ n v (n) s + s(s + 1) N 2 v (n) s+1 = 0 , s = 1, . . . , N , (2.4) with v (n) 
N +1 = 0. The eigenvalues are given by:

λ n = 1 - n(n -1) N 2 , n = 1, . . . , N . (2.5) 
The corresponding eigenvectors satisfy the following relations:

v (n) s = (-1) n-s s(s + 1) 2 (s + 2) 2 • • • (n -1) 2 n (n -s)!(n + s -1)(n + s) • • • (2n -3)(2n -2) v (n) n = (-1) n-s 2n -1 s n + s -2 2s -2 2s -2 s -1 2n -1 n -1 v (n) n , s ≤ n , v (n) s = 0 , s > n .
(2.6)

The v

(n)
n are left undetermined and depend on the initial state.

Probability distribution

We assume that all the sites are occupied by one particle in the initial state so that S N (s, 0) = δ s,N . Writing the initial state vector as

|S N (0) = N n=1 |v (n) (2.7)
and using (2.6) one obtains

S N (s, 0) = N n=s v (n) s = N n=s (-1) n-s 2n -1 s n + s -2 2s -2 2s -2 s -1 2n -1 n -1 v (n) n , (2.8) 
and, as shown in appendix A, the initial condition is satisfied when

v (n) n = 2n -1 n n-1 j=0 N -j N + j .
(2.9)

The probability distribution at later time follows from

|S N (k) = T k |S N (0) = N n=1 λ k n |v (n) , (2.10) 
so that finally:

S N (s, k) = N n=s (-1) n-s 2n -1 s n + s -2 2s -2 2s -2 s -1 n-1 j=0 N -j N + j 1 - n(n -1) N 2 k . (2.11) 
The time evolution of S N (s, k) is illustrated in figure 1.

Mean value and mean square value

The mean values can be deduced from the generating function

S N (y, k) = N s=1 sy s S N (s, k) , (2.12) 
studied in appendix A. According to (A.3) and (A.4), the mean value of s after k updates is given by:

s N (k) = N s=1 sS N (s, k) = S N (1, k) = N n=1 (2n -1) n-1 j=0 N -j N + j 1 - n(n -1) N 2 k . (2.13)
The derivative of the generating function S N (y, k) at y = 1 leads to:

s 2 N (k) = N s=1 s 2 S N (s, k) = ∂S N ∂y y=1 = N n=1 (2n -1) n-1 j=0 N -j N + j 1 - n(n -1) N 2 k 1 + dP n-1 (2y -1) dy y=1 , (2.14) 
where P n-1 (2y -1) is a Legendre polynomial defined in (A.5). The generating function for Legendre polynomials

∞ l=0 P l (x)r l = 1 √ 1 -2xr + r 2 (2.15) 
can be used to give:

∞ l=0 dP l (x) dx x=1 r l = r (1 -r) 3 = ∞ j=0 j + 2 2 r j+1 . (2.16) 
Identifying the coefficients of r n-1 , one obtains:

dP n-1 (2y -1) dy y=1 = 2 n 2 = n(n -1) .
(2.17)

Thus, the mean square value of s after k updates is given by:

s 2 N (k) = N n=1 (2n -1) [1 + n(n -1)] n-1 j=0 N -j N + j 1 - n(n -1) N 2 k .
(2.18)

Mean value, variance and probability density in the scaling limit

The leading and next-to-leading contributions to the mean value s N (k) and the mean square value s 2 N (k) are calculated for N ≫ 1 and used to evaluate the variance in appendix B. The sub-leading contributions are actually needed because the leading ones cancel in the variance.

The scaling limit (s.l.) corresponds to N → ∞, k → ∞, s → ∞ for fixed values of k/N and s/N . According to (B.7) and (B.9), in this limit one obtains ‡: The time evolution of s N /N and ∆s 2 N /N is shown in figure 2. The numerically exact finite-size data were obtained using (2.13) and (2.14).

s N (t) N s.l. = 1 t + 1 , ∆s 2 N (t) N s.l. = κ(t) = 1 3(t + 1) 1 - 3t + 1 (t + 1)
The behaviour of the variance suggests the introduction of the scaled variables

§ σ = s -s N (t) N 1/2 , t = k N . (2.20) 
The normalized probability density, S(σ, t), corresponds to N 1/2 S N (s, k). It is obtained as the solution of the master equation (2.2) which, in the continuum limit, leads to 

