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Stability and Performance of Coalitions of
Prosumers Through Diversification in the Smart

Grid
Nicolas Gensollen, Vincent Gauthier, Monique Becker and Michel Marot

Abstract—In the context of the smart grid, we propose in
this paper an algorithm that forms coalitions of agents, called
prosumers, that both produce and consume. It is designed to
be used by aggregators that aim at selling aggregated surplus
of production of the prosumers they control. We rely on real
weather data sampled across stations of a given territory in
order to simulate realistic production and consumption patterns
for each prosumer. This enables us to capture geographical
correlations among the agents while preserving the diversity
due to different behaviors. As aggregators are bound to the
market operator by a contract, they seek to maximize their offer
while minimizing their risk. The proposed graph based algorithm
takes the underlying correlation structure of the agents into
account and outputs coalitions with both high productivity and
low variability. We show that the resulting diversified coalitions
are able to generate higher benefits on a constrained energy
market, and are more resilient to random failures of the agents.

Keywords: prosumers, coalition formation, correlation, sta-
bility, clique expansion, electricity market

I. INTRODUCTION

Achieving a successful energetic transition through a
smarter and greener electricity grid is a major goal for the
21st century. It is assumed that such smart grids will be
characterized by bidirectional electricity flows coupled with
the use of small renewable generators and a proper efficient
information system. All these bricks might enable end users to
take part in the grid stability by injecting power, or by shaping
their consumption against financial compensation.

In this paper, we consider agents in the distribution network
that own both renewable distributed energy resources (DER)
and loads. We will refer to these agents as prosumers [1] in
the future. If a prosumer produces more than he consumes, he
might be willing to sell power. We thus assume the existence of
an energy market where producers post a production capacity
for an upcoming period, and buyers decide what bids to
purchase. When the production is stochastic, as it can be with
DER, this approach gets more complicated and risk should
be quantified and taken into account. We thus assume the
existence of a market operator who constrains the market
entrance. As single agents might not be productive or reliable
enough, aggregators managing large portfolios of prosumers
are more likely to enter such markets. While there exist several
models for fixing prices and organizing bids in such stochastic
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settings, the present work does not focus on transactions on
the market. Instead, we study how aggregators can manage
their portfolios as to maximize the production that they offer,
given that such production is stochastic by nature. A key point
of this work is then to merge the interests of the market
operator and aggregators in a single utility function. While
the aggregators intend to maximize their benefits with better
contracts, the operator concerns are related to the quality
and reliability of the market supply (more information about
the scenario can be found in [2] page 67-68). If a buyer
purchases a contract, the corresponding aggregator has to
inject the contracted amount of power at any time of the
contract, exposing himself to financial penalties if he deviates.
Since prosumers use renewables, we are concerned with the
probability that the production falls below the contract value.
In this case, storage or demand side managment might be
solutions to avoid penalties, but this probability should still
be maintained low.

We use a coalitional framework in order to model ag-
gregators. It is known that diversification of the assets is a
way of minimizing risks when building a portfolio. We thus
expect more stable and predictable energy productions for
aggregators than for single agents. Nevertheless, all coalitions
are not equally stable or productive. Attention should thus be
paid to the aggregation step. Recall that prosumers have both
consumption and production components, each depending on
location and time, meaning that there are complex underlying
correlations between the agents. This is a central topic of
this paper : given N prosumers, what coalitions should be
formed so that the compromise between expected production
and variability is optimized ?

We will see that the variability in the production of the
aggregators can be quantified to a certain extent by the corre-
lation among the agents within the coalitions. Understanding
the correlation relationships among the agents can thus give
an indication about what coalitions to form and how much
they should sell on the market. More precisely, we use a graph
representation of the correlation structure to gain insight about
the expected production to risk ratios of different coalitions.
We build a framework in which the market operator specifies
both the minimum production acceptable to enter the market
and restrain the amount of risk he is willing to accept. We
then propose a graph heuristic that uses decorrelated cliques
in order to form diversified productive and stable coalitions,
and we compare the results with other formation strategies
(see section VII). Rather than maximizing the profit of each
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agent in the grid (prosumers and operator), our algorithm
tries to form the most productive coalitions given a maximum
amount of acceptable risk. In other words, it tries to maximize
aggregators’ profits without considering individual retributions
to single agents. Furthermore, the pricing strategies for both
the prosumer and the grid is beyond the scope of this paper.

