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Abstract 
Small	crack	(SC)	propagation	accounts	for	most	of	the	fatigue	life	of	engineering	structures	
subject	to	high	cycle	fatigue	loading	conditions.	Determining	the	fatigue	crack	growth	rate	of	
SCs	propagating	into	polycrystalline	engineering	alloys	is	critical	to	improving	fatigue	life	
predictions,	thus	lowering	cost	and	increasing	safety.	In	this	work,	cycle-by-cycle	data	of	a	SC	
propagating	in	a	beta	metastable	titanium	alloy	is	available	via	phase	and	diffraction	contrast	
tomography.	Crystal	plasticity	simulations	are	used	to	supplement	experimental	data	regarding	
the	micromechanical	fields	ahead	of	the	crack	tip.	Experimental	and	numerical	results	are	
combined	into	a	multimodal	dataset	and	sampled	utilizing	a	non-local	data	mining	procedure.	
Furthermore,	to	capture	the	propensity	of	body-centered	cubic	metals	to	deform	according	to	
the	pencil-glide	model,	a	non-local	driving	force	is	postulated.	The	proposed	driving	force	
serves	as	the	basis	to	construct	a	data-driven	probabilistic	SC	propagation	framework	using	
Bayesian	networks	as	building	blocks.	The	spatial	correlation	between	the	postulated	driving	
force	and	experimental	observations	is	obtained	by	analyzing	the	results	of	the	SC	propagation	
Bayesian	framework.	Results	show	that	the	above	correlation	increases	proportionally	to	the	
distance	from	the	crack	front	until	the	edge	of	the	plastic	zone.	Moreover,	the	predictions	of	
the	propagation	framework	show	good	agreement	with	experimental	observations.	Finally,	we	
studied	the	interaction	of	a	SC	with	grain	boundaries	(GBs)	utilizing	various	slip	transmission	
criteria,	revealing	the	tendency	of	a	SC	to	cross	a	GB	by	propagating	along	the	slip	directions	
minimizing	the	residual	Burgers	vector	with	the	GB.	
	
Keywords:	A	small	crack	propagation;	B	crystal	plasticity;	B	polycrystalline	material;	C	
nondestructive	evaluation;	machine	learning;	
	
Uncommon	abbreviations£	

Highlights (mandatory, 3-5 bullets, 85 characters with spaces) 
• In	BCC	materials,	small	cracks	propagate	accordingly	to	the	pencil-glide	model.	
• A	non-local,	direction	dependent	data	mining	procedure	captures	crack	mechanics.	
• The	proposed	non-local	driving	force	adequately	reproduces	3D	experimental	results.	
• Small	cracks	overcome	grain	boundaries	by	minimizing	the	residual	Burgers	vector.	

	 	

																																																								
£	3D	x-ray	tomography	for	small	crack	and	microstructure	(3DXTSM),	Bayesian	network	(BN),	
driving	force	(DF),	data	mining	procedure	(DMP),	fatigue	indicator	parameter	(FIP),	FnF	(fail	
/not-fail),	failing	slip	direction	(FSD),	growth	rate	(GR),	non-failing	slip	direction	(NFSD),	
normalized	mutual	information	(NMI),	mutual	information	(MI),	small	crack	(SC).	



	 3	

Graphical Abstract 

	
	 	

Probabilistic	Framework

! "# $# = & $# "# !("#)
∫ & $# "# !("#)*"#

Correlations +

P
(F

a
il
u
re
|.
..
)

distance from
the crack front [µm]

log10(dissipated
energyd) [J/mm3]

Experiment

Simulations

& $# "# Prior knowledge !("#)
Failing
Non	Failing

Grow RatePDF

PD
F

Bayesian Network ! "# $#

(a)

(b)

(c)

(e)
(d)



	 4	

1 Introduction 
	

The	fatigue	crack	growth	rate	(FCGR)	of	a	long	crack	in	high	cycle	fatigue	regime	can	be	
predicted	utilizing	the	Paris	law	(Paris	et	al.,	1961).	However,	traditional	fracture	mechanics	
theory	does	not	provide	accurate	predictions	when	the	crack’s	length	is	comparable	to	the	
microstructural	length	scale.	The	above	regime	is	referred	to	as	stage	I,	and	cracks	are	classified	
as	small	cracks	(SCs)	within	this	regime.	In	fact,	for	a	SC	the	material	cannot	be	considered	
homogeneous	because	microstructural	features	in	the	proximity	of	the	crack	front	influence	the	
spatial	distribution	of	micromechanical	fields	(i.e.	stress,	strain,	displacement,	etc.,	Rovinelli	et	
al.,	2015).	The	result	of	the	SC	interacting	with	the	surrounding	microstructure	is	the	extreme	
scatter	of	the	FCGR	observed	in	stage	I	(Bray	et	al.,	2001;	Davidson	et	al.,	2003).	Furthermore,	it	
is	well	established	that	more	than	60%	of	the	lifespan	of	an	engineering	structure	or	
component	subject	to	high	cycle	fatigue	is	associated	with	the	propagation	of	SCs	(Schijve,	
2009).	Hence,	understanding	the	small	crack	driving	force	of	engineering	alloys	is	critical	to	
obtain	reliable	life	predictions	to	improve	both	design	and	maintenance	operations.	This	goal	
has	not	been	achieved	yet	because	of:	(i)	the	lack	of	data	at	the	appropriate	length	scale	and	(ii)	
to	the	complex	interactions	between	a	SC	and	microstructure	features.	In	this	work,	
experimental	data	collected	via	synchrotron	imaging	and	results	of	crystal	plasticity	simulations	
are	used	to	investigate	the	behavior	of	a	SC	propagating	within	a	beta	metastable	titanium	
alloy.	

To	explain	the	serrated	surface	of	a	SC,	Neumann	proposed	the	coarse-slip	model,	which	
is	based	on	the	alternate	activation	of	two	different	slip	planes	(Neumann,	1974a,	1974b,	
1969).	Vehoff	and	Neumann	(1979)	experimentally	observed	SCs	propagating	accordingly	to	the	
coarse-slip	model	in	both	face	and	body	centered	cubic	(FCC	and	BCC,	respectively)	single-
crystals.	However,	recent	high-resolution	experimental	observations	by	Schäf	et	al.	(2013,	
2011)	show	that	in	polycrystalline	aggregates,	SCs	do	not	always	propagate	conforming	to	the	
model	proposed	by	Neumann.	

In	general,	plastic	deformation	in	FCC	metals	and	alloys	can	be	described	as	a	deck	of	
cards	subject	to	shear	loading.	In	the	card-glide	model,	both	the	direction	and	plane	of	slip	are	
prescribed.	The	card	represents	a	slip	plane	(i.e.	any	of	the	 111 )	and	the	glide	direction	is	one	
of	the	available	slip	directions	(i.e.	any	 110 ).	Taylor	and	Elam	(1926)	observed	card-glide	in	
BCC	materials,	but	only	when	a	crystal	is	subject	to	homogeneous	shear.	For	more	complex	
loading	conditions,	they	identified	deformations	aligned	with	slip	directions	but	not	always	
related	to	crystallographic	slip	planes.	They	hypothesized	that	BCC	alloys	deform	as	a	large	
bundle	of	rods	slipping	relative	to	each	other,	conjecturing	that	atoms	stick	together	along	a	
certain	crystallographic	direction	(i.e.	 111 ).	Hence,	the	slip	plane	is	not	necessarily	
crystallographic	and	may	be	any	plane	embedding	the	slip	direction.	Since	its	elicitation,	the	
latter	deformation	mechanism,	referred	to	as	pencil-glide,	has	proven	useful	in	predicting	
plastic	deformation	and	texture	evolution	of	polycrystalline	BCC	metals	(Gilormini	et	al.,	1988;	
Kocks,	1970).	Hence,	to	predict	the	FCGR	in	BCC	metals,	a	small	crack	propagation	framework	
based	upon	the	pencil-glide	model	is	proposed.	

Much	work	has	been	done	in	assessing	the	correlation	between	micromechanical	fields,	
crack	nucleation	events	and	microstructure	features	for	FCC	metals.	Hochhalter	et	al.	(2011)	
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investigated	the	ability	of	different	fatigue	indicators	parameters	(FIPs)	to	predict	crack	
nucleation	sites,	observing	no	substantial	difference	between	the	analyzed	FIPs.	Yeratapally	et	
al.	(2016)	and	Cerrone	et	al.	(2015)	found	that	spatial	regions	exhibiting	strong	elastic	
anisotropy	and	relevant	localized	plasticity	are	favorable	sites	for	crack	nucleation	in	Nickel-
based	superalloys.	Based	on	the	work	of	Fatemi	and	Socie	(1988),	Castelluccio	and	McDowell	
(2012)	proposed	a	FIP	based	on	cyclic	plastic	strain	accumulation	and	the	opening	stress	on	the	
critical	slip	plane.	The	above	FIP	is	known	as	the	Fatemi-Socie	FIP	and	has	been	correlated	
qualitatively	with	the	crack	tip	opening	displacement	and	the	variability	of	the	FCGR	in	FCC	
alloys	(Castelluccio	and	McDowell,	2014,	2012).	

