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Abstract: 

The world surrounding us has become 
increasingly technological. Nowadays, the 
influence of automation is perceived in each 
aspect of everyday life. If automation makes 
some aspects of life easier, faster and safer, 
empirical data also suggests that it could have 
negative performance and safety consequences 
regarding human operators, a set of difficulties 
called the “out-of-the-loop” (OOTL) 
performance problem. However, after decades 
of research, this phenomenon remains difficult 
to grasp and counter. In this paper, we propose 
a neuroergonomics approach to treat this 
phenomenon. We first describe how 
automation impacts human operators. Then, 
we present the current knowledge relative to 
this OOTL phenomenon. Finally, we describe 
how recent insights in neurosciences can help 
characterize, quantify and compensate this 
phenomenon.  
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1 The problem with automation 

Progress in automation technology has 
profoundly changed our modern society. 
Almost all aspects of our lives are impacted 
while even more radical changes are expected 
in the future with increasing computer 
performances. The way such developments 
will shape the future is not entirely clear, but 
the inexorable drive toward even more 
automation will continue.  

What is clear at the moment is that automation 
makes some aspects of life safer, easier and 
faster. It leads to superior productivity and 

efficiency. Wiener and Curry (1980) depicted 
the image of automation as follows:  

“Quiet, unerring, efficient, totally 
dependable machines, the servant of 
man, eliminating all human error, and 
offering a safe and cost-effective 
alternative to human frailty and 
caprice. The traditional dream of 
traditional engineers has been to 
solve the problem of human error by 
eliminating its source.”  

This fascination regarding the possibilities 
afforded by technology often obscures the fact 
that automation has profoundly changed the 
nature of human work. Understanding the 
characteristics and the dynamics of this 
transformation is vital for successful design of 
new automated systems. 

From manual control to supervisory control 

Adding “automation” has been considered for 
a long time as a simple substitution of human 
activity for machine activity (substitution 
myth, see Woods & Tinapple, 1999). 
Unfortunately, such assumption corresponds to 
a vague and bleak reflection of the real impact 
of automation: automation technology 
transforms human practice and forces people to 
adapt their skills and routines (Dekker & 
Woods, 2002). Particularly, whereas the 
human operator was initially involved in 
manual control functions including process 
planning, decision making, selecting responses 
and implementing strategies, he is now 
relegated to the role of passive information 
processor. He has to monitor the actions of the 
system, to understand these actions, to watch 
for deviations and failures, and to take over 
when necessary (Moray, 1986; Sheridan & 
Verplank, 1978). There is no denying that such 
transformation underlines a certain irony since 
designers who try to eliminate the operator still 
leave the operator to do the tasks designers 
cannot automate (see Bainbridge, 1983). 
Moreover, as pointed out by Flemisch and 
colleagues (2012), in addition to control, 
authority, ability and responsibility are also 
modified according to the level of automation 
within the human–machine system. 

This new form of interaction between humans 
and machines produced new loads and 
difficulties for the humans responsible for the 
operating systems. Especially, empirical data 
suggest that these changes have many negative 
performance and safety consequences 
associated with it stemming from the human 



out-of-the-loop (OOTL) performance problem 
(e.g. Billings, 1991; Endsley & Kiris, 1995; 
Kaber & Endsley, 1997; Sarter & Woods, 
1995; C. Wickens, 1992; Wiener & Curry, 
1980). For decades, this OOTL performance 
problem has appeared as a critical issue for 
system designers. In this article, we aim at 
reviewing the current knowledge about this 
phenomenon, the limits of the current approach 
and the potential benefits to integrate recent 
insights in neuroscience to progress in its 
comprehension.  
 

2 OOTL: a well-known phenomenon? 

The OOTL phenomenon corresponds to a 
deterioration of the operator’s performance 
when interacting with highly automated 
system. The terms “total confusion” (Bureau 
d’Enquête et d’Analyse, 2002, p167; National 
Transport Safety Board, 1975, p17), “surprise 
effect” (Bureau d’Enquête et d’Analyse, 
2012a, p10, 2016, p44) or “no awareness of the 
current mode of the system” (Bureau 
d’Enquête et d’Analyse, 2012b, p178) indicate 
a similar process—a mental state in which the 
operator has lost his or her situation awareness 
and is not able to monitor the system 
efficiently. At an operational level, the OOTL 
performance problem induces a performance 
decrease whenever trying to transfer manual 
control over the system. Amongst other 
problems, an operator who is OOTL might 
take longer or be completely unable to detect 
an automation failure, decide if an intervention 
is needed, and find the most adequate action. 
In the current context of the continued increase 
in automation, understanding the sources of 
human–system interaction difficulties is 
crucial. 

2.1 Becoming Out-Of-The-Loop 

The control theoretical perspective is a useful 
concept when considering human-machine 
systems, particularly for understanding when 
and how control can be lost, which is highly 
undesirable in safety critical systems. The 
concept of control can be seen as a control 
loop in the light of Neisser’s perceptual cycle 
(Neisser, 1976). As human beings we perceive 
through our senses, analyze and make 
decisions via cognitive functions and act using 
our limbs. Importantly, humans act upon 
feedback from previous events and perceptions 
and are thereby always part of several control 
loops simultaneously. More precisely, in the 
language of control theory, a system has a 
desired state, means for adjusting the system 

toward that desired state, and then, a feedback 
loop, in which the actual state of the system is 
compared with the desired state, so that 
additional correction can be performed if there 
is a mismatch. The combination of this control 
plus feedback is called the control loop, and 
when a human is manually operating the 
equipment, the human is an essential element 
of the control loop hence the saying: “the 
person is in the loop”. On the other hand, when 
a high level of automation is implemented, the 
automation takes care of the lower level 
actions and the human operators simply 
watches over the system, presumably ever-alert 
for deviations and problems. In other words, 
operators are relegated to passive information 
processors: they are “out of the loop”. 

To summarize, the OOTL phenomenon 
corresponds to a lack of control loop 
involvement of the human operator. 
Automation technology has created an 
increasing distance between the human 
operator and the loop of control, disconnecting 
him from the automation system. Such a 
removal leads to a decreased ability from the 
human operator to intervene in system control 
loops and assume manual control when needed 
in overseeing automated systems (see 
following sections).  