Because agents are susceptible to fail for diverse reasons,
the propensity of the system to undertake these failures is
critical [3]. We also investigate in this paper the resilience
of the coalitions when prosumers fail. Despite the fact that
losing agents is usually detrimental to the coalitions, we will
see that the coalitions formed with our algorithm tend to be
less impacted by random failures.

The paper is organized as follows, section II gives a brief
overview of the related literature, section III clarifies how
we generated realistic prosumer production traces based on
weather data. In section IV, we define most of the notations
and explain why correlation between prosumers is a quantity
of interest for our objective. Based on the conclusions of sec-
tion IV, we develop in section V a utility function quantifying
how much power a coalition can announce on the market
given an accepted risk level. We then develop, in section VI a
greedy optimization algorithm that uses decorrelated cliques as
inputs and improves their utility over a correlation-constrained
environment. Finally, section VII provides some results both
on performance of the method and resilience of the coalitions
formed. The overall process is illustrated on figure 1.

II. RELATED WORK

Assuming a large penetration of DER, it is expected that
the managment of the system would have to evolve as to copy
with the large amount of unpredictable small generators. In [4],
the authors introduce a distributed energy management system
with a high use of renewables such that power is scheduled
in a distributed fashion. Allowing the formation of coalitions
whose participants commit to achieving some objective against
a reward appears also as a promising approach. Nevertheless,
for these structures to be stable toward defection, agents should
have an incentive to join, and cooperate. Coalition formation
is therefore usually studied through the framework of game
theory [5]. In this direction, [6] introduces an agent-based
strategy for managing DER aiming at optimal performance
in the electricity supply system.

Since most of the DER have a stochastic production,
maintaining the system equilibrium in these conditions is a
complicated task. It is often assumed that electricity storage
will provide some possibilities in order to copy with the
uncertainties. In [7] the optimal storage capacity problem is
addressed. There is indeed an interesting trade-off between the
costs of the equipments and the expected availability of power.
The authors develop a framework that enables them to exhibit
a Pareto front of efficient solutions.

In addition to storage and distibuted algorithms, prediction
techniques of the upcoming load curves and weather con-
ditions are of paramount importance. Combining all these
technologies could enable aggregators to quantify their ex-
pected production and the inherent risk that comes with it.

The optimization of expected returns to risk is a traditional
goal in finance, and a wide literature exists on this topic. It
is well-known for instance, that the more risk one is willing
to accept, the higher his potential gains. On the contrary,
when investing exclusively on low risks assets, one should
expect relatively small gains. This trade-off is formalized in
the Markowitz’ portfolio theory [8]. More precisely, given
a set of assets for which we have some historic data of
returns, the objective is to find a linear combination of these
assets (the so-called portfolio) which maximizes the expected
value while minimizing the variance of the portfolio’s return.
Markowitz’s answer is a set of efficient portfolios that all
optimize in some sense this trade-off. If one is able to put
a number on his risk acceptance or on the target expected
return, the corresponding efficient portfolio is a priori the
best option. One of the most controversial assumptions in the
portfolio theory is that returns are jointly normally distributed
(or, at least, that the returns distribution is jointly elliptical).
Some economist have pointed out the fact that this assumption
might not capture well the reality of financial markets [9].
Nevertheless, one of the key point in the Markowitz theory is
to consider explicitly the correlation between the assets since
they impact directly the variances of the portfolios. Since the
work of [10], an interesting approach consists in computing a
distance metric based on the correlation coefficients in order
to organize the series in a correlation graph. Nodes represent
the series considered while the edges are weighted by the
metric. Because the metric can be computed for all pairs, these
graphs are complete and of little use as is. Historically, the
approach used by [10] was to compute a minimum spanning
tree as to obtain a hierarchical clustering of the series. Later
on, it was pointed out that, by definition, a spanning tree
could not capture the underlying clustering structure hidden in
the correlation graph. In this paper, we use another classical
filtering technique called ε-graph [11]. It consists in selecting
a threshold ε, and filtering out edges with smaller weights.
As we will see further in this paper, this approach has the
advantage of preserving clusters of correlated series.