However,	fewer	efforts	have	been	made	in	trying	to	replicate	the	SC	path.	Musinski	and	
McDowell	(2016)	modified	the	Fatemi-Socie	FIP	to	account	for	the	interaction	between	SCs	and	
GBs,	calibrated	the	model	against	1D	experimental	data,	and	used	it	to	simulate	the	temporal	
and	spatial	evolution	of	a	3D	SC.	The	model	showed	convergence	to	linear	elastic	fracture	
mechanics,	but	a	direct	comparison	with	3D	data	was	not	performed	due	to	the	lack	of	
experimental	data.	Li	et	al.	(2014)	and	Proudhon	et	al.	(2017)	were	among	the	first	in	trying	to	
reproduce	an	experimentally	observed	SC	utilizing	a	FIP	as	the	driving	force	for	the	crack	
advancement.	Data	was	collected	utilizing	a	technique	known	as	3D	x-ray	tomography	for	small	
crack	and	microstructure	(3DXTSM,	Herbig	et	al.,	2011),	which	provides	high-resolution	images	
of	SCs	propagating	into	a	polycrystalline	aggregate.	When	comparing	simulation	results	with	
experimental	observations,	they	found	a	high-sensitivity	of	the	simulated	crack	path	with	
respect	to	the	imposed	boundary	conditions	and	emphasized	the	need	for	a	FIP	threshold	value	
for	crack	propagation	to	accurately	reproduce	the	FCGR	(Proudhon	et	al.,	2015).	Rovinelli	et	al.	
(2017)	investigated	the	correlation	between	several	FIPs	and	the	experimentally	observed	FCGR	
in	a	BCC	alloy	subjected	to	high-cycle	fatigue	loading	conditions.	Results	showed	that	all	the	
scrutinized	FIPs	behave	similarly	and	exhibit	low	predictive	performance.	In	this	work,	to	
predict	the	FCGR	in	BCC	alloys,	a	non-local	driving	force	is	proposed,	computed	via	crystal	
plasticity	simulations,	and	spatially	correlated	with	experimental	observations.	

Probabilistic	tools	are	used	to	identify	relevant	correlations	and	to	quantify	uncertainty.	
The	major	drawback	of	the	above	kind	of	analysis	is	the	amount	of	data	required	to	obtain	
trustable	results.	The	classic	Bayesian	approach	coupled	with	Markov	chain	Monte	Carlo	
methods	(Metropolis	et	al.,	1953;	Metropolis	and	Ulam,	1949)	provides	a	means	to	overcome	
the	shortage	of	experimental	data	while	calculating	the	posterior	probability	distribution.	In	this	
methodology,	the	likelihood	function	and	a	priori	belief	are	directly	encoded	in	the	model	by	
selecting	appropriate	distributions.	This	method	has	proven	to	be	effective	to	quantify	
uncertainties	in	many	fields,	including	fatigue	(Yeratapally	et	al.,	2017).	However,	it	is	
computationally	expensive	and	is	predominantly	based	on	expert	knowledge.	The	latter	means	
that	suitable	distributions	(e.g.	normal,	beta,	gamma,	etc.)	and	their	parameters	(e.g.	variance,	
mean,	etc.)	need	to	be	elicited	not	only	for	the	prior	distributions	but	also	for	the	likelihood	
function.		

If	the	likelihood	function	can	be	estimated	from	the	data,	then	the	computational	cost	
associated	with	the	classic	Bayesian	approach	can	be	significantly	reduced	by	means	of	a	
Bayesian	network	(Pearl,	1985).	Moreover,	a	Bayesian	network	possesses	the	following	
features:	(i)	is	non-parametric,	(ii)	allows	for	omnidirectional	inferences,	and	(iii)	permits	
extraction	of	correlations	embedded	in	the	model	parameters.	In	this	work,	experimental	data	
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and	results	of	crystal	plasticity	simulations	are	combined	into	a	multimodal	dataset,	which	is	
used	to	build	a	data-driven	Bayesian	network	framework.	The	latter	is	utilized	to	evaluate	the	
predictive	performance	of	the	proposed	driving	force	and	to	compute	correlations.	

To	identify	the	correlation	between	micromechanical	fields	and	the	observed	FCGR,	the	
FCGR	needs	to	be	reconstructed	from	a	series	of	static	experimental	images.	For	long	cracks,	
the	crack	front	is	assumed	to	be	elliptical	and	flat,	and	the	FCGR	is	estimated	assuming	radial	
propagation	from	a	unique	crack	center.	To	account	for	the	tortuous	nature	of	a	SC,	variations	
of	the	standard	procedure	have	been	utilized	by	different	authors	(Herbig	et	al.,	2011;	Spear	et	
al.,	2014).	However,	the	above	procedures	provide	an	adequate	estimation	of	the	FCGR	only	
when	analyzing	a	well-behaved	SC	(e.g.	no	bifurcations	and	an	almost	ellipsoidal	front).	To	
better	estimate	the	FCGR	of	a	tortuous	crack	a	reconstruction	procedure	based	on	the	pencil-
glide	model	is	presented	(Kocks,	1970).	

High-resolution	imaging	and	reconstruction	techniques	allow	for	further	investigation	of	
propagation	mechanisms	of	SCs.	Zhang	and	Edwards	 (1992)	studied	the	 interactions	between	
SCs	 and	 GBs.	 They	 stated	 that	 the	 initiation	 of	 plasticity	 in	 the	 adjacent	 grain	 is	 one	 of	 the	
necessary	 condition	 required	 by	 a	 SC	 to	 overcome	 a	 GB.	 The	 above	 suggests	 that	 slip	
transmission	criteria	may	be	utilized	to	predict	which	path	the	crack	will	follow	when	crossing	a	
GB.	Following	this	idea,	Zhai	et	al.	(2005,	2000)	proposed	a	geometric	model	for	SC	propagation	
based	on	the	minimum	twist	angle	between	the	crack	plane	and	the	available	slip	planes	in	the	
adjacent	grain.	In	the	Zhai	model,	the	minimum	twist	angle	is	proportional	to	the	deceleration	
exhibited	 by	 a	 SC	 when	 imping	 upon	 a	 GB.	 Furthermore,	 if	 all	 the	 slip	 planes	 are	 strongly	
misaligned,	 then	 the	 crack	 propagates	 in	 the	 adjacent	 grain	 on	 two	 separate	 slip	 planes	 to	
minimize	 the	 energy	 required	 to	 rupture	 the	 GB.	 Schäf	 et	 al.	 (2013,	 2011)	 experimentally	
investigated	 the	 behavior	 of	 a	 SC	when	 crossing	 a	 GB	 in	 3D	 and	 viewed	 this	 behavior	 via	 a	
technique	that	combines	focused	ion	beam	cross	sectioning	and	scanning	electron	microscope	
imaging.	They	found	that	the	Zhai	model	is	qualitatively	correct	for	FCC,	but	it	does	not	always	
hold	 for	BCC	materials.	Studies	of	 this	kind	 investigated	the	surface	of	 the	material,	or	a	 thin	
layer	 of	 it,	 always	 assuming	 the	 GB	 is	 straight	 and	 perpendicular	 to	 the	 analyzed	 surface.	
Results	of	3DXTSM	provide	unique	insights	at	the	appropriate	length	scale	on	the	behavior	of	a	
SC	 interacting	 with	 a	 GB	 without	 requiring	 strong	 assumption	 on	 the	 topology	 of	 the	
microstructure.	Therefore,	to	investigate	the	behavior	of	a	SC	when	crossing	a	GB,	several	slip	
transmission	 criteria	 are	 applied	 to	 the	 available	 dataset	 and	 compared	 with	 experimental	
evidence.	