∂S ∂t = 2 t + 1 S + σ ∂S ∂σ + 1 2(t + 1) 2 1 - 1 (t + 1) 2 ∂ 2 S ∂σ 2 , ( 2 
dκ dt ∂S ∂κ - 1 2 
∂ 2 S ∂σ 2 = 2 t + 1 S + σ ∂S ∂σ + κ ∂ 2 S ∂σ 2 .
(2.22) § Let z be a discrete random variable in a system of size N with probability distribution P N (z), mean value z N and variance ∆z 2 N ∼ N 2α . The deviation from the mean, zz N , typically grows with N like the standard deviation, i.e., as N α . Thus the ratio ζ = (zz N )/N α is a scale-invariant variable. In the scaling limit, the probability density P(ζ) is such that P N (z)dz This last equation admits for solution the Gaussian density:

S(σ, t) = e -σ 2 /[2κ(t)] 2πκ(t) , κ(t) = 1 3(t + 1) 1 - 3t + 1 (t + 1) 3 , (2.23) 
Indeed, the Gaussian density is a solution of the diffusion equation on the left and the bracket on the right vanishes. Furthermore, it satisfies the initial condition since κ → 0, σ → (s -N )/N 1/2 and S(σ, κ) → δ(σ) as t → 0. The finite-size data, obtained through a numerical iteration of the master equation (2.2), collapse on the Gaussian density for large N values as shown in figure 3.

First-passage time through a number v of surviving particles

In this section we look for the probability distribution T N (v, k) of the number k of updates needed to reach a state with v surviving particles. Then t = k/N is the firstpassage time through this value v.

Generating function

The generating function for T N (v, k) is defined as

T N (v, z) = ∞ k=1 z k T N (v, k) . (3.1)
As shown in figure 4(a), starting with s = N particles the evolution of the system can be decomposed into a succession of steps where the number of particles s remains the same for some time until two particles coalesce. Let us associate with these steps a generating function for their lifetimes measured in the number of updates L N (s, z). This generating function corresponds to the sum of the diagrams shown in figure 4(b) and reads:

L N (s, z) = 1 + z 1 - s(s -1) N 2 + • • • + z l 1 - s(s -1) N 2 l l updates without coalescence + • • • z s(s -1) N 2 coalescence = zs(s -1) N 2 -z [N 2 -s(s -1)] . (3.2) 
In the sum the coefficient of z l+1 corresponds to the probability to have l updates for which s remains constant (small circles) followed by one update where two particles coalesce (big circles) and l goes from zero to infinity. The generating function for T N (v, k) is obtained as the product of the generating functions for the lifetimes with s going from N to v + 1:

T N (v, z) = v+1 s=N L N (s, z) = v N N ! v! 2 z N -v N s=v+1 {N 2 -z [N 2 -s(s -1)]} .(3.3)
It follows from (3.1) and (3.3) that ∞ k=1 T N (v, k) = T N (v, 1) = 1 so that the probability distribution T N (v, k) is properly normalized.

mean value, mean square value and variance

According to (3.1), the mean value of the first passage time t = k/N through the value v is given by:

t N (v) = 1 N ∂T N ∂z z=1 . (3.4)
Making use of

∂T N ∂z = T N ∂ ln T N ∂z = N 2 T N z N s=v+1 1 N 2 -z [N 2 -s(s -1)] , (3.5) 
one obtains:

t N (v) = N N s=v+1 1 s(s -1) = N v -1 . (3.6)
In the same way, we have:

t 2 N (v) = 1 N 2 ∂ ∂z z ∂T N ∂z z=1 . (3.7) 
Some straightforward calculations lead to

∂ ∂z z ∂T N ∂z = N 2 T N z    N 2   N s=v+1 R N (s, z) 2 + N s=v+1 R 2 N (s, z)   - N s=v+1 R N (s, z)    R N (s, z) = 1 N 2 -z [N 2 -s(s -1)] , (3.8) 
so that, according to (3.6) and (3.7):

t 2 N (v) = t N (v) 2 + N 2 N s=v+1 1 s -1 - 1 s 2 - 1 v - 1 N . (3.9) 
This can be rewritten as:

t 2 N (v) = t N (v) 2 + 2N 2 (H N,2 -H v,2 ) + 1 v - 1 N N 2 1 v + 1 N -2 -1 . (3.10) 
Finally the variance is given by:

∆t 2 N (v) = 2N 2 (H N,2 -H v,2 )+ 1 v - 1 N N 2 1 v + 1 N -2 -1 .(3.11)

Mean value, variance and probability density in the scaling limit when v = O(N )

When v = O(N ) the scaling limit corresponds to N → ∞, k → ∞ and v → ∞ for fixed values of t = k/N and x = v/N . Then, according to (3.6), (3.11) and appendix D, one has:

t N (x) s.l. = 1 x -1 , N ∆t 2 N (x) s.l. = χ(x) = 2 3 - 1 x + 1 3x 3 . (3.12)
The evolution of t N and N ∆t 2 N with the particle density x is shown in figure 5. The behaviour of the variance leads to the following form of the scaled variables:

θ = N 1/2 t -t N (x) = k N 1/2 -N 1/2 1 x -1 , x = v N . (3.13)
The normalized probability density, T(x, θ), is given by the scaling limit of N 1/2 T N (v, k). The probability T N (v, k) that the number of surviving particles reaches the value v after k updates is given by i.e., the probability S N (v + 1, k -1) to have v + 1 particles after k -1 updates multiplied by the probability v(v + 1)/N 2 of a coalescence process at the next update. With the initial condition T N (v, 1) = δ v,N -1 , (2.11) and (3.14) lead to:

T N (v, k) = S N (v + 1, k -1) v(v + 1) N 2 , (3.14) 
T N (v, k) = 1 v!(v-1)!N 2 N n=v+1 (-1) n-v-1 (2n-1) (n+v-1)! (n-v-1)! n-1 j=0 N -j N +j 1- n(n-1) N 2 k-1 . (3.15)
This probability distribution satisfies the master equation

T N (v, k) = 1 - v(v+1) N 2 T N (v, k-1) + v(v + 1) N 2 T N (v+1, k-1
) , (3.16) which follows from (2.2) and (3.14). In the continuum limit, as shown in appendix E, the following partial differential equation is obtained:

∂T ∂x = 1 2 1 x 2 - 1 x 4 ∂ 2 T ∂θ 2 .
(3.17)

Assuming that T(x, θ) = T[χ(x), θ] with χ(x) given by (3.12) leads to the diffusion equation:

∂T ∂χ = 1 2 
∂ 2 T ∂θ 2 .
(3.18) The Gaussian density

T(x, θ) = e -θ 2 /[2χ(x)] 2πχ(x) , χ(x) = 2 3 - 1 x + 1 3x 3 , (3.19) 
satisfies the initial condition since χ → 0, θ → N 1/2 t and T(x, θ) → δ(θ) as x → 1.

The data collapse on this Gaussian density is shown in figure 6. The finite-size data for T N (v, k) were obtained by collecting numerically exact values of S N (N x + 1, k -1), following from an iteration of the master equation (2.2), and finally making use of (3.14).

Mean value, variance and probability density in the scaling limit when v = O(1)

When v = O(1), according to (3.6) and (3.11) the mean value and the variance of the first-passage time through v behave as

t N (v) N s.l. = 1 v , ∆t 2 N (v) N 2 s.l. = 2(ζ(2) -H v,2 ) + 1 v 1 v -2 , (3.20)
in the scaling limit (see figure 7). When v ≫ 1 the mean value and the variance in (3.20) have to match with their values for x ≪ 1 in (3.12). The matching is evident for t N . For the variance, taking the limit N → ∞ in (D.3), one obtains

2(ζ(2) -H v,2 ) ≃ 2 v - 1 v 2 + 1 3v 3 , (3.21) 
when v ≫ 1. Thus in this limit ∆t 2 N (v) in (3.20) takes the following form

∆t 2 N (v) ≃ N 2 3v 3 = 1 3N x 3 , (3.22)
in agreement with the expression following from (3.12) when x ≪ 1. In the regime v = O(1) the fluctuations are much stronger with a variance growing as N 2 for ∆t 2 N (v) instead of decreasing as 1/N for ∆t 2 N (x). The scaled time variable is defined as :

θ ′ = t N = k N 2 , θ ′ ≥ 0 . (3.23) 
Accordingly, in this limit the probability density is given by:

T ′ (v, θ ′ ) s.l. = N 2 T N (v, k) (3.24) 
In the expression (3.15

) of T N (v, k) as N → ∞ one has n-1 j=0 N -j N +j ≃ e -n(n-1)/N s.l. = 1 , 1- n(n-1) N 2 k-1 s.l. = e -n(n-1)θ ′ , (3.25) 
for any finite value of n, so that the probability density takes the following form:

T ′ (v, θ ′ ) = 1 v!(v-1)! ∞ n=v+1 (-1) n-v-1 (2n-1) (n+v-1)! (n-v-1)! e -n(n-1)θ ′ . (3.26) 
It will be more convenient here to leave out the shift by the mean value, θ ′ = 1/v. The normalization of this probability density is verified in appendix F. The data collapse on T ′ (v, θ ′ ) is shown in figure 8. As above, the finite-size data for T N (v, k) were obtained by collecting numerically exact values of S N (v + 1, k -1), given by the master equation (2.2), and using (3.14).

The leading contribution for large values of θ ′ ≫ 1 is given by the first term in the sum:

T ′ (v, θ ′ ) ≃ (2v + 1)! v!(v-1)! e -v(v+1)θ ′ , θ ′ ≫ 1 . (3.27) 
In order to study the behaviour of T ′ (v, θ ′ ) when θ ′ ≪ 1 we first show that it can be rewritten in terms of derivatives of the Jacobi theta function

ϑ 1 (z, q) = 2q 1/4 ∞ l=0 (-1) l q l(l+1) sin[(2l + 1)z] . (3.28) 
Let us start from (3.26) with the change l = n -1 in the sum, then:

T ′ (v, θ ′ ) = (-1) v v!(v-1)! ∞ l=v (-1) l (2l + 1) (l + v)! (l -v)! e -l(l+1)θ ′ . (3.29) 
Since the ratio of factorials in the sum vanishes when l = 0, . . . , v -1 one may write:

T ′ (v, θ ′ ) = (-1) v v!(v-1)! ∞ l=0 (-1) l (2l + 1) (l + v)! (l -v)! e -l(l+1)θ ′ . (3.30) 
Then, grouping the extreme factors in pairs, the ratio of factorials can be rewritten as: Since l(l + 1) results from the action of the operator -∂/∂θ ′ on the exponential term, one may rewrite (3.30) as

(l + v)! (l -v)! = v j=1 (l -v + j)(l + v -j + 1) = v-1 m=0 [l(l + 1) -m(m + 1)] , m = v -j .( 3 
T ′ (v, θ ′ ) θ ′ v = 1 v = 2 v = 3
T ′ (v, θ ′ ) = 1 v!(v-1)! v-1 m=0 ∂ ∂θ ′ + m(m + 1) ∞ l=0 (-1) l (2l + 1) e -l(l+1)θ ′ . = 1 v!(v-1)! v-1 m=0 ∂ ∂θ ′ + m(m + 1) 1 2q 1/4 ∂ϑ 1 (z, q) ∂z z=0 , q = e -θ ′ , (3.32) 
where ϑ 1 (z, q) is the Jacobi theta function defined in (3.28).

The behaviour in the short scaled-time limit, θ ′ ≪ 1, can be obtained using Jacobi's imaginary transformation [START_REF] Whittaker | A Course of Modern Analysis[END_REF]. Introducing the notation

ϑ 1 (z|τ ) = ϑ 1 (z, q) , q = e iπτ , τ = i θ ′ π , (3.33) 
according to [START_REF] Whittaker | A Course of Modern Analysis[END_REF], one has ∂ϑ 1 (z|τ )

∂z z=0 = 1 (-iτ ) 3/2 ∂ϑ 1 (z| -1/τ ) ∂z z=0 , (3.34) 
so that 1 2q 1/4 ∂ϑ 1 (z, q) ∂z z=0 = e θ ′ /4 2 π θ ′ 3/2 ∂ϑ 1 (z, e -π 2 /θ ′ ) ∂z z=0 . (3.35) 
Accordingly, (3.32) transforms into:

T ′ (v, θ ′ ) = 1 v!(v-1)! × v-1 m=0 ∂ ∂θ ′ +m(m+1) π θ ′ 3/2 e -π 2 /(4θ ′ )+θ ′ /4 ∞ l=0
(-1) l (2l + 1) e -l(l+1)π 2 /θ ′ . (3.36) When θ ′ ≪ 1 the leading contribution comes from l = 0 and the repeated application of ∂/∂θ ′ , so that finally:

T ′ (v, θ ′ ) ≃ 1 2 2v v!(v-1)! π θ ′ 2v+3/2 e -π 2 /(4θ ′ ) , θ ′ ≪ 1 . (3.37) 
The probability density vanishes at θ ′ = 0 with an essential singularity. The asymptotic behaviour for small and large values of θ ′ is shown in figure 9.