III. GENERATING REALISTIC PROSUMER PATTERNS

An essential component of the smart grid is the smart meter
which makes the interface between the end user and the rest
of the system. Smart meters coupled with sensors measure
quantities of interest (like instantaneous consumption), receive
informations from the grid (electricity prices for instance), and
take actions accordingly (demand side management programs).
Smart meters are currently and gradually deployed, and will
probably provide interesting datasets to work on. Unfortu-
nately, at the time this paper was written, production and
consumption data for prosumers over a large region were not
yet available to our knowledge. Some interesting experiments
are nonetheless being conducted and data are progressively
made public [12]. In this paper, we use weather quantities like
wind speed or solar radiance as alternative data for generating
realistic production and consumption series. Fortunately, these
kinds of data are easier to find, and since the development of
small personal weather stations, their geographical granularity
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Figure 1: Process

N Number of Prosumers
Pi(t) Extra-production of agent i at time t
PCRCT

S Contract value of coalition S
φ ∈ [0, 1] Reliability Threshold
PMIN Minimum Contract value
α Parameter that controls the coalitions sizes
ε Correlation graph filtering threshold
NCOAL Number of coalitions
RS Resilience of coalition S

Figure 2: Main notations.

keeps increasing. Since these quantities depend both on time
and location, we discretize time into slots and space into zones
in the following (see block 1 of fig. 1). A zone is simply
a portion of the considered region of study for which we
sampled data. Therefore, if prosumers i and j are positioned
on the same zone, they are exposed to the same weather.
Adding some intra-zone noise can easily be done though not
considered in this paper. We denote by Pi(t) the instantaneous
available extra-production of agent i at time t :

Pi(t) = PPi (t)− PDi (t) (1)

where PPi (t) represents the total production of agent i at
time t and PDi (t) its consumption at time t. In other words,
Pi(t) represents the instantaneous surplus of power that agent
i is willing to sell at time t. We simulated these traces by
considering separately PPi and PDi . For a prosumer i, it is
possible to write both quantities as a sum over the distributed
energy resources (DERi) and loads (loadi) of i :

PPi (t) =
∑

k∈DERi

Pk(t) (2)

PDi (t) =
∑

k∈loadi

Pk(t) (3)

For simplicity, in this paper we only consider wind-turbines
(WT) and photovoltaic panels (PV) as possible DERs for the
agents (DERi = WTi ∪ PVi):

PDi (t) =
∑

k∈WTi

Pk(t) +
∑
k∈PVi

Pk(t) (4)

We denote by νi(t) and Ψi(t) the wind speed (in m.s−1)
and the solar radiance ( in W.m−2) at the location of agent i
and at time t, so that :

PPi (t) =
∑

k∈WTi

FWT (νi(t)) +
∑
k∈PVi

FPV (Ψi(t)) (5)

where FWT (resp. FPV ) is the power curve for the wind-
turbines (resp. photovoltaic panels). We made here the implicit
assumption that all wind-turbines (resp. photovoltaic panels)
have the same power curve. The model can be easily extended
to multiple power curves accounting for different types of
generators. More details about power curves and their approx-
imations can be found in the appendix and in [13].

Note that a prosumer i is defined by his zone Zi as well
as the sets DERi and loadi. That is, a prosumer can be
configured to represent anything from a single wind-turbine
for instance (DERi = {WT0} and loadi = ∅) to a pure
load (DERi = ∅ and loadi = {L0}) through more complex
combinations. In practice, we use random configurations for
the agents. In the rest of the paper, we use french weather data
[14] starting in January 2006 and ending in December 2012,
with a sampling frequency of three hours, and generate N time-
series of extra-production over this date range. Note that this
low sampling frequency might hide short time intermittencies
(see [15] for more information). Studying the evolution of the
correlation structure with the sampling frequency is out of the
scope of this paper, but might lead to interresting results.

IV. NOTATIONS

This section provides most of the notations and introduces
important concepts for the rest of the paper. We consider a set
A = {a1, a2, ..., aN} of N prosumers of the distribution net-
work. Each agent is configured randomly and we simulate its
extra-production Pi(t), ∀i ∈ A from 2006 to 2012. Based on
these historical values, our objective is now to form groups of
prosumers so that the global power production resulting from
the superposition of individual’s extra-productions be both
sufficiently high and predictable. Let PS(t) =

∑
i∈S Pi(t) be

the available extra-production of coalition S at time t.
Suppose now that coalition S has to suggest a production

value PCRCTS to enter the market. This means that, during
the time S is on the market, it will have to inject in the
grid exactly PCRCTS at any time t and will be rewarded
proportionally to this amount, with penalties if it deviates.
Obviously, the actual extra-production will not be constant
at this value and will oscillate due to intermittences in the
production and consumption. If S has an available production
always greater than PCRCTS , it is losing some gains since it
could have announced a higher contract value. If the produc-
tion oscillates around PCRCTS , by using batteries or demand
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side management techniques, S could be able to maintain its
production to the contract value at any time. Nevertheless, if
the oscillations are too important compared to the available
storage capacity, S will probably break the contract and pay
penalties. We can see that there is a return over risk trade-off
here. Coalitions should thus find the right balance between
announcing too low and losing some potential gains, and
claiming too high and paying penalties.