The	aims	of	this	article	are	four-fold:	(i)	to	present	a	data-driven	probabilistic	framework	
to	predict	the	FCGR;	(ii)	to	propose	a	non-local	driving	force	for	polycrystalline	BCC	metals;	(iii)	
to	quantify	the	spatial	correlation	between	the	postulated	driving	force	and	the	observed	FCGR;	
and	(iv)	to	investigate	the	ability	of	several	slip	transmission	criteria	to	predict	the	crack	path	
when	crossing	a	GB.	The	remainder	of	the	article	is	organized	as	follows.	Section	2	is	divided	
into	4	subsections:	Section	2.1	is	a	brief	overview	of	the	probabilistic,	data-driven	small	crack	
growth	propagation	framework	and	the	core	ideas	behind	it;	Section	2.2	presents	all	the	
experimental	and	numerical	tools	required	to	generate	the	data	used	by	the	framework	above;	
Section	2.3	explains	the	implementation	of	the	proposed	framework,	how	to	evaluate	its	
performance,	and	how	to	quantify	correlations	embedded	in	the	data;	Section	2.4	is	dedicated	
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to	the	investigated	slip	transmission	criteria.	Section	3	contains	results	and	discussions.	
Specifically:	Section	3.1	presents	relevant	results	of	the	utilized	numerical	tools;	Section	3.2	is	
focused	on	the	outcomes	of	the	proposed	probabilistic	framework	and	their	significance;	
Section	3.3	is	dedicated	to	the	interaction	between	SCs	and	GBs.	Section	4	summarizes	the	
scientific	relevance	of	this	article.	
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2 Methodology and tools 
2.1 Overview of the small crack growth propagation framework 

	
Figure	1.	Schematic	representation	of	the	non-local,	data-driven	probabilistic	small	crack	propagation	framework.	(a)	
Experiment	and	(b)	simulations	results	are	combined	into	a	multimodal	dataset	from	which	the	likelihood	function	can	be	
estimated.	(c)	Uniform	prior	distributions	are	selected	to	investigate	the	correlations	embedded	in	the	data.	Bayesian	networks	
are	utilized	as	a	tool	to	compute	(d)	the	posterior	probability	via	Bayes’	theorem	and	to	quantify	(e)	the	correlations	embedded	
in	the	data.	

Figure	1	is	a	schematic	depicting	the	proposed	non-local,	data-driven	probabilistic	small	
crack	propagation	framework.	Bayes’	theorem	(Equation	1)	is	the	core	of	the	framework.	It	
provides	a	means	to	compute	the	posterior	probability	𝜋 𝜃 𝑥 	of	an	event	𝜃	happening	when	
observing	a	set	of	evidence	𝑥.	In	this	work,	𝜃	represents	the	probability	of	failure	of	a	slip	
direction	or	the	FCGR,	and	𝑥	represents	the	computed	values	of	the	proposed	non-local	driving	
force.	

	

𝜋 𝜃 𝑥 =
𝑓 𝑥 𝜃 𝜋(𝜃)

∫ 𝑓 𝑥 𝜃 𝜋(𝜃)𝑑𝜃
	  

Equation	1	

 
	
Two	other	quantities	are	required	to	compute	the	posterior	probability:	(i)	the	likelihood	

function	(i.e.	𝑓 𝑥 𝜃 )	and	(ii)	the	distribution	of	the	prior	probability	(i.e.	𝜋(𝜃)).	The	likelihood	
function	is	computed	combining	experiment	and	simulation	results	into	a	multimodal	dataset	
(Figure	1	(a)	and	(b)).	Specifically,	experimental	data	has	been	collected	via	3DXTSM	
methodology	(Herbig	et	al.,	2011)	and	crystal	plasticity	simulations	are	used	to	compute	
micromechanical	fields	(Rovinelli	et	al.,	2017b)	not	recorded	during	the	experiment.	The	
distribution	of	prior	probabilities	is	assumed	uniform	(Figure	1	(c))	to	minimize	the	bias	that	
may	be	present	in	the	dataset.	Subsequently,	we	utilize	Bayesian	networks	to	build	the	
probabilistic	models	describing	the	SC	propagation	problem	(Figure	1	(d)).	Once	the	model	is	
established,	the	posterior	probability	can	be	evaluated	and	correlations	between	the	proposed	
driving	force	and	experimental	observations	can	be	quantified	(Figure	1	(e)).	For	these	
purposes,	an	off-the-shelf	machine	learning	Bayesian	network	software	is	utilized	(i.e.	
Bayesialab).	
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2.2 Methods 

Some	procedure	utilized	in	this	work,	such	as	the	voxelization	of	the	crack	surface,	the	
identification	of	the	crack	front,	and	the	crack	segmentation	procedure,	have	been	discussed	in	
(Rovinelli	et	al.,	2017b)	and	for	brevity	will	not	be	reported	here.	However,	the	experimental	
methodology	and	simulations	setup	are	briefly	described	to	ensure	this	work	is	self-contained.	
	
2.2.1 Experiment 

The	experimental	technique	utilized	in	this	work	to	obtain	a	high-fidelity	reconstruction	
of	a	small	crack	growing	into	a	specimen	is	3DXTSM	(Herbig	et	al.,	2011).	The	experiment	has	
been	performed	at	the	European	Synchrotron	Radiation	Facility	at	beamline	ID-19,	and	the	
material	investigated	is	a	beta-metastable	titanium	alloy,	commercially	known	as	VST-55531.	To	
obtain	a	coarse	grain	microstructure,	which	is	required	for	optimal	3DXTSM	results,	the	sample	
was	solution	annealed	at	843 ℃	for	2	hours	under	vacuum	and	then	air	cooled.	Electron	
backscatter	diffraction	scans	show	a	full	beta	microstructure	with	a	mean	grain	size	of	65 𝜇𝑚		
after	recrystallization	(Herbig	et	al.,	2011).	

The	steps	required	by	3DXTSM	are	the	following:	(i)	one	initial	diffraction	contrast	
tomography	to	record	the	actual	microstructure’s	topology	and	grain	orientation	and	(ii)	one	
phase	contrast	tomography	every	𝑁	fatigue	loading	cycles	to	record	the	current	crack	topology.	
In	this	experiment,	𝑁 = 1000	until	cycle	110k.	Subsequently,	𝑁 = 500	has	been	adopted	to	
compensate	for	the	increased	FCGR.	Moreover,	the	pixel	size	is	1.4 𝜇𝑚	and	0.7 𝜇𝑚	for	
diffraction	contrast	tomography	and	phase	contrast	tomography,	respectively.	The	design	of	
the	fatigue	loading	frame	(Buffiere	et	al.,	2006)	allows	the	test	to	be	performed	in-situ	without	
the	need	to	remove	the	sample	from	the	load	frame	for	tomography	characterization.	
	
2.2.2 Simulations 

As	described	in	(Rovinelli	et	al.,	2017b),	the	simulations	setup	aims	to	mimic	the	
experimental	loading	conditions	to	compute	the	micromechanical	fields.	The	computational	
framework	utilized	in	this	work	is	a	custom,	parallel	implementation	of	the	small-strain,	elasto-
viscoplastic	FFT-based	crystal	plasticity	solver	(CP-FFT)	proposed	by	Lebensohn	et	al.	(2012).		
CP-FFT	is	a	more	efficient	alternative	to	solve	the	same	problem	with	standard	CP-Finite	
Elements	(CP-FEM).	A	direct	comparison	between	CP-FFT	and	CP-FEM	predictions	for	
configurations	similar	to	the	ones	involved	in	the	present	analysis,	corresponding	to	the	
determination	of	stress	and	strain	fields	and	slip	activity	near	a	crack	tip,	was	conducted	and	
reported	elsewhere,	showing	good	agreement	between	the	micromechanical	fields	obtained	
with	both	formulations	(Rovinelli	et	al.,	2017a).		Equation	2	represents	the	adopted	Hutchinson-
type	flow	rule	(Hutchinson,	1977)	and	Equations	3-5	describe	the	Harren-type	hardening	law	
(Harren	et	al.,	1989).	The	latter	has	been	modified	to	account	for	the	experimentally	observed	
cyclic	softening	behavior	(Rovinelli	et	al.,	2017b).	
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𝛾! = 𝛾!
𝜏!

𝑔!

!

𝑠𝑖𝑔𝑛 𝜏!  

 
 Equation	2 

𝑔! = − 𝐻!" 𝛾!
!

!!!

= − 𝑞!"ℎ! 𝛾!
!

!!!

 

 

 Equation	3 

ℎ! = ℎ!! + 𝑠𝑒𝑐ℎ!
ℎ!! − ℎ!!

𝜏!! − 𝜏!!
𝛤 ℎ!! − ℎ!!  

 
 Equation	4 

𝛤 = 𝛾! 𝑑𝑡
!

!!!

!

!
 