Interestingly, automation has been shown to 
impact operators’ information acquisition, 
information analysis, decision making, and 
action (Parasuraman & Wickens, 2008). Thus, 
a major issue in implementing automation 
relies on its impact on operator situation 
awareness (SA). During the last decades, a 
large body of research has been dedicated to 
this issue. The following section aims at 
reviewing briefly the main results obtained.  

2.2 Situation awareness and OOTL 

Situation awareness (SA) can be thought of as 
an internalized mental model of the current 
state of the operator’s environment (Endsley, 
2016). Interestingly, the loss of situation 
awareness underlies a great deal of the out-of-
the-loop performance problem (for a recent 
review, see Endsley, 2017; Parasuraman & 
Wickens, 2008). Particularly, OOTL 
phenomenon is characterized by both a failure 
to detect and to understand the problem, and 
by difficulties to find appropriate solutions. 

Several works indicate a lack of operator 
awareness of automation failures and a 
decrease in detection of critical system state 
changes when involved in automation 



supervision (Endsley & Kiris, 1995; Metzger 
& Parasuraman, 2001; Parasuraman & Riley, 
1997; C. Wickens, 1992). As an illustration, 
Galsterand colleagues (2001) found that 
passive monitoring with airborne control of 
aircraft separation, which would be the case 
under mature Free Flight, led to a marked 
decrease in conflict detection performance by 
Air Traffic Control officers (ATCos) under 
high traffic load. At the same time, when 
acting as monitors of an automated system, 
operators are usually slow in detecting system 
failure (Endsley, 1996). For example, Willems 
and Truitt (1999) found that under passive 
monitoring, response times to questions 
probing traffic awareness became longer, and 
recall of data blocks poorer with increasing 
traffic load.  

In addition to the degradation in detecting an 
issue occurred and needs an intervention, 
operators may encounter difficulties to develop 
sufficient understanding of the situation in 
order to overcome the problem (for a meta-
analysis, see Onnasch, Wickens, Li, & 
Manzey, 2014). For example, Wickens and 
Kessel (1979, 1981) highlighted longer system 
recovery times and poor response accuracy for 
operators who had been removed from control 
loops before critical events requiring 
intervention. This delay may avoid operators to 
carry out all the tasks they are required to 
perform or lower the effectiveness of actions 
taken. Furthermore, during failure modes, 
operators who have been removed from the 
system control may not know what corrective 
actions are needed to stabilize the system and 
bring them back to control. Various examples 
of incidents and accidents resulting from these 
system misunderstandings have been reported 
in the literature (Billings, 1997; Funk et al., 
1999; Sarter & Woods, 1995). 

“Automation surprises” are a direct 
instantiation of these difficulties in automation 
understanding and take-over situations (Sarter, 
Woods, & Billings, 1997). Automation 
surprise is said to occur when the automation 
behaves in a manner different from what the 
operator expects (Palmer, 1999). When 
interacting with automated systems, human 
operators will develop a mental model of the 
system’s behavior and use it to anticipate how 
the machine will behave in the near future. 
However, with the increase of the system 
complexity (for example, the multiplication of 
the number of “modes”), it is sometimes 
difficult for the human operator to track the 
evolution of their automated partners. This can 

result in situations where the operator is 
surprised by the behavior of the automation, 
and as consequence, he asks questions such as: 
“what is it doing now?”, “why did it do that?” 
or “what is it going to do next?” (Wiener, 
1989). These “automation surprises” are 
particularly well documented (e.g. Degani & 
Heymann, 2000; Palmer, 1995; Sarter & 
Woods, 1994, 1995) and have been listed as 
one of the major causes of incidents on the 
civilian aviation (see for example FAA, 1995).  

These previous studies indicate a lower level 
of situation awareness when people operate as 
monitors of automated systems (for a recent 
illustration, see Dao et al., 2009). Several 
factors – vigilance decrement, complacency, 
system opacity – could contribute in this 
degradation. In the following section, we will 
introduce these different factors summarizing 
the main points for each one.  

2.3 Factors impacting SA in the context of 
automation 

2.3.1 Vigilance decrement 

As previously explained, automation 
technology has profoundly changed the human 
role. This new role leads to an increasing 
demand for the pilot to monitor systems for 
possible failures. Consequently, vigilance has 
become a crucial component of human 
performance in many work environments 
where automated systems are common.  

Vigilance, or sustained attention, denotes the 
ability to sustain attention to a task for a period 
of time in order to detect and respond to 
infrequent critical events (Davies & 
Parasuraman, 1982; Warm, Parasuraman, & 
Matthews, 2008). A typical finding in human 
factors is the existence of a decrease of human 
operator vigilance in case of interaction with 
highly automated system (see for example 
O’Hanlon, 1981; Wiener, 1988; Strauch, 
2002).  

Several factors could explain such difficulties. 
One unintended consequence of automation for 
human operators is boredom. Indeed, highly 
automated environments require maintaining 
high levels of vigilance during a long period of 
time. In many cases, operators’ processes are 
reduced to monitoring activities, waiting for 
the unlikely system anomaly. Resulting 
boredom increases the likelihood of operators’ 
distraction, which ultimately can affect system 
performance if operators miss or respond late 
to critical events. Numerous studies have 
confirmed that, at least during some phases of 



the flight, automation can indeed lower pilots 
workload and free up time (Casner, 2009; 
Roscoe, 1992; Wiener, 1989).  

Moreover, several studies show that sustained 
attention over hours cannot be achieved (e.g., 
Davies & Parasuraman, 1982, Matthews & 
Davies, 2001; Methot & Huitema, 1998). 
Research on vigilance suggests that time on 
task decreases significantly the ability to 
discriminate infrequent and unpredictable 
signals from a noisy background of no signals 
(Mackworth, 1948; Parasuraman, 1979; 
Teichner, 1974; Warm, 1984). For example, 
Thackray and Touchstone (1989) showed an 
increase in detection times of about 50% after 
one hour on task when students had to detect 
conflicts manually in a simplified version of an 
air traffic control task.  

This vigilance decrement has been largely 
discussed and several theories have been 
proposed (for a furnished discussion, see 
Warm, Parasuraman, & Matthews, 2008). 
Both change in vigilance level and 
deterioration of attentional mechanisms could 
cause a degradation of the monitoring process 
involved in supervisory tasks. This would 
eventually lead to decrease performance in 
failure detection and system understanding. 