Let us illustrate the rest of the notations and concepts with a
simple example. We consider only two agents i and j such that
the distribution of their extra-production can be approximated
by normal distributions : Pi ∼ N (µi, σi) and Pj ∼ N (µj , σj).
This is only for explanation purposes as it is of course rather
unrealistic in real situations where the distributions are skewed.
We can write the distribution of the coalition S = {i, j} as
P{i,j} ∼ N (µij , σij), where :{

µij = µi + µj

σij =
√
σ2
i + σ2

j + ρijσiσj
(6)

ρij being the Pearson’s correlation coefficient between Pi and
Pj . If the coalition {i, j} proposes a contract value PCRCTS ,
all instants when {i, j} will produce less than PCRCTS is
critical. Indeed, in this kind of situations, {i, j} will either
have to discharge batteries to keep up with its contract, or
pay penalties to the grid. The probability that {i, j} is under-
producing compared to the contract : Pr[Pi,j ≤ PCRCT ] is
thus an important indicator of the coalition’s quality. A well-
known result for normal distributions is that the cumulative
distribution function can be written as :

Pr[Pij ≤ PCRCTS ] =
1

2

[
1 + erf

(
PCRCTS − µij

σij
√

2

)]
(7)

where erf is the error function : erf(x) =
2√
π

∫ x
0
e−t

2

dt.

The contract a given coalition is willing to take depends
on its capacity to compensate for under-producing (using bat-
teries, backup generators...), and its risk acceptance. Selecting
the right contract value appears thus as an interesting problem
on its own that we plan to investigate in future works. In
order to keep the present paper in a reasonable length, we
simplify the contract value selection problem by giving some
responsibilities to a third party named the market operator.
His role is to constrain the market entry to coalitions able
to propose both sufficiently high and sufficiently credible
contract values. More formally, let φ ∈ [0, 1] be the reliability
threshold fixed by the market operator as a maximum value
for the probability of under-producing. The highest contract
value that a coalition can propose is thus PCRCT?S such that
Pr[Pij ≤ PCRCT?S ] = φ. In the Gaussian example, it implies
that coalition {i, j} is announcing :

PCRCT?S = µij −
√

2σijerf
−1(1− 2φ) (8)

This is the best contract value that the coalition S can afford
for a given stability policy φ of the market operator. Figure
3 shows how PCRCT?S evolves according to the reliability

Figure 3: PCRCT?
S depending on reliability parameter φ for Gaussian

distributions (see equation 8). Blue curve with triangles stands for a coalition
S with an expected production of 5 units and a standard deviation of 0.5.
Under a grid policy of φ = 0.1, it is able to announce a contract value
of PCRCT?

S = 4.36. The same coalition in term of expected production
(µ = 5), but with a higher variance (σ = 1.5, cyan curve with circles) can
only afford a smaller contract value of PCRCT?

S = 3.07. The red curve with
diamonds stands for a coalition with a higher expected production (µ = 7),
but with a very high unpredictability (σ = 5). For low values of φ, this
coalition is thus heavily penalized and can only afford a contract of 0.59

units. Under grid policy (φ = 0.1, PMIN = 2), this last coalition is thus
not allowed to enter the market (red dot below the horizontal dashed line).

parameter φ. For illustration, the range of φ values is shown
from 0 to 1, but in practice, only small values of φ really
make sense : φ = 1 for instance means that coalitions
can announce absolutely anything since the probability of
producing less than any contract value is necessarily less than
one by trivial definition of a probability. As visible on figure
3, coalitions with high expected productions but presenting a
high unpredictability are penalized and can only afford small
contracts. The market operator also specifies a lower bound
PMIN on the contract values as not to overload the market
with unrealistic small coalitions. We thus characterized a valid
coalition as one satisfying the two conditions :{

Pr[Pij ≤ PCRCTS ] ≤ φ
PCRCTS ≥ PMIN (9)

On figure 3, PMIN is fixed to 2 units for illustration
purpose. For φ = 0.1, only blue triangles and cyan circles
coalitions are valid while red diamonds coalition is not.