 
 Equation	5 

	
where	𝛼,𝛽	are	the	slip	system	indices	(here	all	three	families	{110},{112},{123}	are	included,	
hence	N=48),	𝜏! 	is	the	resolved	shear	stress,	𝑔! 	is	the	critical	resolved	shear	stress,	𝛾! 	is	the	
plastic	shear	strain	rate,	𝛾!	is	a	scaling	constant,	ℎ!! , ℎ!! ,	are	respectively	single	slip	initial	and	
saturation	hardening	rate,	ℎ! 	is	a	variable	scaling	the	effect	of	slip	rate	on	the	update	of	the	
critical	resolved	shear	stress,	𝛥𝜏! = 𝜏!! − 𝜏!! 	is	the	maximum	allowable	variation	of	the	initial	
critical	resolved	shear	stress,	𝑞!! 	is	a	parameter	representing	self	and	latent	hardening	(q=1	if	
𝛼 = 𝛽,	1.4	otherwise),	𝛤	is	the	accumulated	total	plastic	shear	at	an	integration	point,	and	𝑔! 	
defines	the	variation	of	the	critical	resolved	shear	stress.	
	

Table	1	Summary	of	elastic	and	plastic	constants	utilized	for	the	simulations.	

Hardening	parameter	 	 Elastic	Constants	
𝛾! [𝑠!!]	 2.5E-06	 	 C1111	[GPa]	 167	

n	 10	 	 C1212	[GPa]	 115	
𝜏!! 	[MPa]	 50	 	 C2323	[GPa]	 44	
𝜏!! 	[MPa]	 0	 	 	 	

ℎ!! 	[MPa]	 500	 	 	 	

ℎ!! 	[MPa]	 0	 	 	 	

𝑔!! 	[MPa]	{110}	and	{112}	 405	 	 	 	

𝑔!! 	[MPa]	{123}	 415	 	 	 	

	
Elastic	constants	have	been	selected	from	the	literature	(Fréour	et	al.,	2011).	The	voxel	size	of	
the	CP-FFT	simulations	is	1.4 𝜇𝑚,	which	is	the	same	utilized	for	the	diffraction	contrast	
tomography	scan.	

Results	obtained	via	3DXTSM	serve	as	input	to	the	CP-FFT	simulations.	Each	simulation	
consists	of	100	fatigue	loading	cycles	recording	results	three	times	per	decade	(i.e.	cycle	
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1,2,5,10,20,50,100).	Rovinelli	et	al.	(2015)	showed	that	the	spatial	distribution	of	FIPs	in	the	
proximity	of	the	crack	tip	does	not	change	with	increased	loading	cycles.	Therefore,	only	data	
collected	at	cycle	1	of	each	simulation	will	be	used	for	the	data	analysis.	Moreover,	to	avoid	
bias	when	computing	correlations	between	the	proposed	driving	force	and	experimental	
observations,	the	crack	is	not	allowed	to	propagate.	Each	phase	contrast	tomography	scan	
provides	the	geometry	of	the	crack	for	one	simulation.	
	
2.2.3 Slip direction based modeling tools 
2.2.3.1 3D small fatigue crack growth rate reconstruction 

The	procedure	to	reconstruct	the	observed	FCGR	relies	on	the	premise	that	during	the	
early	stages	of	propagation	(i.e.	when	the	crack	front	encompasses	only	a	few	grains),	the	
direction	of	propagation	aligns	with	one	of	the	available	slip	directions.	In	case	of	ambiguity,	
the	optimal	path	is	chosen	as	the	one	exhibiting	the	highest	FCGR.	Specifically,	at	each	crack	
front	location,	all	the	available	slip	directions	are	followed	for	a	predetermined	length,	
𝑙! = 6.3 𝜇𝑚	while	recording	information	of	the	nearest	crack	surface	element.	The	reason	for	
choosing	the	above	value	of	𝑙!	is	further	discussed	in	Section	3.1.	Moreover,	the	maximum	
orthogonal	distance	between	the	crack	surface	and	all	the	points	queried	serves	as	a	
thresholding	value	to	discern	between	a	failing	slip	direction	(FSD)	and	a	non-failing	slip	
direction	(NFSD).	Pseudo	codes	of	the	proposed	slip	direction	based	procedure	and	the	
standard	procedure	to	determine	the	FCGR	are	available	in	Appendix	A.	
	
2.2.3.2 Micromechanical fields mining procedure 

	
Figure	2.	Schematic	representation	of	the	non-local	data	mining	procedures,	highlighting	representative	values	and	their	
associated	regularization	volume.	

	
Similarly	to	the	FCGR	reconstruction,	the	micromechanical	fields	are	collected	starting	

from	the	crack	front	while	following	the	available	slip	directions	(Figure	2).	Data	is	collected	
along	a	distance	𝑙!	with	spatial	resolution	(e.g.	step	size)	𝛥𝑠.	However,	quantities	such	as	the	
accumulated	plastic	strain	and	the	resolved	shear	stress	are	slip	system	dependent.	Therefore,	

Representative value
Slip direction

Slip plane normal
In-plane vector

1D
(a) (b)

2D
(c)
3D
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while	following	one	slip	direction,	data	is	collected	for	all	the	slip	systems	embedded	within.	
Throughout	this	paper,	this	procedure	will	be	called	the	1D	data-mining	procedure	(1D-DMP).		

Moreover,	when	probing	results	of	a	simulation	in	the	proximity	of	a	singularity	(i.e.	the	
crack	front),	a	regularization	scheme	should	be	adopted	to	mitigate	the	effect	of	possible	
spurious	solutions	due	to	unavoidable	numerical	instabilities.	Two	different	regularization	
schemes	are	proposed:	(i)	2D-DMP	and	(ii)	3D-DMP.	Each	regularization	procedure	is	an	
augmentation	of	the	previous.	The	2D-DMP	collects	data	on	a	plane	accordingly	oriented	with	
respect	to	each	slip	system	(Figure	2	(b)),	and	the	3D-DMP	collects	data	in	a	plate	with	finite	
thickness	(Figure	2	(c)).	For	all	the	DMPs,	data	is	collected	on	an	equispaced,	regular	grid.	
Parameters	utilized	for	the	above	procedures	are	the	following:	(i)	width	of	plane	𝑤! = 2.8 𝜇𝑚,	
(ii)	thickness	of	the	plate	𝑡! = 1.4 𝜇𝑚,	and	(iii)	the	step	utilized	to	construct	the	equispaced,	
regular	grid	is	𝛥𝑠 = 0.35 𝜇𝑚.	

As	previously	mentioned,	one	of	the	aims	of	this	article	is	to	evaluate	the	spatial	
correlations	between	the	proposed	non-local	driving	force	and	experimental	observations.	
Therefore,	the	collected	data	is	segmented	every	0.7 𝜇𝑚	while	moving	away	from	the	crack	
front,	and	an	average	value	is	computed	for	each	segment.	The	values	resulting	from	the	
averaging	process	are	called	representative	values.	As	a	note,	the	representative	value	at	the	
crack	front	is	not	utilized	as	an	input	to	build	the	small	crack	propagation	framework,	because	
its	value	may	be	influenced	by	the	singularity	imposed	by	the	presence	of	the	crack.	
	
2.2.3.3 Non-Local Crack Growth Driving Force 

Constructing	a	driving	force	able	to	capture	the	FCGR	propagating	in	a	BCC	alloy,	in	
which	non-Schmid	effects	can	be	significant	(Weinberger	et	al.,	2013),	is	not	the	purpose	of	this	
work.	Nevertheless,	given	the	objectives	of	this	study,	the	postulated	driving	force	needs	to	
satisfy	the	following	requirements:	(i)	capture	the	propensity	of	BCC	metals	to	deform	in	pencil-
glide	mode	and	(ii)	account	for	the	spatial	variation	of	the	micromechanical	fields	(e.g.	it	must	
use	more	than	one	local	value	to	account	for	the	spatial	gradients).	Furthermore,	in	a	previous	
work,	Rovinelli	et	al.	(2017)	showed	that	locally	computed	FIPs	exhibit	the	same	predictive	
capabilities,	therefore	we	selected	the	FIP	representing	the	maximum	dissipated	energy	as	a	
base	for	the	proposed	non-local	driving	force.	

	

𝐷𝐹! 𝑠 = 𝜏! 𝑠 𝛤! 𝑠
!

!!!