Discussion

The probability distribution for the number of particles surviving at a given time in the diffusion-coalescence process on the fully-connected lattice (shown in figure 3) displays Gaussian fluctuations in the scaling limit. The mean value s N (t) decays slowly at long time following the t -1 behaviour obtained in the mean-field approximation (1.2). After a rapid increase the variance goes through a maximum near t = 2 and then decays asymptotically as t -1 , too (see figure 2).

The probability distribution of the first-passage time through a given number v of surviving particles behaves quite differently, depending on the value of the particle density x = v/N in the scaling limit. When x is non-vanishing (i.e., when v = O(N )) the mean first-passage time in (3.12) can be obtained by inverting the mean-field relation (1.2). The variance in (3.12) scales as N -1 and increases when x decreases. The fluctuations are Gaussian in the scaling limit (see figure 6). But the divergence of the variance at x = 0 signals the onset of a new scaling behaviour.

Indeed, in the extreme case where v = O(1), the first-passage time in figure 8 displays strong non-Gaussian, non-self-averaging fluctuations. The mean value and the standard deviation in (3.20) diverge in the same way, as N , in the scaling limit, a characteristic of extreme value statistics [START_REF] Majumdar | [END_REF]36]. In order to reach a state with a few remaining particles the system can follow many alternative paths in configuration space, with a wide distribution of arrival times.

It is remarkable that the probability density of the first-passage time associated with a number v of surviving particles in (3.32) can be simply obtained by applying a product of v -1 first-order differential operators on the probability density obtained for v = 1:

T ′ (v, θ ′ ) = 1 v!(v-1)! v-1 m=1 ∂ ∂θ ′ + m(m + 1) T ′ (1, θ ′ ) , T ′ (1, θ ′ ) = ∞ l=1 (-1) l+1 l(l + 1)(2l + 1) e -l(l+1)θ ′ . ( 4.1) 
As usual for Gaussian series these probability densities are related to Jacobi theta functions. They decay exponentially as θ ′ → ∞ and vanish with an essential singularity at θ ′ = 0. It is interesting to note that similar results have been obtained for fluctuating 1D interfaces. In the Edwards-Wilkinson [37] and Kardar-Parisi-Zhang [38] varieties, the interface configurations in the stationary state are described by Brownian paths. The probability distribution of the squared width, w 2 , of an interface with periodic boundary conditions, involves a universal scaling function of w 2 /w 2 given by a Gaussian series [39] Φ

(θ ′ ) = π 2 3 ∞ l=1 (-1) l+1 l 2 e -l 2 θ ′ , θ ′ = π 2 6 w 2 w 2 , ( 4.2) 
with the same type of asymptotic behaviour as above for large and small values of θ ′ . The distribution of the maximal relative height, h m , with free or periodic boundary conditions, also displays the same type of asymptotics in the variable h 2 m /L, where L is the size of the system [36,[40][41][42].

To conclude, among the possible extensions of the present work, let us mention the study of density-density correlation functions, x(t)x(t ′ )x(t) x(t ′ ), and the question of ageing which has been observed for diffusion-coalescence in 1D [43,44].

with partial derivatives given by: ∂S

∂s = 1 N 1/2 ∂S ∂σ , ∂S ∂k = 1 N 1/2 (t + 1) 2 ∂S ∂σ + 1 N ∂S ∂t , ∂ 2 S ∂s 2 = 1 N ∂ 2 S ∂σ 2 , ∂ 2 S ∂s ∂k = 1 N (t + 1) 2 ∂ 2 S ∂σ 2 + O N -3/2 ∂ 2 S ∂k 2 = 1 N (t + 1) 4 ∂ 2 S ∂σ 2 + O N -3/2 . (C.3)
Higher derivatives, of order N -3/2 or smaller, can be neglected.

Collecting the coefficients of the different powers of N -1/2 in (C.2) the first nonvanishing contributions, of order N -1 , lead to the partial differential equation (2.21).