The Gaussian assumption of this small example is conve-
nient as it allows us to write PCRCT?S analytically. Neverthe-
less, such an assumption is rather unrealistic in practice. In
the following, we keep the same framework but release this
Gaussian assumption unless the contrary is specified (see eq.
14).

V. UTILITY FUNCTION

In this section, we use the notions of contract values and
valid coalitions developed in section IV in order to design a
proper utility function. The contract basically indicates the rate
at which a coalition has to inject power in the grid. It seems
then natural that coalitions are remunerated proportionally to
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their contract values gain(S) ∝ PCRCT?S . More precisely, if
λ is the unitary price rate for electricity, a coalition S injecting
PCRCT?S in the grid during a period [t0, tk] earns :

gain(S) =

∫ tk

t0

λPCRCT?S dt = PCRCT?S

∫ tk

t0

λdt (10)

(since PCRCT?S is supposed to be a constant rate over the
contracted period). Unfortunately gain(S) is not a concave
function of the coalitions’ sizes, meaning that coalitions can
grow as large as the number of agents allows it, without any
counterbalance effects. Such a model, that virtually allows
infinitely large coalitions and contract values, is in practice
not realistic. There are indeed costs (communication costs for
instance) that increase with the coalitions sizes. We take this
observation into account by rescaling the utility of a coalition
S by its size in term of number of agents (|S|):

U(S) =


1

|S|α
PCRCT?S

PMAX
, if S is valid,

0, if S is not valid
(11)

where parameter α controls to what extent the size of a
coalition impacts its utility, and PMAX is a normalizing factor.
Based on U , the marginal contribution of an agent i can be
expressed as δS(i) = U(S + {i}) − U(S). A coalition S has
thus an interest in adding an additional agent i if :

δS(i) ≥ 0 ⇔ PCRCT?S+{i} ≥ PCRCT?S

(
|S|+ 1

|S|

)α
(12)

If α = 0, agents are added as long as they increase the
contract value of the coalition. If α > 0, additional agents
have to increase the contract value by some factor.

In real situations, the shape of such utility function might be
complex with numerous local maximums. We choose in this
paper to favor the exploration of the space around balanced re-
gions, i.e regions where coalitions sizes are relatively balanced.
Therefore, we use α as a proxy for having both a concave
utility function and preferences in the search space. Given a
situation with N prosumers and NCOAL desired coalitions,
we wish to select α such that the utility function tend to favor
coalitions of approximately N̄ = N/NCOAL agents.

In the general case where distributions and correlation
structures have no special form, finding an analytical expres-
sion for α appears complicated. To overcome this problem,
we seek an approximation for α in a simplified situation
where all power distributions are approximated by normal
distributions and all prosumers are considered equivalent to a
mean agent : ∀i ∈ A, Pi ∼ N (µ̄, σ̄), where µ̄ = 1

N

∑
i∈A µi,

σ̄ = 1
N

∑
i∈A σi, and ∀i, j, ρij = ρ̄. In this simplified case,

we can express the utility as a function of µ̄, σ̄, ρ̄, N̄ , and α
(see Appendix). We then select α? such that :

[
∂U

∂|S|

]
|S|=N̄

= 0[
∂2U

∂|S|2

]
α=α?

≤ 0

(13)

Which leads to (see Appendix) :

Figure 4: Gaussian mean approximation (N = 100, φ = 0.1, µ̄ = 5, σ̄ =

.5, ρ̄ = 0.2). Subplot a shows how the parameter α of the utility function
should be chosen in function of the mean size of the coalitions (see equation
14). Subplot b displays the corresponding utility functions for different values
of α. Blue curve with diamonds favors small coalitions of 2 agents while the
green one with triangles favors 5 agents coalitions. Finally, the red curve with
squares has an optimal size of 15 agents.

α?
N̄

=
0.7σ̄(ρ̄− 1)erf−1(2φ− 1)

µ̄
√
N̄(ρ̄N̄ − ρ̄+ 1) + 1.4σ̄erf−1(2φ− 1)(ρ̄N̄ − ρ̄+ 1)

(14)

Figure 4 shows how α? and the utility function evolves
according to the mean size of the coalitions N̄ . Given a policy
(φ, PMIN ) and a pool of N prosumers, we are now able to
quantify the quality of any coalition S.

VI. COALITION FORMATION

We aim at forming NCOAL coalitions {S1;S2; ...;SNCOAL
}

such that the global utility U =
∑NCOAL

i=1 U(Si) is maximized.
Since achieving such a goal is a well-known hard problem
due to the combinatorial explosion in the number of possible
aggregations, we propose in this section a greedy heuristic
using decorrelation graphs to solve the problem.