 ∀𝛼 ∈ 𝑑  Equation	6		

Where	𝑑	represents	a	slip	direction	and	𝑠	is	the	index	denoting	the	representative	value	while	
moving	away	from	the	crack	front.	Equation	6	is	a	nonlocal	driving	force	representing	the	
profile	of	the	total	dissipated	energy	along	a	slip	direction,	which	will	be	denoted	as	𝐷𝐹	for	the	
remainder	of	the	article.		
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2.3  Crack Propagation Framework 
	

	
Figure	3.	Schematic	representation	of	the	two	augmented	Naïve	Bayesian	networks	overalid	to	the	data	mining	path.	Each	
attribute	node	corresponds	to	a	representative	value.		

	
In	this	work,	the	SC	problem	has	been	separated	into	two	different	tasks:	(i)	identify	the	

crack	propagation	direction	and	(ii)	identify	its	associated	FCGR.	The	binary	variable	𝐹𝑛𝐹! 	
represents	the	crack	propagating	along	a	given	slip	direction.	The	continuous	variable	𝐺𝑅! 	
represents	the	FCGR	of	a	FSD.	Two	distinct	Bayesian	networks	have	been	implemented.	The	
first	Bayesian	network,	hereafter	referred	to	as	𝐵𝑁!"!,	evaluates	the	posterior	probability	of	
failure	given	the	values	of	the	𝐷𝐹.	The	second	Bayesian	network,	hereafter	referred	to	as	
𝐵𝑁!",	evaluates	the	posterior	probability	of	observing	a	certain	FCGR	given	the	values	of	the	
𝐷𝐹.	Equation	7	and	Equation	8	are	the	mathematical	representations	of	the	propositions	stated	
above,	in	which	the	superscript	𝑑	and	the	dependence	from	𝑠	have	been	dropped	to	simplify	
the	notation.	These	simplifications	shall	hold	for	the	rest	of	the	article.	
	

𝑃 𝐹𝑛𝐹|𝐷𝐹 =
𝑃 𝐷𝐹|𝐹𝑛𝐹 𝑃 𝐹𝑛𝐹

∫ 𝑃 𝐷𝐹|𝐹𝑛𝐹 𝑃 𝐷𝐹 𝑑𝐹𝑛𝐹
  Equation	7	

𝑃 𝐺𝑅|𝐷𝐹 =
𝑃 𝐷𝐹|𝐺𝑅 𝑃 𝐺𝑅

∫ 𝑃 𝐷𝐹|𝐺𝑅 𝑃 𝐷𝐹 𝑑𝐺𝑅
	  Equation	8	

	
In	Bayesian	network	formalism,	nodes	embody	variables	and	edges	represent	their	

conditional	dependence.	In	classification	problems,	a	target	variable	is	the	quantity	that	we	
want	to	predict,	while	an	independent	variable	is	called	an	attribute.	𝐹𝑛𝐹	and	𝐺𝑅	are	the	target	
nodes,	while	the	computed	𝐷𝐹 is	represented	by	a	distinct	attribute	for	each	spatial	location	
(Figure	3).	Variable	discretization	is	performed	utilizing	a	genetic	algorithm	available	in	
Bayesialab,	for	which	the	only	required	parameter	is	the	number	of	intervals.	Furthermore,	
𝐹𝑛𝐹	is	a	binary	variable,	while	𝐺𝑅	and	each	𝐷𝐹 𝑠 	have	been	discretized	into	five	and	seven	
intervals,	respectively	(see	Appendix	B	for	discretization	edges).	

The	network	structure	selected	to	perform	the	classification	is	the	so-called	tree	
augmented	Naïve	Bayes	(Friedman	et	al.,	1997).	This	structure	allows	for	conditional	

Slip 
direction

Crack 
Front

Computed dissipated energy at 
different locations

Target node

Attribute nodesattributes
attribute and target

Conditional dependence between:
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dependence	between	different	attributes.	This	property	is	critical	in	spatially	dependent	
physical	phenomena,	such	as	fatigue	crack	growth,	where	the	downstream	value	of	a	
micromechanical	field	or	driving	force	(e.g.	𝐷𝐹 𝑠 + 1 )	is	inherently	related	to	its	upstream	
value	(e.g.	𝐷𝐹 𝑠 ),	and	vice	versa.	An	example	of	this	behavior	is	the	dislocation	mechanics	at	
the	crack	tip,	which	is	influenced	by	the	elastic	stress	field	imposed	by	dislocations	located	at	a	
certain	distance	from	the	crack	tip	(Devincre	and	Roberts,	1996).	Figure	3	depicts	the	structure	
of	𝐵𝑁!"!and	𝐵𝑁!" 	overlaid	with	a	schematic	depicting	the	location	of	representative	values.	
Each	representative	value	corresponds	to	one	node	of	the	Bayesian	network.	

Once	the	model	is	chosen	and	data	has	been	collected	the	parameters	of	the	Bayesian	
network	can	be	estimated	from	the	data.	The	sets	of	data	utilized	to	train	the	𝐵𝑁!"!and	𝐵𝑁!" 	
are	selected	as	follow:	

• 𝐵𝑁!"!:	the	same	number	of	FSD	and	NFSD	are	selected	to	obtain	a	uniform	prior	
distribution	for	the	𝐹𝑛𝐹.	

• 𝐵𝑁!":	all	FCGR	data	are	utilized.	A	stratification	procedure	is	utilized	obtain	a	uniform	
prior	distribution	for	the	𝐺𝑅.	

Additionally,	to	avoid	spatial	bias	stationary	crack	front	locations	are	randomly	sampled	only	
once.	The	independence	of	the	Bayesian	networks	parameters	from	the	data	has	been	
examined	performing	a	𝐾-fold	cross-validation	(see	Rovinelli	et	al.,	2017	for	more	details).	For	
both	Bayesian	network	𝐾 = 3	has	been	utilized.	

Figure	4.	A	workflow	showing	the	deterministic	procedure	adopted	to	establish	the	FSD	and	its	associated	FCGR.	

Small crack 
propagation framework
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(2)

(3)
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The	Bayesian	networks	presented	above	have	been	constructed	assuming	that	failure	

and	propagation	rate	are	material	dependent	parameters.	However,	at	each	crack	front	
location,	failure	will	occur	only	on	one	of	the	available	directions.	Therefore,	a	determinist	
procedure	evaluating	the	FSD	is	required	to	resolve	ambiguities	(i.e.	more	than	one	slip	
direction	may	have	a	posterior	probability	of	failure	greater	than	50%).	Figure	4	is	a	flowchart	
describing	the	adopted	deterministic	procedure:	(1)	compute	the	representative	values	of	the	
proposed	driving	force	for	each	slip	direction	at	a	specific	location,	(2)	compute	the	posterior	
probability	of	failure	of	each	slip	direction	via	𝐵𝑁!"!,	(3)	evaluate	if	any	slip	direction	exhibits	
failure	(e.g.	𝑃(𝐹𝑛𝐹|𝐷𝐹) > 50%),	(4)	select	the	slip	direction	exhibiting	the	highest	probability	
of	failure,	and	(5)	compute	the	associate	FCGR	via	𝐵𝑁!".	
	
2.3.1 Correlation quantification  

In	statistics,	Pearson	correlation	coefficient	(Pearson,	1895)	is	the	standard	correlation	
measure.	However,	its	major	limitation	is	the	assumption	of	linearity	embedded	in	its	
formulation.	In	information	theory,	mutual	information	(Shannon	and	Weaver,	1949)	is	
commonly	utilized	to	quantify	the	amount	of	information	shared	between	two	random	
variables	(i.e.	X	and	Y).	For	discrete	distributions,	mutual	information	is	defined	as	follow:	

𝑀𝐼 𝑋,𝑌 = 𝑝 𝑥,𝑦 𝑙𝑜𝑔!
𝑝 𝑥,𝑦
𝑝 𝑥 𝑝 𝑦

!∈!!∈!

	 Equation	9	

Where,	x	and	y	are	indices	specifying	the	states	of	𝑋	and	𝑌,	respectively,	𝑝(𝑥)	and	𝑝(𝑦)	are	the	
marginal	probabilities	of	𝑋	and	𝑌,	and	𝑝(𝑥,𝑦)	represents	their	joint	distribution.	The	mutual	
information	is	a	measure	of	uncertainty	reduction	on	the	state	of	𝑋	while	observing	the	state	of	
𝑌	and	vice	versa.		