2.3.2 Complacency  

Together with this difficulty to maintain high 
levels of vigilance in time, decrease in 
vigilance could result from an overreliance on 
automation, the so-called “complacency 
phenomenon” (see Parasuraman, Molloy, & 
Singh, 1993). Complacency defines the 
cognitive orientation towards highly reliable 
automation, especially prior to the first time it 
has failed in the user’s experience. Particularly, 
complacency is created as operators maintain 
beliefs that the technical system is more 
competent than it actually is (Lee, 2006). This 
overreliance on automation represents an 
important aspect of misuse that can result from 
several forms of human error, including 
decision biases and failures of monitoring 
(Wiener, 1988; Parasuraman, Molloy, & 
Singh, 1993; Parasuraman & Riley, 1997; 
Singh, Molloy, & Parasuraman, 1993). In 
particular, it has been showed that high levels 
of trust in automation which is not perfectly 
reliable lead to overreliance and failure to 
monitor “raw” information sources providing 
input to automation (see Parasuraman, Molloy, 
& Singh, 1993; Moray & Inagaki, 2000; Bailey 
& Scerbo, 2007; Bagheri & Jamieson, 2004; 
Metzger & Parasuraman, 2005; Wickens, 

Dixon, Goh, & Hammer, 2005; Lorenz, Di 
Nocera, Roettger, & Parasuraman, 2002; 
Manzey, Bahner, & Hueper, 2006). In extreme 
cases, the operator no longer actively processes 
information to maintain an awareness of the 
system state, diminishing his or her ability to 
recover from automation failure. Interestingly, 
these findings have been modeled 
computationally (Farrell & Lewandowsky, 
2000; Wickens & Dixon, 2007). 

2.3.3 System Opacity 

A third factor related to automation could 
impact operator’s SA, namely the system 
opacity. Whatever the merits of any 
automation technology, adding or expanding 
the machine’s role changes the cooperative 
architecture, in turn changing the human’s role 
often in profound ways (Sarter, Woods, & 
Billings, 1997). Creating partially autonomous 
machine agents is, in part, like adding a new 
team member. One aftermath is the 
introduction of new coordination demands and 
the emergence of new classes of issues due to 
failures in the human-machine relationship.  

Particularly, the role of passive information 
processor involves observing the actions of 
other operators or computer controllers and 
agreeing or disagreeing with them. In this 
condition, understanding the actions of the 
automated system is essential for human 
operator. However, as previously discussed 
with the concept of “automation surprise”, 
such understanding is difficult to obtain. The 
lack of system predictability is certainly a 
central point in understanding OOTL 
phenomenon and associated takeover 
difficulties (Norman, 1990; Christoffersen & 
Woods, 2000; Dekker & Woods, 2002; Klein, 
Woods, Bradshaw, Hoffman, & Feltovich, 
2004). With the progress of the technology, 
current complex systems tend to develop 
cascades and runaway chains of automatic 
reactions that lower, or even eliminate 
predictability and cause outsized and 
unpredicted events (Taleb, 2012). This is what 
we may call “system opacity”: the difficulty 
for a human operator to have a clear idea of the 
system’s intentions and to predict the sequence 
of events that will occur. In this sense, the 
main problem with automation is not the 
automation itself, but rather its inappropriate 
design within the human-computer interaction 
(Norman, 1990). For example, previous studies 
have shown that ATCo performance can be 
compromised when they do not have readily 
access to aircraft intent information (Castaño 



& Parasuraman, 1999; Galster, Duley, 
Masalonis, & Parasuraman, 2001).  

This issue of cooperation amongst team 
(and/with automates) has led research on 
(team) performance and situation awareness 
investigating how computer might support 
collaboration between operators. This line of 
research has provided interesting concepts and 
methods: shared SA (Endsley, 1995; Salas et 
al. 1995; Bolstad and Endsley 2000; Nofi 
2000), situated SA (Chiappe et al. 2012; 
Chiappe, Strybel, & Vu 2012; Durso et al. 
1999), distributed cognition framework 
(Hutchins, 1995; Stanton, 2016), adaptive 
automation (see Miller & Parasuraman, 2007). 
These works have brought different human 
factors/ ergonomics (HF/E) principles as a 
solution for better team play. As an illustration, 
we can mention the work of Dekker & Woods 
(2002) who proposed several principles to 
shape how information about automation and 
the processes in controls are displayed to the 
operator to enhance human-automation 
teaming: highlighting changes, displaying 
future projections, and visually integrating 
information (ecological displays, see also 
Parasuraman et al, 2000). As stated by Bannon 
(Bannon, 1991), “what was required was a 
better cognitive Coupling between the human 
and the new universal machine, the computer, 
and not simply better designed surface 
characteristics of displays.” Another 
illustration refers to the function allocation 
framework (see Gaines, McCarthy, Fallon, & 
Bannon, 2000, for a recent review) which aims 
at thinking about partial automation, i.e. 
systems in which the delivery of a system 
function is performed by a combination of 
human and automated activities. Particularly, 
several works proposed intermediate levels of 
automation (LOAs) for maintaining operator 
involvement in complex systems control and 
increase situation awareness (see for example 
Kaber & Endsley, 2004).  

As illustrated in the previous sections, interest 
of the scientific community towards OOTL 
phenomenon has grown during the last 
decades. However, after decades of research, 
this phenomenon remains difficult to grasp and 
counter and recent tragic accidents remind us 
the difficulty for human operators to interact 
with highly automated systems. Moreover, 
with the development of autonomous cars, 
which should come onto our roads in a few 
years, everyone (not only expert operators) 
could be concerned by such difficulties. As 
previously presented, automation technology 

has the potential to dramatically change the 
way we interact with our environment. This 
transformation clearly raises question 
concerning the place of the human operator 
with future technological systems. Dealing 
with these different issues is a necessary step 
to make future systems safer, more reliable, 
and more usable. 

In this paper, we support the idea that 
neurosciences can help improve our 
comprehension of the OOTL performance 
problem and to develop new methodologies for 
mitigating its negative impact. We assume that 
recent progresses in neurosciences can bring 
new perspectives to think about OOTL 
phenomenon and bring innovative 
contributions to characterize, quantify and 
compensate this critical phenomenon in near 
future. 

3 Beyond the current approach of the 
OOTL phenomenon: a 
neuroergonomics approach 

As previously detailed, cognitive engineering 
literature has discussed at length the OOTL 
phenomenon and the implication of different 
mechanisms in its emergence. SA, vigilance 
decrement, complacency and human machine 
misunderstanding are different 
concepts/constructs used to explain these 
difficulties in human automation interaction.  