A. Representing the correlation structure

As seen in section IV, the variance of the aggregated pro-
duction impacts directly the contract values, and depends on
the covariances between the agents productions. We argue here
that, by having some representation of the correlation structure
between the agents, the search landscape for high utility
coalitions could be reduced, such that good coalitions are more
likely to be found quickly. Usually, this correlation structure
is formalized with a covariance matrix or a correlation matrix
that contains all the correlation coefficients between the agents
: M = (ρij)∀i,j∈A2 . By using a metric to map this matrix in
a weighted adjacency matrix (see section II), it is possible to
obtain a graph representation of the correlation relationships
between the agents. In the following, we use two opposite
distance metrics d1

ij = 1− ρ2
ij and d2

ij = ρ2
ij = 1− d1

ij .
Clearly, d1 (resp. d2) maps two correlated series as close

points (resp. distant) while two uncorrelated series are distant
(resp. close). These metrics enable us to compute a corre-
lation graph G1 = (A, E1) and a "de-correlation" graph
G2 = (A, E2). For any i and j, the weight of the edge eij
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is d1
ij in G1 and d2

ij in G2. In both cases, we want to keep
only the edges which weights are located in the lower tail of
the distance distributions. In other words, we want to compute
the ε-graphs of G1 and G2 such that only meaningful edges
remain. Selecting the filter ε is an important point affecting the
landscape search for the coalition formation. Unfortunately,
there seems to be no clear consensus in the literature on how
to select such a threshold. We will see later in this section
that cliques in G2 are potential seeds for the coalitions. Since
we want to generate NCOAL coalitions, we need at least
NCOAL cliques of a given size to start. Besides, since we
consider coalitions as disjoint, the starting cliques should be
non overlapping. We select our optimal threshold for G2 as :

ε? = minε∈[0,1] {ε s.t. |Θk(Gε2)| ≥ NCOAL} (15)

where Gε2 is the de-correlation graph G2 filtered by ε, and
Θk(G) is the set of non overlapping cliques of size k in a
given graph G. In other words we select ε? as the smallest
threshold possible such that the filtered de-correlation graph
contains at least NCOAL non overlapping cliques of size k. In
practice, since finding cliques requires exponential time, we
use triangles [16] (k = 3 in eq. 15) rather than cliques as
soon as the number of nodes is not small. Note also that the
existence of ε? as defined in equation 15 is not guaranteed.

B. Cliques

In [11] the structural roles of weak and strong links on finan-
cial correlation graphs is investigated. The author shows that
strong links, accounting for strong correlation relationships,
are responsible for the clustering, while weak links provide
the connectivity between clusters. Indeed, if we consider three
items, say a, b, and c such that a and b are strongly correlated
and b and c are also strongly correlated, then it is likely that a
and c are also strongly correlated. It can be easily shown using
the cosine addition formula1, that if ρab > x and ρbc > x with
x > 0, then ρac > 2x2 − 1). Correlation graphs capture this
weak transitivity notion through clusters of correlated series.

Nevertheless de-correlation seems like a more complex
concept than correlation in the sense that there is not even
a partial notion of transitivity when it comes to it. Therefore,
the clustering coefficients of Gε1 is much higher than the one
of Gε2. This can be seen as another formulation of [11] on the
structural roles of weak and strong links on financial corre-
lation graphs. Strong links, accounting for strong correlation
relationships, are responsible for the clustering, while weak
links provide the connectivity between clusters. Searching for
clusters in Gε2 and hoping that this strategy will provide a
nice coalition structure of internally uncorrelated coalitions
seems thus pointless. Consider now a clique in Gε2, which is a
complete subgraph of Gε2. Since there is a link for every pairs
of nodes, we know, by construction, that a clique has a mean
correlation and a maximum correlation less than ε.

Figure 5 shows the distributions of the utility values for
cliques of size 3 (triangles) in Gε

?

2 and for all the other
possible triplets of agents. It is clearly visible that cliques

1 cos(a+ b) = cos(a)cos(b) − sin(a)sin(b)

Figure 5: Histograms of utility values for coalitions of size 3 (N̄ = 3)
in a N = 200 prosumers example (φ = 0.1, α? = 0.08, µ̄ = 3.9 MW ,
σ̄ = 1.9MW , ρ̄ = 0.69). Red bars stand for cliques in the decorrelation
graph, and blue bars for all the other possible triples. Cliques tend to exhibit
higher utilities than random coalitions.

tend to exhibit higher utilities because of their de-correlation
property. Choosing cliques in Gε

?