Compared	to	the	Pearson	correlation	coefficient,	𝑀𝐼	correctly	captures	nonlinear	
relationships,	is	more	resilient	to	the	presence	of	outliers	(Correa	and	Lindstrom,	2013),	but	is	
not	bounded	between	0	and	1.	Hence,	to	fairly	compare	correlations	𝑀𝐼	is	normalized	by	the	
entropy	(𝐻)	of	the	target	variable	(e.g.	𝑋)		
	

𝑁𝑀𝐼 𝑋,𝑌 =  
𝑀𝐼 𝑋,𝑌
𝐻 𝑋 	 Equation	10	

Where	𝑁𝑀𝐼	is	the	normalized	mutual	information	and	𝐻 𝑋 =  − 𝑝 𝑥 𝑙𝑜𝑔! 𝑝 𝑥!∈! .	The	
entropy	may	be	considered	the	equivalent	of	the	standard	deviation	in	information	theory	
(Correa	and	Lindstrom,	2013).	As	an	interpretation,	𝑁𝑀𝐼	can	be	understood	as	the	variation	of	
the	posterior	probability	of	𝑋,	while	observing	the	state	of	𝑌.	For	example,	assuming	a	prior	
probability	of	failure	𝑃(𝐹𝑛𝐹) = 50%	and	a	𝑁𝑀𝐼(𝐹𝑛𝐹,𝐷𝐹) = 15%,	means	that	knowing	the	
value	of	the	𝐷𝐹	will	imply	a	posterior	probability	𝑃(𝐹𝑛𝐹|𝐷𝐹) = 35% or	𝑃(𝐹𝑛𝐹|𝐷𝐹) = 65%.	
	
2.3.2 Model performance 

The	performance	of	a	classification	model	to	predict	a	certain	state,	𝑖,	can	be	measured	
by	defining	two	quantities:	(i)	reliability	(Equation	11),	which	is	the	trustworthiness	of	the	
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model’s	prediction	and	(ii)	precision	(Equation	12)	which	is	the	ability	of	the	model	to	replicate	
experimental	observations.		
	

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦! =
#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠!!"##$!%

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠!
	 Equation	11	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛! =
#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠!!"##$!%

#𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛!  
	 Equation	12	

For	a	classification	model	with	𝑁	possible	outcomes,	its	overall	performance	can	be	quantified	
by	defining	the	overall	reliability	and	precision,	Equations	13	and	14,	respectively.	
	

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦!"#$%&& = 𝑤!𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦!

!

!!!

	 Equation	13	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!"#!"## = 𝑤!𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!

!

!!!

	 Equation	14	

	
Where	𝑤! 	is	a	weighting	factor	defined	as	𝑤! =  #𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛!/ #𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠!"!#$.	In	this	
work	𝑁 = 2	for	𝐵𝑁!"! 	and	𝑁 = 5	for	𝐵𝑁!",	respectively.	The	above	quantities	(Equations	13	
and	14)	are	used	in	this	work	to	evaluate	the	overall	performance	of	𝐵𝑁!"! 	and	𝐵𝑁!".	A	
model	exhibiting	high	reliability	and	precision	can	be	considered	trustable.	
	
2.4 Small crack – grain boundary interaction 

When	the	crack	front	impinges	upon	a	GB,	its	path	cannot	be	predicted	utilizing	the	
proposed	non-local	driving	force	because	it	does	not	account	for	microplasticity	in	the	adjacent	
grain.	Additionally,	crystal	plasticity	do	not	capture	the	physics	of	slip	transmission	at	GBs		
because	the	residual	Burgers	vector	is	not	conserved	(Acharya,	2007;	Acharya	et	al.,	2008;	
Mach	et	al.,	2010).	Therefore,	several	criteria	have	been	either	selected	from	the	literature	or	
postulated	(Table	2)	and	used	to	predict	in	which	slip	system	the	crack	will	propagate	after	
crossing	a	GB.	

The	pencil-glide	model	has	been	adopted	to	capture	the	predominant	deformation	
mechanism	of	the	analyzed	BCC	alloy.	Nevertheless,	a	SC	propagates	by	incrementing	its	area.	
Therefore,	slip	transmission	criteria	based	upon	slip	planes	have	also	been	included	in	the	
analysis.	

	
Table	2.	Formulation	and	description	of	the	investigated	slip	transmission	criteria.	Figure	5	is	a	schematic	defining	the	geometric	
variables	required	to	compute	the	slip	transmission	criteria.	

Equation	 Description	

max
! 

𝑐𝑜𝑠 𝜃! 	 Equation	15	 Minimum	twist	angle	(Zhai	
et	al.,	2000)	

max
! 

𝑐𝑜𝑠 𝜓! 	 Equation	16	 Minimum	tilt	angle	
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max
! 

𝑐𝑜𝑠 𝜅! 	 Equation	17	

Minimum	misalignment	
between	incoming	and	
outgoing	slip	directions	
(Gibson	and	Forwood,	2002)	

max
! 

𝒏! ⋅ 𝒏!
! 𝒃! ⋅ 𝒃!

! + 𝒏! ⋅ 𝒃!
! 𝒃! ⋅ 𝒏!

! 	 Equation	18	
Maximization	of	slip	system	
alignment	(Livingston	and	
Chalmers,	1957)	

max
! 

𝑐𝑜𝑠 𝜅! 𝑐𝑜𝑠 𝜓! 	 Equation	19	

Minimization	of	the	product	
of	the	misalignment	of	slip	
direction	and	tilt	angle	
(Luster	and	Morris,	1995)		

max
!,! 

𝑐𝑜𝑠 𝜅! 𝑐𝑜𝑠 𝜃!    ∀𝑑 𝜖 𝑝	 Equation	20	

Minimization	of	the	product	
of	the	misalignment	
between	slip	direction	and	
twist	angle	(Shen	et	al.,	
1986)	

min
! 

𝒃!! − 𝒃! 	 Equation	21	
Minimization	of	the	residual	
Burgers	vector	(Lee	et	al.,	
1989)	

	
Where	𝜃,𝜓	represent	the	twist	and	tilt	angles	between	the	crack	plane	and	the	available	slip	
planes	in	the	adjacent	grain,	𝜅	is	the	angle	of	misalignment	between	the	slip	direction	
embedded	in	the	crack	plane	and	the	one	available	in	the	neighboring	grain.	Symbols	𝒏	and	𝒃	
represent	the	slip	plane’s	normal	and	the	Burgers	vector,	while	superscripts	𝑝	and	𝑑	are	indices	
referring	to	the	available	slip	plane	and	slip	direction,	respectively.	Additionally,	subscripts	𝑐	
and	𝑜	represent	the	crack	and	the	outgoing	slip	planes.	Figure	5	is	a	schematic	representation	
of	the	geometrical	meaning	of	the	aforementioned	quantities.	
	

	
Figure	5.	Schematic	depicting	the	crack	(blue)	impinging	upon	a	grain	boundary	(light	gray)	and	one	of	the	slip	plane	(red)	
available	in	the	adjacent	grain.	All	the	geometrical	quantities	characterizing	the	interaction	of	the	crack	with	the	neighboring	
slip	systems	are	illustrated.	
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To	accurately	compute	the	tilt	and	twist	angle	along	the	line	of	intersection	between	the	
crack	surface	and	the	GB	plane,	the	normal	of	the	GB	plane	have	been	computed	by	utilizing	
diffraction	contrast	tomography	results	and	applying	the	method	proposed	by	Lieberman	et	al.	
(2015).	The	suggested	scaling,	equivalent	weight	method	has	been	utilized	in	the	calculations,	
with	a	sphere	radius	𝑟 = 3 𝑣𝑜𝑥𝑒𝑙.	Once	the	normal	is	known,	𝜃	and	𝜓	can	be	computed	be	
means	of	the	following	equations:	
	

𝜃 = 𝑎𝑐𝑜𝑠 𝒏!×𝒏!" ⋅ 𝒏!×𝒏!" 	  Equation	22	

𝒗 = 𝒏!" ,−𝜃 	  Equation	23	

𝜓 = 𝑎𝑐𝑜𝑠 𝒏! ⋅ 𝒗 ∗ 𝒏! 	  Equation	24	

	
where	𝒏!"	is	the	normal	of	a	GB,	𝒗	is	the	axis-angle	representation	of	the	rotation	required	to	
remove	the	twist	angle,	and	symbol	∗	implies	rotating	the	second	argument	accordingly	to	𝒗	
(e.g.	using	Rodrigues	rotation	formula).	
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3 Result and discussion 
3.1 Slip direction based modeling  

	
Figure	6.	The	crack	surface	is	colored	accordingly	to	the:	(a)	crystallographic	orientation	of	each	facet;	(b)	plane	of	failure	
identified	by	the	macro	feature	tracking	algorithm;	(c)	cycle	of	failure.	Black,	tortuous	lines	always	represent	grain	boundaries.	
Short	straight	lines	represent	slip	direction	embedded	in	the	plane	of	failure	(b	and	c).	In	(c):	(i)	blue	arrows	represent	the	FCGR	
for	elliptic	propagation,	and	(ii)	the	magenta	box	highlights	the	location	where	abrupt	changes	of	the	propagation	direction	can	
be	observed.	