Certainly, these different concepts have been 
useful in understanding human-system 
performance in complex work environments. 
In contrast to Dekker and colleagues (Dekker 
& Hollnagel, 2004; Dekker & Woods, 2002), 
we do not deny the scientific viability of these 
constructs, nor their diagnostic value in 
assisting HF/E practitioners to formulate 
specific solutions when any of the three 
constructs suggests suboptimal human-system 
interaction (for an interesting discussion, see 
Parasuraman, Sheridan, & Wickens, 2008).  

However, we agree that these constructs lack a 
level of detail and thus fail to fully account for 
a psychological mechanism needed to connect 
features of the sequence of events to the 
outcome (Endsley 1999). Billings nicely 
pointed this deficit 20 years ago: 

 ‘‘The most serious shortcoming of the 
situation awareness construct as we 
have thought about it to date, 
however, is that it’s too neat, too 
holistic and too seductive. We heard 
here that deficient SA was a causal 



factor in many airline accidents 
associated with human error. We must 
avoid this trap: deficient situation 
awareness doesn’t cause anything. 
Faulty spatial perception, diverted 
attention, inability to acquire data in 
the time available, deficient decision-
making, perhaps, but not a deficient 
abstraction!’’ (Billings 1996) 

Two decades later, these different constructs 
have been partly linked to information 
processing or other psychological processes 
(for SA, see Durso et al., 2007; for trust, see 
Lee & Lee, 2004), but it remains that the 
underlying cognitive mechanisms of the OOTL 
phenomenon remains largely unknown. The 
neuroergonomics approach of this 
phenomenon could introduce new tools and 
models to think about human-automation 
interaction.  

Neuroergonomics is the study of brain and 
behavior at work. This interdisciplinary area of 
research and practice merges the disciplines of 
neurosciences and ergonomics in order to 
maximize the benefits of each. 
Neuroergonomics uses existing and emerging 
models in neurosciences to design technologies 
and work environments for safer and more 
efficient operations. Here, we propose to use 
the recent insights in neuroscience to 
understand changes induced by automation. 
Note that we propose to focus on the cognitive 
mechanisms involved in monitoring tasks, as 
the degradation of the monitoring performance 
appears as the first concern in the OOTL 
phenomenon.   

With this in mind, we will introduce in turn 
three neuroscientific concepts, namely, the 
Performance Monitoring function, the Mind 
Wandering and the Sense of Agency. We will 
explain how these different concepts are 
related to the OOTL phenomenon and how 
they open new perspectives to characterize, 
monitor and compensate it. 
 
3.1 The performance monitoring function 

One important behavioural aspect of the OOTL 
performance problem is reflected in an 
insufficient monitoring and checking of 
automated functions, i.e., information on the 
status of the automated functions is sampled 
less often than necessary (see for example 
Kaber & Endsley, 1997).  As an illustration, 
various works indicate a decreased ability to 
detect critical system state changes when 

involved in automation supervision (for a 
review see Endsley & Kiris, 1995).. 

At the neurocognitive level, performance 
monitoring (PM) is defined as “[…] a set of 
cognitive and affective functions determining 
whether adaptive control is needed and, if so, 
which type and magnitude is required.” 
(Ullsperger, Danielmeier, & Jocham, 2014). 
This cognitive function is used both for 
monitoring of our own action, but also for the 
actions of another agent or a system. We 
assume that the recent insights about the 
anatomical substrate of this process (see for 
example Bonini et al., 2014) can help 
characterize the degradation of the quality of 
the monitoring involved in OOTL 
phenomenon.  

In particular, evidence from neuroimaging, 
EEG, and invasive recordings in humans and 
nonhuman primates converge on the currently 
widely accepted view that the PM function is 
implemented by a cortico-subcortical network 
connected to the posterior medial frontal cortex 
(pMFC). Since the discovery of the error-
related negativity (ERN) and the error 
positivity (Pe; Falkenstein, Hohnsbein, 
Hoormann, & Blanke, 1991), several further 
temporally and topographically defined event-
related potentials (ERPs) have been linked to 
performance monitoring at different stages of 
goal-directed behaviour (i.e., the feedback-
related negativity or FRN, the prediction error 
potential or PE, the stimulus preceding 
negativity or SPN, the lateralized readiness 
potential or LRP and so on). Each of these 
signals could be considered as a physiological 
marker of response-monitoring processes in 
case of self-monitoring. Nowadays, the myriad 
of studies in different research fields dedicated 
to goal-directed behaviour allows to have a 
wide understanding of this neurophysiological 
system and its specific components. Self-PM 
seems to be quite well understood in theory 
and is applied in several contexts (aviation: 
Shappell et al., 2007; medicine: Taylor, Stern, 
& Gehring, 2007).  

More recently, several authors have tried to 
expand those results to the monitoring of 
others’ performance, i.e. another agent, human 
or artificial. Indeed, by observing others, we 
are able to learn from their mistakes (like 
babies learn by observing their parents) in 
accordance with the reinforcement-learning 
theory (RL, Holroyd & Coles, 2002). Some 
studies suggest that observation of our own 
errors (error execution monitoring) and ones of 



others (error observation monitoring) would 
involve the performance monitoring system in 
the same way (Carp, Halenar, Quandt, Sklar, & 
Compton, 2009; Jääskeläinen et al., 2016; 
Koban, Pourtois, Vocat, & Vuilleumier, 2010; 
Miltner, Brauer, Hecht, & Trippe, 2004; van 
Schie, Mars, Coles, & Bekkering, 2004; Yu & 
Zhou, 2006 to cite a few). However, this is still 
under debate. Moreover, several authors 
addressed the question of a similarity in the 
cognitive processes involved in the supervision 
of human and artificial agents, and some have 
even found the same type of ERPs (i.e. an 
observational ERN and Pe – oERN, oPe –  and 
a LRP) and the same neural activation (i.e. in 
the pMFC) than in self-PM (Padrão, Gonzalez-
Franco, Sanchez-Vives, Slater, & Rodriguez-
Fornells, 2016; Pavone et al., 2016; Ullsperger, 
Nittono, & von Cramon, 2007). As an 
illustration, Padrão and colleagues (2016) 
studied system failure through the use of 
virtual reality avatar embodiment. In their 
study, participants had to perform a task (i.e. 
goal-directed behaviour), and their virtual 
reality avatar performed the same movements. 
However, on several occasions the system was 
wrong and the avatar performed an erroneous 
action creating a system failure. 
Electrophysiological recording showed PM 
activity at fronto-central locations, similar to 
self-PM, but delayed. Likewise, Gentsch and 
colleagues (2009) studied system malfunctions 
by adding loose contacts on the participants’ 
response button. The brain activity recording 
showed again PM activity with fronto-central 
activation and observational PM ERPs.  