2 as coalitions seems there-
fore appealing. Nevertheless, the quality of the results seems
to decrease as the sizes of the cliques increase. Indeed, the
larger the desired cliques, the more dense Gε

?

2 becomes (see
equation 15). There is a point where cliques result more
from noisy edges than true de-correlation, which decreases the
quality of the results. Directly mapping cliques to coalitions
by this de-correlation oriented approach is thus not sufficient.
It is indeed possible that adding agents to these cliques has
the combined effect of increasing the expected production
while decreasing its stability. The question revolves around
measuring the benefits of this production surplus compared to
the disadvantage of having coalition with high volatility. This
can be quantified by the marginal benefit in equation 12.

C. Algorithm

The algorithm takes inputs from :
• The agents : historical series of available productions Pi,
• The market operator : market entrance policy

(PMIN , φ),
• The "user" : Number of desired coalitions NCOAL and

size of starting cliques k.
The first steps consist in computing the de-correlation graph

G2 as well as the optimal threshold ε?. Cliques of size k in
Gε

?

2 are considered as coalition seeds. The next step is a local
greedy improvement over the landscape represented by Gε

?

2 .
Cliques add alternatively the node i? in their neighborhood
that yields the best marginal benefit MAXi∈N(clique)δclique(i)
where N(clique) is the neighborhood of a given clique. See
algorithms section in the appendix.

VII. RESULTS

The algorithm presented in the previous section is supposed
to generate a given number of coalitions that have good
utilities. As it comprises mainly of a greedy optimization based
on local improvements, there is no guarantee that the algorithm
finds the global optimum. Since there is, to our knowledge, no



7

Figure 6: Utility of random coalitions depending on their size in a N = 200

prosumers example (φ = .1, µ̄ = 3.9 MW , σ̄ = 1.9MW , ρ̄ = 0.69).
Blue dots show real mean utility values and the thick red curve its smoothed
version by applying a Savitzky-Golay filter. On this plot, α? = 0.006, and
was selected according to eq. 14 in order to favor N̄ = 40 agents coalitions.

state of the art algorithm that aggregates uncorrelated agents
in an optimum way (see section II for related problems), we
compare the results with :
• Random sampling of coalitions : Coalitions are formed

randomly without any other constraint that the desired
size. This enables us to have an idea about the distribu-
tions of utility values for coalitions of a given size.

• Random sampling of coalition structures : Coalition
structures are sampled randomly by shuffling and random
divisions of the agents. This algorithm (see appendices)
uses such a sampling and returns the highest utility
coalition structure sampled. We refer to this algorithm
as "random".

• Correlated : Opposite version of our algorithm. It per-
forms a community detection on the correlation graph
G1. The resulting coalitions have thus very high internal
correlations. We thus expect this algorithm to perform
very bad compared to the others. See appendices.

Before running the algorithms, we need to calibrate the
utility function by choosing the value of the α parameter.
Recall that the purpose of this parameter is to take into account
some constraints on the coalition’s sizes if needed. In this
paper, we do not have any technical constraints on coalition
sizes though we designed the utility such that these could
be taken into account. We select the desired size as being
bN/NCOALc (where b.c means floor). Figure 6 shows how
the mean utility of a coalition evolves with its size when the
optimum size is set to 40 agents.

Figure 7 shows the coalitions formed with the considered
algorithms in the contract value / volatility space. The color
map in the background indicates regions where we expect high
utilities (red) and the ones where we expect very poor utility
values (blue). The bottom right corner, with high contract val-
ues and low volatilities, is therefore the region where we wish
to form our coalitions. A single coalition is represented by a
marker and the color and shape of a marker indicates by which
algorithm the coalition has been formed. Besides, the sizes of
the coalitions are indicated on the markers, and the marker size
is also proportional to the coalition size. We can see that the

Figure 7: Coalitions formed in the (contract value, volatility) space. The
color map indicates the underlying quality. The closer to red the better (high
contract values with small volatility). On the opposite, blue areas show poor
quality (small contract values with high volatility). Blue dots stand for the
decorrelated coalitions that we formed while green squares show correlated
coalitions. The smaller yellow markers stand for the gravity centers of the
coalition structures. The black dotted line shows how contract values and
volatility evolve when the size of the coalitions increases (a subset of the
points are labeled by the size of the coalition they represent). Each point is
the average over 105 unconstrained draws of a random coalition. We also
show the distribution of the gravity centers of random coalition structures
with red ellipses (center is the mean, and each ellipse corresponds to one
standard deviation).