	
3DXTSM	results	are	coarsened	utilizing	a	smoothing	procedure	to	remove	small	features	

of	the	crack	surface	that	cannot	be	modeled	via	the	current	simulation	setup.	The	effect	of	the	
smoothing	method	(see	Appendix	C	for	a	pseudo-code	algorithm)	is	to	coarsen	the	scale	of	the	
analysis	to	allow	removal	of	high-frequency	features	while	preserving	long-range	attributes.		

Figure	6	(a)	depicts	the	final	crack	surface,	in	which	each	of	its	facets	is	colored	
accordingly	to	its	local	orientation.	The	first	noticeable	feature	is	that	only	few	regions	are	
assigned	to	the	{110}	planes	(i.e.	green),	while	most	of	the	surface	is	assigned	to	slip	planes	
belonging	to	{112}	or	{123}	families	(i.e.	purple).	Herbig	et	al.	(2011)	conjectured	that	the	
reason	behind	the	observed	plane	of	failure	distribution	might	be	related	to	the	resolution	
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utilized	when	performing	3DXTSM.	In	fact,	at	the	atomic	scale	each	{112}	plane	can	be	
decomposed	into	two	alternating	{110}	planes,	and	each	{123}	plane	can	be	decomposed	in	
three	{110}	planes.	Figure	6	(b)	depicts	the	crack	surface	colored	accordingly	to	the	slip	plane	
identified	by	the	smoothing	procedure.	Even	at	a	coarser	scale	the	crack	propagates	exploiting	
all	slip	plane	families.	This	observation	not	only	reinforces	the	need	to	include	all	sets	of	slip	
planes	when	simulating	BCC	materials	(Rovinelli	et	al.,	2017b;	Weinberger	et	al.,	2013),	but	
shows	that	small	crack	propagation	is	a	multiscale	phenomenon.	
	

	
Figure	7.	Schematics	depicting	a	single	unit	cell	of	a	BCC	crystal.	Blue	spheres	represent	atoms,	arrows	slip	direction,	and	colored	
surfaces	and	lines	slip	planes.	Subfigures	(a-c)	depict	the	{011) 111 ,	{112) 111 ,	and {123) 111 	slip	systems,	respectively.	
(d)	A	geometrical	representation	of	a	slip	direction	and	several	slip	planes	revolving	around	it.	(e)	A	schematic	representing	the	
distance	(in	degree)	between	all	the	slip	planes	embedded	into	a	single	slip	direction.	(f)	A	unit	cell	of	a	BCC	crystal	highlighting	
the	four	independent	slip	directions.	

The	short	straight	black	lines	depicted	in	Figure	6	(b)	represents	slip	directions	
embedded	into	the	assigned	plane	of	failure.	BCC	metals	have	48	slip	systems,	which	are	
divided	into	three	families	and	partitioned	as	follow:	
	

• 12	-	 011 111 	
• 12	-	{112} 111 	
• 24	-	{123} 111 		
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Counting	the	number	of	independent	slip	plane,	it	can	be	found	that	there	are	6	unique	{110},	
12	unique	{112},	and	24	unique	 123 	slip	planes,	for	a	total	of	42.	On	the	other	hand,	only	
four	independents	 111 	slip	directions	exist	(see	Figure	7	(f)).	Therefore,	many	slip	systems	
must	share	the	same	slip	direction.	Figure	7	(a-c)	are	schematics	representing	the	set	of	3	
{011) 111 ,	3	{112) 111 ,	and	6 {123) 111 	slip	systems,	for	a	total	of	12.	Plotting	all	the	slip	
planes	associated	with	a	specific	slip	direction	in	a	single	unit	cell	unveils	their	spatial	
arrangement	(Figure	7	(d,e)).	

Taylor	and	Elam	showed	that	the	plastic	deformation	mechanism	in	BCC	metals	is	quite	
different	from	the	one	observed	in	FCC	materials	(Taylor	and	Elam,	1926).	This	difference	can	
be	related	to	the	crystalline	structure	and	the	inherited	dislocation	dynamics.	In	fact,	FCC	
crystals	possess	only	four	close-packed	slip	planes,	in	which	only	two	share	the	same	slip	
direction.	In	contrast,	BCC	crystals	have	twelve	different	slip	planes	embedding	the	same	slip	
direction.	Dislocations	are	allowed	to	cross-slip	(i.e.	change	slip	plane)	only	if	their	Burgers	
vector	(i.e.	the	slip	direction)	is	preserved	(Hull	and	Bacon,	2011).	Hence	for	a	dislocation	gliding	
on	a	slip	plane	in	a	FCC	material	there	is	only	one	option	for	cross-slip	at	an	angle	of	109.47°,	
while	in	a	BCC	material	there	are	eleven	candidates.	Moreover,	considering	the	nearest	
neighbors,	in	BCC	crystals	the	maximum	cross-slip	angle	is	19.10°,	while	the	minimum	is	10.89°	
(see	Figure	7	(e)).	Given	such	slip	plane	arrangements,	it	is	likely	that	more	than	one	slip	plane	
is	subject	to	similar	micromechanical	fields,	thus	making	a	slip	plane	analysis	almost	useless.	
Hence,	in	this	work,	the	slip	direction	based	modeling	approach	is	adopted.	This	approach	not	
only	is	consistent	with	pencil-glide	deformation	mechanism,	but	also	reduces	the	number	of	
degrees	of	freedom	required	to	predict	the	crack	propagation	direction	from	48	(e.g.	the	
number	of	slip	systems)	to	4	(e.g.	number	of	slip	directions).	

Figure	6	(c)	depicts	the	crack	surface	colored	by	the	failure	cycle	number.	Moreover,	the	
black	short	lines	represent	the	slip	direction	associated	with	the	slip	planes	identified	by	the	
smoothing	algorithm.	The	blue	vectors	represent	the	imposed	propagation	path	assuming	a	
corner	crack	with	a	unique	center.	The	transition	between	each	crack	step	(e.g.	color)	is	
strikingly	better	reproduced	by	following	the	slip	directions	(i.e.	short	straight	lines)	rather	than	
assuming	the	propagation	event	originates	from	a	unique	crack	center	(i.e.	blue	vectors).	This	
correlation	is	not	only	evident	close	to	the	notch,	but	is	also	visible	in	later	stages	on	the	region	
highlighted	by	the	dashed	magenta	rectangle	(Figure	6	(c)).	We	hypothesize	that	the	reason	for	
the	agreement	between	the	crack	propagation	direction	and	the	slip	directions	is	linked	to	the	
propensity	of	BCC	materials	to	deform	accordingly	to	the	pencil-glide	model.	
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Figure	8.	Comparison	of	the	computed	𝐷𝐹	(Equation	6)	applying	the	three	proposed	data-mining	procedures.	Figure	8	is	
organized	as	a	table.	The	columns,	subfigures	(a,c,e)	and	(b,d,f),	depict	results	for	cycle	34k	and	70k,	repsectivley.	The	rows,	
subfigures	(a,b),	(c,d),	and	(e,f),	correspond	to	results	obtained	by	appling	the	1D,	2D,	and	3D-DMP,	respectively.	Red	lines	
represent	FSD,	and	blue	lines	repsents	NFSD.	Moreveor,	different	line	styles	represent	different	quartiles:	(i)	dotted	lines	
represent	the	first	quartile	(i.e.	Q1),	(ii)	continuous	lines	represent	the	second	quartile	(i.e.	Q2),	and	(iii)	dashed-dotted	lines	
represent	the	third	quartile	(Q3).	Mathematically,	Q1,	Q2,	and	Q3	represent	values	of	a	distributed	variable	where	its	cumulative	
distribution	function	corresponds	to	25%, 50%,	and	75%,	respectively.		

	
Figure	8	depicts	values	of	the	𝐷𝐹	(Equation	6)	computed	by	applying	the	three	proposed	

DMPs	for	two	different	crack	snapshots	(i.e.	cycle	34k	and	70k).	Moreover,	to	gain	some	insight	
on	the	ability	of	𝐷𝐹	to	statistically	capture	the	SC	path	data	is	partitioned	between	the	FSD	(i.e.	
red	lines)	and	NFSD	(i.e.	blue	lines),	and	a	quartile	analysis	is	performed	(see	Figure	8	caption	
for	details).	As	a	note,	𝑄1,	𝑄2,	and	𝑄3	(i.e.	quartiles)	are	values	at	which	the	cumulative	
distribution	function	corresponds	to	25%, 50%,	and	75%,	respectively.		