The probability density T(x, θ), which corresponds to N 1/2 T N (v, k) in the scaling limit, depends on v and k through the variables x(v) and θ(v.k). A Taylor expansion in v and k of T on the right-hand side of the master equation (3.16) leads to:

T = 1 -x 2 - x N T - ∂T ∂k + 1 2 
∂ 2 T ∂k 2 + x 2 + x N T + ∂T ∂v - ∂T ∂k + 1 2 
∂ 2 T ∂v 2 - ∂ 2 T ∂v ∂k + 1 2 
∂ 2 T ∂k 2 . (E.2)
The partial derivatives are given by:

∂T ∂v = 1 N 1/2 x 2 ∂T ∂θ + 1 N ∂T ∂x , ∂T ∂k = 1 N 1/2 ∂T ∂θ , ∂ 2 T ∂v 2 = 1 N x 4 ∂ 2 T ∂θ 2 + O N -3/2 , ∂ 2 T ∂v ∂k = 1 N x 2 ∂ 2 T ∂θ 2 + O N -3/2 ∂ 2 T ∂k 2 = 1 N ∂ 2 T ∂θ 2 .
(E.3)

As before, higher derivatives are of order N -3/2 or smaller.

Collecting the coefficients of the different powers of N -1/2 in (E.2), the first nonvanishing contributions are of order N -1 and give the partial differential equation (3.17).

Since v > 0 one has S n (0) = 0 and S 0 (1) + S 1 (1) = lim where B(v, v) is the Euler beta function. Thus, according to (F.2), N = 1, as required.

Actually N in (F.2) is an alternate divergent series which can be summed using the original method of Euler [START_REF] Euler | [END_REF] which goes as follows (see [START_REF] Hardy | Divergent Series[END_REF][START_REF] Sandifer | How Euler Did It[END_REF]). 

2 .

 2 Number of particles s surviving after k updates 2.1. Model and master equation for S N (s, k)

Figure 1 .

 1 Figure 1. Evolution of the probability distribution S N (s, k) of the number of particles s remaining after k updates, obtained through a numerical iteration of the master equation (2.2). The initial number of particles is s = N = 1024 and the number of updates is k = 2 n with n = 8 to 13 from right to left.
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 2 Figure 2. Scaling behaviour of (a) the mean value s N and (b) the variance ∆s 2 N of the number of surviving particles as a function of time t = k/N . The data collapse on the full lines corresponding to the scaling functions in (2.19).

  s.l. = P(ζ)dζ or N α P N (z) s.l. = P(ζ).

Figure 3 .

 3 Figure 3. Data collapse for the scaled probability distribution N 1/2 S N (s, k) as a function of σ = N -1/2 (ss N (t)) at different times t = k/N and for increasing lattice sizes, N = 256 (diamond), 512 (square) and 1024 (circle). The finite-size data were obtained through a numerical iteration of the master equation (2.2). The full lines correspond to the Gaussian density (2.23) obtained in the scaling limit.

Figure 4 .

 4 Figure 4. A time evolution of the number of surviving particles is sketched in (a).A small circle corresponds to an update where the number of particles stays the same and a bigger circle to an update where two particles coalesce. Then t = k/N gives the first-passage time through the number of particles s = v. The diagrams in (b) give the contributions to the generating function(3.3) for the lifetime of a sequence of updates ending with a coalescence process.

Figure 5 .

 5 Figure 5. Behaviour as a function of the particle density x = v/N of (a) the mean value t N in (3.12) and (b) the scaled variance N ∆t 2 N of the first-passage time through a given value of v. There are no finite-size corrections in (a). In (b) the finite-size data given by (3.11) collapse on the full line corresponding to the scaling limit in (3.12).

Figure 6 .

 6 Figure 6. Data collapse for the scaled probability distribution N 1/2 T N (v, k) as a function of θ = N 1/2 (tt N (x)) for different values of the particle density x = v/N and for increasing lattice sizes, N = 32 (diamond), 64 (square) and 128 (circle). The full lines correspond to the Gaussian density (3.19) obtained in the scaling limit.

Figure 7 .

 7 Figure 7. Scaling behaviour of (a) the mean first-passage time t N through a given value of v and (b) its variance ∆t 2 N . With increasing N the finite-size data, given by (3.6) and (3.11), approach the scaling limits in (3.20) (full lines).

Figure 8 .

 8 Figure 8. Data collapse for the scaled probability distributionN 2 T N (v, k) as a function of θ ′ -1/v = (tt N (v))/N for v = O(1) and for increasing lattice sizes, N = 32 (diamond), 64 (square) and 128 (circle). The full lines correspond to the probability density T ′ (v, θ ′ ) in (3.26), obtained in the scaling limit.