utility function results in approximatively balanced coalitions.
Small yellow markers indicates the gravity centers of their
respective coalition structures. The coalitions of correlated
agents (green squares) are clearly of poor quality according
to our criteria since they can only afford small production
contracts, and with a very high volatility. The decorrelated
coalitions (blue dots) are closer to the bottom right corner
indicating a much better quality in term of productivity over
volatility ratio. The black dotted line indicates the mean values
for the random coalitions sampling technique. Each small dot
stands for the mean position of all sampled coalitions of this
given size. Variances are not indicated for readability, but are
usually quite large since this sampling only takes the size as a
constraint. We can see that as coalitions get larger, they tend to
increase on average their contract values, but at the price of a
higher volatility. The results of the random coalition structure
sampling are shown with the red ellipses that represent the
distribution of the gravity centers of the sampled structures.
Since the center of the ellipses stands for the mean and each
ellipse adds one standard deviation, more than 99% of the
sampled gravity centers are within the largest ellipse. The
small yellow dot below the ellipses indicates the gravity center
of our solution. It is thus visible that our greedy graph based
algorithm is able to find a quite good coalition structure in
terms of volatility and contract values.

A key point for the coalitions, besides stability and produc-
tivity, is their resilience. The resilience of a system refers to
its ability to perform its tasks when subject to failures of its
components. We consider here the case of random failures of
the power electronics of some agents that has the consequence
of preventing them from participating in the market. Therefore,
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Figure 8: Resilience of the coalition structures when nodes fail randomly
(see equation 16) for PMIN = 10MW (top subplot) and PMIN = 80MW

(bottom subplot)

the notion of resilience we will use in the following can be
seen as the ability of the coalition structures to inject stable
power in the grid when some of its internal agents are re-
moved. According to our model, the market operator specified
two thresholds (PMIN and φ) such that the power injected by
every coalition is constrained : PCRCTS ∈ [PMIN , PCRCT?S ].
As long as a coalition can propose a contract value higher
than PMIN , it is valid and allowed to enter the energy
market. We define the resilience of a coalition S as the
probability that S produces more than the PMIN threshold
: RS = Pr[PS >= PMIN ] = 1−Pr[PS < PMIN ]. And we
extend this measure to the coalition structures :

RCS =
∏
S∈CS

(
1− Pr[PS < PMIN ]

)
(16)

We consider that prosumers fail randomly, and we denote by
ψ ∈ [0, 1] the fraction of agents that failed. Figure 8 exhibits
how the resilience of the coalition structures evolves according
to ψ (see appendix section Resilience algorithm for more
details). On the top subplot, PMIN was voluntarily selected
relatively low such that the resiliences of the three structures
fit on the same figure. When the PMIN requirement increases,
the differences between the algorithms also increase as visible
on the bottom subplot of figure 8. The decorrelated coalitions
achieve a more resilient production on the market in the sense
that they sustain a higher fraction of node failures.

VIII. CONCLUSION

In this paper we studied how aggregations of prosumers
could be authorized to sell their surplus of production on
the energy market. By relying on the past values of the
agents, we constrained the market entry to both sufficiently
productive and stable coalitions. The power that a coalition
is able to propose on the market is therefore related to pro-
duction and stability. The correlations between the prosumers
impact directly the volatility of the coalitions, which led us to
seek uncorrelated aggregations of agents. We used a graph
representation of the correlation relationships between the
agents as a reduced landscape for the coalition formation. A
greedy algorithm that starts with cliques of the "de-correlation"

graph of the agents and makes local improvements offers a
good compromise between speed and quality of the results.
We compared these results with random samplings, and an
opposite strategy that clusters correlated agents together. We
showed that the coalitions resulting from our algorithm are
able to provide more power to the grid with a lower volatility.
Because of their better production over volatility ratios, these
coalitions will tend to use less storage and waste less energy
than more unstable coalitions. Because in real situations,
agents are prone to failure, resilience is also an important
criterion for the quality of the aggregations. We therefore
studied how the coalitions remain on the market when their
agents fail randomly. We showed that, in this situation, the
coalitions resulting from our algorithm better withstand losses
of agents. A possible direction for future work could be to use,
in addition to real weather data, data from energy markets and
aggregators’ portfolios as to propose a prosumer aggregation
model closer to real conditions.
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