Our hypothesis is that the OOTL performance 
problem is linked to the degradation of this PM 
function characterized by a decrease of the 
pMFC activity (decrease of the amplitude and 
/or increase in the latency of the ERPs related 
to the PM activity). As the OOTL phenomenon 
leads to a decreased ability to monitor the 
automated system and detect its errors, 
deciphering the neural correlates of other’s PM 
and how they can be degraded could permit to 
understand and maybe counter the OOTL 
phenomenon (see Somon, Campagne, 
Delorme, & Berberian, 2017 for a review on 
this subject). A few authors have started to 
raise this concern, and looked at the impact of 
various factors (mind-wandering: Kam et al., 
2012; time on task: Thomson, Seli, Besner, & 
Smilek, 2014) on PM components. As an 
illustration the FRN was found reduced during 
mind-wandering periods compared to on-task 
periods in the study of Kam and colleagues 

(2012). Such results could help to 
characterize one aspect of the OOTL 
phenomenon at a physiological level. 
Furthermore, this degradation of the 
performance monitoring activity could serve as 
a physiological marker of the OOTL 
phenomenon. 

Nevertheless, several limits still remain. 
Firstly, most studies on system supervision use 
easy laboratory tasks, which are not ecological 
at all and cannot be compared to the type of 
supervision we can find in human-system 
interactions with highly automated processes. 
Then, nearly all studies which have been 
performed require actions from the 
participants. Yet, one of the problematic of 
system supervision and the OOTL 
phenomenon is that operators are most often 
asked to passively supervise the system, 
without requiring any actions. Finally, the 
neural correlates of the PM activity are 
currently measured through the repetition of 
several identical trials which are then averaged 
to increase the statistical validity of the results. 
A huge amount of data is usually needed to 
detect the ERPs and their neural generators. 
This type of configuration is not feasible in an 
everyday life situation (for a broader 
description of the limits of system PM 
measures, see Somon et al., 2017). 

3.2 The Mind Wandering phenomenon 

We have previously argued that vigilance 
failure is a key component of OOTL situations 
(Amalberti, 1999; Sarter and Woods, 1995b). 
Reports of incidents in aviation have notably 
illustrated the role of vigilance failure in 
human error. For example, Mosier et al. (1994) 
examined NASA’s Aviation Safety Reporting 
System (ASRS) database and found that 77% 
of the incidents in which over reliance on 
automation was suspected involved a probable 
vigilance failure. Similarly, Gerbert and 
Kemmler (1986) studied German aviators’ 
anonymous responses to questionnaires about 
automation related incidents and reported 
failures of vigilance as the largest contributor 
to human error. Nowadays, there is some 
consensus for the existence of a degradation of 
human operator vigilance in interaction with 
highly automated system. 

Vigilance refers to the ability of organisms to 
maintain their focus of attention and to remain 
alert to stimuli over prolonged periods of time 
(Davies & Parasuraman, 1982; Parasuraman, 
1986; Warm, 1984a, 1993). Traditionally, the 
vigilance decrement was thought to be caused 



by a decline in arousal brought about by the 
under stimulating nature of vigilance tasks 
(Frankmann & Adams, 1962; Heilman, 1995; 
Loeb & Alluisi, 1984; Welford, 1968). 
According to that view, repetitious and 
monotonous aspects of vigilance tasks 
suppress activity in brain systems necessary to 
maintain continued alertness. As a result, the 
efficiency with which signals are detected is 
reduced. Numerous studies have confirmed 
that, at least during some phases of flight, 
automation can indeed help lower pilot 
workload and free up time (Casner, 2009; 
Roscoe, 1992; Wiener, 1989).  

Parasuraman and Davies (1977; see also 
Parasuraman, 1976, 1979) have proposed a 
different explanation of this vigilance failure, 
the attentional resource theory (see Fisk & 
Scerbo, 1987; Fisk & Schneider, 1981; 
Kahneman, 1973; Wickens, 1984). In this 
context, vigilance tasks are thought to impose 
considerable mental workload (Helton and 
Warm, 2008; Warm et al., 1996, 2008) and the 
vigilance decrement reflects the depletion of 
information processing resources or 
information-processing assets which cannot be 
replenished in the time available.  

These two different interpretations of the 
vigilance failure point to a decrease in the 
degradation of the brain activity underlying the 
vigilance mechanisms. We propose another 
perception of this vigilance decrement issue 
based on the relation between OOTL 
phenomenon and Mind Wandering (MW) 
episodes. MW is the human mind’s propensity 
to generate thoughts unrelated to the task at 
hand (Christoff, 2012; Stawarczyk et al., 
2012). This phenomenon has three major 
features: it is experienced by everybody 
(Killingsworth and Gilbert, 2010), it influences 
our perception and processing of external 
stimuli (He et al., 2011), and it can take place 
either intentionally or unintentionally (Seli et 
al., 2016; Smallwood and Schooler, 2006). In 
brain imaging studies, MW is characterized by 
the activation of the Default Mode Network, a 
widely distributed brain region comprised of 
medial prefrontal cortex and the posterior 
cingulate cortex (Christoff, 2012; Christoff et 
al., 2009a; Konishi et al., 2015; Mason et al., 
2007). Even though MW is thought to facilitate 
prospection, introspection and problem solving 
(Smallwood and Schooler, 2006), performance 
drops in numerous tasks has been observed 
during MW episodes (Bastian and Sackur, 
2013; Berthié et al., 2015; Casner and 
Schooler, 2013, 2015; Galera et al., 2012; He 

et al., 2011; Schad et al., 2012; Yanko and 
Spalek, 2014). Several aspects outline a 
possible role of MW in OOTL in highly 
reliable automated environments (for a review, 
see Gouraud, Delorme, & Berberian, 2017a). 