Figure 9 .

 9 Figure 9. Probability density T ′ (v, θ ′ ), obtained by summing a large number of terms in (3.26), (full lines) and its asymptotic behaviour (3.27) when θ ′ ≫ 1 and (3.37) when θ ′ ≪ 1 (dashed lines)

  y) 2v dy . (F.5) With the change of variables y = z/(1z) one obtains S 0 (1) + S 1 (

For example, when v = 2 N = 10 -

 210 Given the alternate series N = ab + cd + e -• • •, build the sequences of successive finite differences∆ 1 = ba, cb, dc, ed, . . . α = ba , ∆ 2 = c -2b + a, d -2c + b, e -2d + c, . . . β = c -2b + a , ∆ 3 = d -3c + 3ba, e -3d + 3cb, . . . γ = d -3c + 3ba , . . . . . . (F.7)until eventually the differences vanish. Then the sum is given by: 35+81 -154 + 260 -405 + • • • a = 10 , ∆ 1 = 25, 46, 73, 106, 145, . . . α = 25 , ∆ 2 = 21, 27, 33, 39, . . . β = 21 , ∆ 3 = 6, 6, 6, . . . γ = 6 , ∆ 4 = 0, 0, . . . δ = 0 , (F.9) and N = 10/2 -25/4 + 21/8 -6/16 = 1.
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Appendix A. Probability distribution S N (s, k) in the initial state

In this section we evaluate by induction the components v

n , this defines a linear system of N equations with N unknowns, v 

A further analysis of these expressions leads to a factorization of v

which is the result given in (2.9) leading to the complete summation formula for S N (s, k) in (2.11). The last expression comes from a rearrangement of the first product. It will be convenient for later use to introduce the generating function

where, according to (2.11), the last factor is given by

2r r (-y) r = P n-1 (2y -1) , (A.4) and P n (x) is a Legendre polynomial.

The last equality can be demonstrated starting with one of the multiple definitions of the Legendre polynomials in terms of derivatives:

In particular one has:

One can then rearrange the terms in the sum as:

The last sum is obtained using the Vandermonde's convolution formula for binomial coefficients. Then in (A.4) one can rearrange the product r+n-1 2r 2r r as r+n-1 r n-1 r , so that (A.4) can be identified with (A.7) with n replaced by n -1.

Let us now check the initial condition S N (s, 0) = δ s,N at k = 0 for which S N (y, 0) = N y N . According to (A.3) and (A.4), one has:

Let rewrite this function as

the coefficients of the expansion are given by

where the last expression follows from equation 7.127 in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]. Finally

and S N (s, 0) = δ s,N as required.

Let us write:

For N ≫ 1, the following expansions are obtained

so that:

These expressions are used to evaluate (2.13) and (2.18) when N ≫ 1. Then:

These sums follow from the Euler-Maclaurin formula:

Using the change of variable u = n(n-1)/N together with ∞ 0 du u a e -bu = Γ(a+1)/b a+1 , one obtains:

The functions f (n), g(n) and their derivatives vanish exponentially at infinity. With f (0) = -1/N and f ′ (0) = 2/N one has to add a correction term 1/3N to the integral of f (n) which gives:

The correction to the integral of g(n), of order N -2 , is negligible so that:

The variance grows as N and is given by:

(B.9)

Appendix C. Continuum limit of the master equation for S N (s, k)

We look for the form of the master equation (2.2) in the scaling limit. Making use of the scaled variables in (2.20) with s N (t) taken from (2.19), the prefactors are rewritten as:

1 -s(s -1)

The probability density, S(σ, t), given by the continuum limit of N 1/2 S N (s, k), depends on s and k through the variables σ(s, k) and t(k). A Taylor expansion in s and k on the right-hand side of the master equation (2.2) leads to

The variance in (3.11) involves the sum

which can be evaluated using Euler-Maclaurin formula under the form

leading to:

In the scaling limit, with v = N x, one obtains

Inserting this expression in (3.11), the leading contribution to the variance is of order N -1 and reads:

Using the scaled variables defined in (3.13) together with t N (x) given by (3.12), the prefactors on the right of the the master equation (3.16) take the following forms:

(-1) l (2l+2v+1) (l+2v)! l! e -(l+v)(l+v+1)θ ′ , (F.1) so that:

. (F.