First, MW is by definition associated to 
decreased vigilance (Oken et al., 2006; 
Braboszcz & Delorme, 2011). The MW 
phenomenon diverts attention from immediate 
goals (Golchert et al., 2016; Seli et al., 2016). 
An individual who is MW is, at least, partly 
decoupled from his or her environment and 
shows little to no reaction to external stimuli 
(Schooler et al., 2014).  Although the processes 
behind this vigilance drop are debated (McVay 
and Kane, 2009), MW has been proposed as a 
relevant measure of the vigilance decrement 
(see for example Farley et al., 2013). 

Moreover, MW is known to occur in 
monotonous or boring environments, where 
operators struggle to keep a high vigilance 
levels. Particularly, MW is more likely if the 
subject is at rest or performing less demanding 
tasks, such as reading, driving on a familiar 
route or piloting an airplane with autopilot 
engaged (Eastwood et al., 2012). Several 
studies by Cheyne, Carriere and Smilek 
(Carriere et al., 2008; Cheyne et al., 2006) 
point a relation between MW and boredom. 
Using questionnaires, they found a significant 
increase in everyday attentional failures for 
individuals more prone to boredom. MW 
might actually help to cope with boredom 
(Schooler et al., 2014). Interestingly, 
Cummings et al. (2015) recently warned about 
a possible increase in boredom when 
integrating higher levels of automation. In that 
sense, it is not surprising that time spent on 
task also increases MW (McVay and Kane, 
2009; Smallwood et al., 2006; Thomson et al., 
2014).  

Finally, it has been established that MW 
creates a sensory attenuation (Blanchard et al., 
2014; He et al., 2011), lowers processing of 
external information (Braboszcz and Delorme, 
2011; O’Connell et al., 2009) and decreases 
performances (Schad et al., 2012; Smallwood 
et al., 2008; Feng et al., 2013).  

All of those aspects pose potential threats for 
any critical task requiring sustained attention. 
Studies point MW as a possible cause of many 
driving accidents (Galera et al., 2012), plane 
crashes (Casner and Schooler, 2013) and 
medical errors (van Charante et al., 1993). 



Recently, a link between automation and MW 
has been proposed. Casner and Schooler 
(2014) conducted a study where pilots were 
instructed to handle the approach – flight phase 
before landing – in a simulator by following 
beacons at altitudes given by the ATCo. Probes 
inquired about their state of mind at 
predetermined times while pilots had to report 
their position to the ATCo. They reported that 
when using higher levels of automation, pilots 
were more prone to MW when they had no 
interaction with the system and when the 
previous call had been made. Time saved by 
automation, which should normally be used to 
plan the flight, was instead fulfilled by task-
unrelated thoughts. Casner and Schooler 
(2014) highlighted the blurry situation of pilots 
left with spare time and no guidance about how 
to actively monitor the automation. This spare 
time could encourage operators to think about 
unrelated concerns, and drive them away from 
important matters such as their current position 
or the mode of the system.  

In a recent study, we have explored the impact 
of automation on mind wandering in an 
operational environment (see Gouraud, 
Delorme, & Berberian, 2017b). In this 
preliminary study, participants performed an 
obstacle avoidance task in manual and 
automated conditions in 2 sessions of 45 
minutes each. An unmanned air vehicle (UAV) 
depicted as a plane seen from above stayed at 
the center of a 2D radar screen and moved 
following waypoints with clusters of obstacles 
along the way (every 45s on average). The 
participants were instructed to control the 
movements of the UAV to avoid obstacles. 
Two conditions were proposed. The first one 
was the “manual” condition and required 
participants to manually avoid obstacles. The 
second condition was the “automated” 
condition. Participants were required to 
monitor the system avoiding obstacles. Both 
participants’ propensity to mind wander and 
oculometric measures were collected. 

Our results highlighted a significant influence 
of automation after 20 minutes of task over 
MW frequency. Particularly, MW frequency 
largely increases in time in the automated 
condition whereas no evolution is observed in 
the manual condition. Complacency could 
explain this interaction between time and level 
of automation regarding MW occurrence. 
Indeed, in our experiment, participants interact 
with highly reliable system (they encounter no 
error during the first three blocks). The 
absence of errors could lead participants to 

neglect the possibility of errors in the 
experiment. In this context, their perception of 
the required workload might evolve: as the 
automated system does not seem to require 
their attention to function properly, participants 
would redirect their cognitive resources 
towards more personal matters and mind-
wander more. The higher perceived workload 
in the manual condition at the end of the 
session supports our analysis. This position 
would introduce a third possibility within the 
overload/underload theory debate (Pattyn, 
Neyt, Henderickx, & Soetens, 2008; Warm et 
al., 2008). Although the task complexity does 
not change, the operator’s perception could 
evolve based on their trust in the system and 
their feeling toward the overall situation. This 
is in line with Casner and Schooler (2015), 
who demonstrated that cognitive resources 
freed by automation in peaceful situations are 
not allocated to task planning but rather to 
MW. Studies which observed MW increase in 
low probability signal environment (Berthié et 
al., 2015; Casner & Schooler, 2015; Galera et 
al., 2012) and with time on task (McVay & 
Kane, 2009; Smallwood, Baracaia, Lowe, & 
Obonsawin, 2003; Smallwood, Riby, Heim, & 
Davies, 2006) also support our results. Our 
analysis of complacency as an explanation is in 
line with the view of complacency as a 
multiple-task strategy (Bahner et al., 2008; 
Moray & Inagaki, 2000). Operators save 
cognitive resources allocated to the low-event 
automated task in order to perform better on 
another task, which is thought to be interesting 
or useful.  

The exact causal link remains still to be 
demonstrated. Far from being anecdotal, such a 
link would allow OOTL research to use 
theoretical and experimental understanding 
accumulated on MW. Up to now, MW 
physiological aspects are more understood than 
OOTL, while MW influence over the 
operator’sperformance is more precisely 
assessed. More interestingly, the large range of 
MW markers could be used to detect OOTL 
situations and help us to understand the 
underlying dynamics. As an illustration, 
Braboszcz and Delorme (2011) have recently 
studied the brain dynamics associated with 
mind wandering. They have shown that mind 
wandering episodes are associated with an 
increase in theta (4-7 Hz) and delta (2-3.5 Hz) 
EEG activity and a decrease in alpha (9-11 Hz) 
and beta (15-30 Hz) EEG activity (see Figure 
2). Others have pointed pupil size 
Grandchamp, Braboszcz, & Delorme, 2014), 



heart rate and skin conductance response 
(Smallwood, O’Connor, Sudbery, & 
Obonsawin, 2007) variations as potential 
markers of MW. Such physiological 
characterization could be used as 
physiological precursor of the OOTL 
phenomenon.  

An interesting approach could be the use of 
such pattern of activity as marker of OOTL 
phenomenon for adaptive automation. 
Designing systems capable of detecting and 
countering MW might highlight the reason 
why we all mind wander. Eventually, the 
expected outcome is a model of OOTL–MW 
interactions which could be integrated into 
autonomous systems. This system description 
echoes recent advances towards adaptive and 
communicative automation (Cassell and 
Vilhjálmsson, 1999; May and Baldwin, 2009). 
Adaptive systems could detect and react to 
operators’ state of mind, including mood, 
motivation, fatigue, or arousal. The signals 
sent, information displayed, and levels of 
automation could be adjusted by the system to 
maximize situation awareness and vigilance. 
These systems could detect MW and decide 
whether it should be stopped or allowed 
depending on the situation and the 
characteristics of the episode. Thus, the 
operator could benefit from MW’s advantages 
while having a reduced risk of experiencing 
OOTL issues. The benefits of keeping an 
operator always in the loop could demonstrate 
that humans can still be useful in safety 
favoring industries. 

The use of MW findings could be a huge step 
towards understanding and countering OOTL’s 
deleterious effects on human performance. 
However, many parts of MW remain largely 
unknown and could limit the transposition. For 
example, it is not clear whether MW is a 
binary state or a gradual mechanism yet. 
Cheyne et al (2009) proposed a three-level 
model of MW by postulating that response 
time degradation—slowing, anticipation and 
omissions—could each correspond to a 
different level. This hypothesis is empirically 
confirmed by our ability to perform everyday 
tasks accurately in spite of MW. For example, 
driving is still possible with MW (Lerner et al., 
2015; Qu et al., 2015) even though it does 
affect performance. Investigating this 
possibility will require changing paradigms. 
While the probes so far have asked the subject 
to report their state of mind in a binary fashion, 
we need to use a scale and compare its results 
to the evolution of psychophysiological 

markers. Another critical issue refers to our 
ability to detect MW in ecological 
environment. Probes, even though the most 
common measure of MW, remains intrusive 
measures difficult to apply in ecological task 
(Berthié et al. 2015). Moreover, real-time 
detection based on physiological signals is still 
difficult. Several classifiers has been proposed, 
using galvanic skin conductance (Blanchard et 
al, 2014), heart rate variability (Pham and 
Wang, 2015) or oculometric measure (Bixler 
and D’Mello (2014, 2015). However, the 
results obtained with these different classifiers 
are far from allowing us to detect all MW 
occurrences. These biomarkers are both, 
generally, non univocal to infer on human 
activity and difficult to acquire in ecological 
environment. Furthermore, the reliability and 
stability of these methods within and across 
individuals needs to be more rigorously tested 
(Wang et al., 2011; Christensen et al., 2012). 
To go further, multimodal classifiers and 
triangulation (of methods and data) should 
certainly be used. Finally, although using 
neuroimaging to monitor the participants’ 
attention seems promising, artifacts on the 
EEG signal make online processing difficult. A 
major issue concerns the detection and removal 
of artifacts in real time.  

3.3 The sense of agency 

As previously discussed, one result of 
automation is the introduction of new 
coordination demands and the emergence of 
new types of issues due to failures in the 
human-machine relationship. In this context, 
the main problem with automation is not the 
presence of automation, but rather its 
inappropriate design (Norman, 1990). Where 
designers really need guidance today is how to 
support the coordination between people and 
automation, not only in foreseeable standard 
situations, but also during novel, unexpected 
circumstances. In this sense, it was recently 
proposed that the key for designers is to 
“socialize our interactions with technology" 
(Norman, 2010). How to design collaborative 
agent has known a particular interest during 
the last years (Christoffersen & Woods, 2000; 
Klein & al, 2004; Hoc & Carlier, 2002, Hoc, 
2007; Zimmermann & al., 2014; Dragan, Lee, 
& Srinivasa, 2013). Here, we consider that the 
recent developments in the science of agency 
provide new conceptual tools and measures to 
analyze agent-system interactions. 

The mechanisms underlying the experience of 
intentional causation and the sense of control 



of our own actions are the first concern of the 
science of agency (Pacherie, 2007). In other 
words, agency corresponds to our capacity to 
make things happens, to change the world 
thorough our action. Interestingly, several 
authors argue for the existence of a 
spontaneous and pre-reflexive ‘we-identity’ 
formation that occurs when two humans are 
cooperating (Obhi & Hall, 2011; Crivelli & 
Balconi, 2010). This new agentive identity 
leads individuals to experience agency as soon 
as one of the two had performed a goal-
directed action. Then, in this particular context 
of joint actions, the sense of control does not 
rely anymore on the specific contributions of 
each individual but rather on the group 
performance. 

What makes our understanding of agency 
especially relevant is the fact that several 
studies related to agency in dyads tend to 
highlight a clear distinction between the sense 
of agency felt by an agent when he is 
interacting with another human versus with a 
machine (Glasauer, Huber, Basili, Knoll, & 
Brandt, 2010; Obhi & Hall, 2011b; Poonian & 
Cunnington, 2013; Sahaï, Pacherie, Grynszpan, 
& Berberian, 2017a; Wohlschläger, Engbert, et 
al., 2003; Wohlschläger, Haggard, et al., 
2003). Such difficulties to develop a sense of 
we-agency with artificial agents remain still 
without clear explanations. A better 
understanding of the role played by the sense 
of agency may therefore provide a useful 
framework for thinking about interactions with 
automated technology and particularly to 
optimize human-automation interaction.  

Although the mental processes contributing to 
the sense of agency are not fully understood at 
this time, the different approaches propose that 
we derive a sense of being the agent for our 
own actions by a cognitive mechanism that 
computes the discrepancies between the 
predicted consequences of our own actions' 
and the actual consequences of these actions, 
just as action control models (see Blakemore, 
Wolpert, & Frith, 2002; Wegner, 2002). 
Interestingly, it has been proposed that the 
cognitive mechanisms that are involved in the 
sense of agency during individual actions are 
of the same kind as those that underlie the 
sense of agency during joint-actions of other 
humans (Pacherie, 2012). In these different 
models, prediction appears as a first concern 
for the experience of agency during our 
interactions with peers (for a review, see Sahaï, 
et al., 2017a). Particularly, it has been assumed 
that before action execution (self-generated or 

observed other-generated), the mirror system 
could simulate the motor command so that the 
simulation content can be used to predict the 
consequences of the action, enhancing action 
control or implicit action understanding 
(Pacherie & Dokic, 2006). More specifically, 
this kind of motor simulation supports our 
understanding of the low-level motor 
intentions of others, i.e., the type of action he 
or she is doing (Rizzolatti, Fogassi, & Gallese, 
2001), and also our understanding of others' 
higher-level prior intentions, i.e., why he or 
she is doing this action (Iacoboni, et al., 2005). 

Impairment in prediction of artificial agent 
behaviors has been proposed as a potential 
contributor of the difficulty to develop joint 
agency when interacting with machines. The 
existence of deep discrepancies between the 
robot real state and the operator’s perception of 
its state is well documented (Norman, 1990). 
In particular, while humans are typically able 
to represent the actions of their human partners 
and engage themselves in successful human 
interactions, they experience difficulties in 
mirroring and fitting with machine-generated 
actions (Kuz et al., 2015; Obhi & Hall, 2011b; 
Wohlschläger, Engbert, & Haggard, 2003; 
Wohlschläger, Haggard, Gesierich, & Prinz, 
2003).  

To illustrate such difficulties, we have recently 
investigated the Simon Social effect when 
engaged in a human-machine interaction 
(Sahaï, Pacherie, Grynszpan, & Berberian, 
2017b). The standard Simon effect refers to the 
interference effect that occurs when an 
individual has to respond with the right or left 
hand to a stimulus presented in an incongruent 
mapping location compared to a congruent 
mapping location (Simon & Small, 1969). A 
conflict occurs because two actions 
representations (i.e. the correct action to 
perform and the spatially-induced automatic 
activated action) are activated and the 
participant has to solve the conflict in order to 
select the accurate behavior. Using a joint 
Simon task, Sebanz, Knoblich, & Prinz, (2003) 
have found evidence of a social Simon effect, 
suggesting that during joint actions, actions of 
others are represented in our own motor plan 
(Sebanz, Knoblich, & Prinz, 2003). This 
paradigm has been replicated by Sahaï and 
colleagues (2017) with a human confederate 
versus a desktop computer partner. 
Interestingly, the authors found a compatibility 
effect (faster reaction times for the compatible 
trials compared to the incompatible trials) only 
in case of human confederate, thus supporting 



the idea that the presence of artificial agent 
lead to an impairment in prediction. In 
addition, the results show that this impairment 
go along with a decrease in joint-agency in 
case of the human-machine interaction in 
comparison to the human-human interaction. 
In other words, it seems that the automatic 
representation of the partner’s action does not 
appear when we interact with an automated 
artificial agent. Consistently, using an aircraft 
supervision task with different autopilot 
settings, it has been shown that both at the 
implicit and explicit levels, individuals’ sense 
of agency drastically decrease when the 
automation level is extended (Berberian, 
Sarrazin, Le Blaye, & Haggard, 2012).  

The question remains how system designers 
could compensate this impairment in 
prediction of artificial agent behaviors. In this 
context, we assume that the implementation of 
biological motion laws in anthropomorphic 
robot could be an interesting option. Indeed, 
such implementation could allow a better 
implicit understanding of the machines’ 
actions thanks to observer’s action/observation 
matching system, with the help of his or her 
own motor experience. Considering that 
operators interpret the intentions and the action 
outcomes of a system with their own 
"cognitive toolkit", to implement human-like 
motions in robot can make it easier for humans 
to predict the machine actions. As prior 
intentions are embodied in kinematics, by 
simulating observed other-generated actions, it 
is possible to understand what the observed 
agent intends to do with the help of our own 
motor experience (Georgiou, Becchio, Glover, 
& Castiello, 2007; Iacoboni et al., 2005). In 
addition to make automated systems more 
predictable (i.e. to optimize intention 
understanding from early action observation), 
maximizing action legibility (i.e. to facilitate 
action reading from kinematics) might be 
another requirement for machine-generated 
action better understanding (Dragan, Lee, & 
Srinivasa, 2013). Finally, even though 
knowledge from social robotic research keep 
trying to understand how to optimize the 
interactions between social robots and humans, 
investigations about the sense of agency during 
these joint actions are still missing. Optimizing 
human robot interaction is a crucial issue for 
the design of future technological systems 
given that humans will be increasingly 
involved in tasks where they need to interact 
with highly automated environment. The 
science of agency can help a better 

comprehension about how individuals can 
have a sense of control over these automata. 

  

4   Conclusion 

In the past decades, automation has become 
increasingly present in our daily life. This 
evolution has dramatically changed the nature 
of human work and induced many safety and 
performance issues associated with it 
stemming from the human out-of-the-loop 
performance problem. Understanding the 
characteristics and the dynamics of this 
transformation is vital for successful design of 
new automated systems. 

In this paper, we have proposed a new vision 
of the transformation induced by automation, 
based on recent insight in the domain of the 
neurosciences. The introduction of 
neuroscientific concepts aims at bringing an 
innovative contribution to the understanding of 
the OOTL performance problem and open new 
approaches to characterize, monitor and 
compensate such phenomenon. In this paper, 
we have introduced different concepts – 
Performance Monitoring Function, Mind 
Wandering, and Sense of Agency – and 
described how these concepts could increase 
our understanding of the OOTL phenomenon. 
Preliminary results have been introduced and 
demonstrate the relevance of such approach.   

To effectively understand how humans interact 
with work systems, it is not only important to 
ask how well they perform, but also why they 
perform a certain way. Neuroergonomics could 
help fill in the gaps on the neural bases of 
cognitive performance that were left 
unanswered with traditional ergonomic 
assessments. However, applicability and 
feasibility of neuroscientific concepts, methods 
and tools need to be questioned. Much of the 
research presented in this paper is confined to 
rather small controlled experiments, with the 
presumption that the findings could be 
generalized to other settings. We have pointed 
that such models and methods suffer from a 
variety of problems that limit their usefulness 
in ecological settings. Future works should 
overcome these barriers to make possible the 
transposition of these models to the human-
automation interaction problem. 
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