Focusing	on	one	crack	snapshot	at	a	time	(e.g.	cycle	34k,	Figure	8	(a,c,e))	and	comparing	
results	of	the	three	proposed	data	mining	procedures	with	each	other	(e.g.	comparing	Figure	8	
(a)	with	Figure	8	(c))	only	minor	differences	in	the	location	of	each	quartile	can	be	observed.	
Noticeable	variations	are	confined	between	the	crack	tip	and	a	distance	smaller	than	2 𝜇𝑚.	It	
has	already	been	mentioned	that	results	at	the	crack	tip	will	be	discarded	to	avoid	the	influence	
of	numerical	instabilities.	However,	some	discussion	is	required	to	explain	the	observed	
variations.		
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Comparing	the	location	of	the	third	quartile	of	the	FSD	(i.e.	red,	dashed-dotted	line)	of	
the	1D-DMP	and	2D-DMP	(i.e.	comparing	Figure	8	(a)	with	Figure	8	(c)),	the	latter	exhibits	
higher	values.	The	opposite	is	true	comparing	results	of	the	2D-DMP	with	the	ones	of	the	3D-
DMP	(e.g.	comparing	Figure	8	(c)	with	Figure	8	(e)).	The	2D-DMP	mitigates	local	perturbation	in	
the	micromechanical	fields	associated	to	the	tortuous	nature	of	the	crack	front	better	than	the	
1D-DMP.	Moreover,	results	obtained	via	the	3D-DMP	may	underestimate	the	upper	bound,	due	
to	excessive	averaging	outside	the	region	of	interest	(i.e.	the	plastic	zone),	which	is	limited	in	
size	for	high	cycle	fatigue	regimes.	

The	small	influence	of	the	regularization	region	on	the	distribution	of	FIPs	has	been	
reported	by	Castelluccio	and	McDowell	(2015),	suggesting	that	bands	(i.e.	thick	plates)	should	
be	preferred	to	predict	crack	nucleation	in	FCC	metals.	However,	in	this	work,	the	focus	of	the	
analysis	is	SC	propagation	and	not	nucleation.	Since	a	SC	propagates	by	increasing	its	area	and	
dislocation	motion	is	predominantly	a	planar	phenomenon	in	this	alloy,	the	2D-DMP	procedure	
has	been	selected.	

As	mentioned	earlier,	the	ability	of	the	proposed	driving	force	to	discern	between	the	
FSD	and	NFSD	can	be	elucidate	through	statistical	analysis.	If	the	quartiles	(i.e.	Q1,	Q2,	and	Q3)	
of	two	different	distributions	overlap,	it	follows	that	the	two	distributions	are	similar.	Focusing	
on	Figure	8	(c),	it	can	be	noticed	that	lines	representing	the	first	and	second	quartile	(i.e.	Q1	
and	Q2)	of	the	FSD	and	NFSD	almost	overlap	along	the	examined	length.	Examining	the	third	
quartile	(i.e.	Q3),	data	shows	that	the	FSD	exhibit	a	higher	value	at	the	crack	tip	compared	to	
NFSD,	but	this	trend	is	reversed	while	moving	away	from	the	crack	tip.	Therefore,	no	clear	
conclusion	can	be	drawn	from	this	case.	A	different	trend	is	observed	investigating	results	of	
cycle	70k	(Figure	8	(d)),	where	the	two	distributions	are	almost	offset	by	one	quartile	(see	inset	
in	Figure	8	(d)	for	a	schematic	representation).	In	this	scenario,	Q1	of	the	FSD	almost	overlap	
with	Q2	of	the	NFSD,	and	Q2	of	the	FSD	is	higher	than	Q3	of	the	NFSD,	thus	there	is	a	significant	
distance	between	values	computed	for	the	FSD	and	NFSD.	

From	a	micromechanical	perspective,	the	above	analysis	entails	that	when	the	crack	
starts	to	propagate	(e.g.	cycle	34k)	the	micromechanical	fields	of	FSD	and	NFSD	do	not	show	a	
strong	statistical	difference.	At	cycle	34k,	the	crack	is	so	minute	(see	Figure	6	(c))	that	the	
imposed	stress-field	is	insufficient	to	generate	enough	plasticity	to	clearly	distinguish	between	
the	FSD	and	NFSD.	This	effect	may	also	be	amplified	by	the	CP-FFT	formulation,	where	the	crack	
cannot	be	considered	perfectly	sharp.	Conversely,	at	cycle	70k,	the	crack	has	propagated	to	a	
substantial	length,	thus	imposing	a	stronger	stress	field.	The	latter	results	in	more	distinct	
distributions	of	FSD	and	NFSD.	The	above	entails	that	the	𝐷𝐹	can	statistically	capture	the	
difference	between	a	FSD	and	a	NFSD,	therefore	further	sustaining	the	slip	direction	based	
modeling	for	SC	propagation	in	BCC	metals.	Moreover,	considering	that	cycle	70k	represents	
the	longest	crack	analyzed	in	this	work	and	the	results	of	all	the	proposed	procedures	exhibit	
saturation	before	6 𝜇𝑚	(see	Figure	8	(b,d,f)),	𝑙! = 6.3 𝜇𝑚	has	been	selected.	
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3.2 Probabilistic small crack propagation framework  
	
Table	3.	Overall	performance	of	the	trained	Bayesian	network.	Specifically:	(a)	and	(b)	shows	overall	reliability	and	precision	of	
𝐵𝑁!"! 	and	of	𝐵𝑁!",	respectively;	(c)	represents	the	distribution	of	the	predictions	obtained	via	𝐵𝑁!".	

	
	

As	described	earlier,	Bayesian	networks	are	utilized	to	establish	the	posterior	probability	
of	failure	of	a	slip	direction	and	its	associated	FCGR	in	a	non-local	fashion,	by	imposing	
computed	values	of	the	𝐷𝐹.	Table	3	(a)	and	(b)	depicts	performance	of	𝐵𝑁!"! 	and	𝐵𝑁!",	
respectively.	The	overall	reliability	and	precision	of	𝐵𝑁!"! 	are	close	to	80%,	while	the	ones	of	
𝐵𝑁!" 	are	close	to	64%.	Therefore,	𝐵𝑁!"! 	can	be	considered	reliable	and	capable	of	accurately	
replicating	the	experimental	observations,	while	results	of	𝐵𝑁!" 	need	to	be	further	discussed.	
First,	it	should	be	mentioned	that	𝐵𝑁!"! 	is	a	binary	classifier	(i.e.	a	slip	direction	can	be	
classified	only	as	a	FSD	or	NFSD),	while	𝐵𝑁!" 	is	a	multi-label	classifier	(i.e.	the	FCGR	is	a	
continuous	variable	discretized	into	five	intervals).	Furthermore,	the	crack	surface	encompasses	
only	few	grains,	and	data	representing	the	FCGR	is	limited	to	a	few	hundred	points,	hence	the	
data	set	utilized	to	train	𝐵𝑁!" 	may	not	be	rich	enough	to	capture	the	overall	FCGR	behavior.	
Table	3	(c)	shows	the	distribution	of	prediction	obtained	with	𝐵𝑁!" 	with	respect	to	the	
experimental	data,	which	is	computed	by	averaging	the	confusion	matrix	(i.e.	the	matrix	
comparing	the	number	experimental	observations	and	prediction	results	for	each	bin).	As	
noted,	the	framework	generates	an	almost	symmetrical	distribution	of	under	and	over-
estimated	FCGR	(i.e.	16%	and	20%,	respectively).	The	symmetric	distribution	of	incorrect	
predictions	shows	that	𝐵𝑁!" 	parameters	are	not	over-fit	and	strengthen	the	hypothesis	that	
not	enough	data	is	present	to	accurately	capture	the	overall	FCGR	behavior	and	it	is	
comparable	with	experimental	measurements	errors	given	the	size	of	the	crack	and	utilized	
spatial	resolution.	Moreover,	the	proposed	𝐷𝐹	shows	much	better	prediction	quality	than	
locally	computed	FIPs	(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≈ 37%,	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≈ 31%,	Rovinelli	et	al.,	2017).	
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Figure	9:	(a)	Spatial	correlation	between	the	proposed	non-local	small	crack	driving	force	and	the	distance	from	the	crack	front	
and	the	associated	regression	line.	(b)	Violin	plots	comparing	normalized	distributions	of	the	computed	driving	force	values	as	a	
function	of	the	distance	from	the	crack	front;	symbols	“∘”	and	“×”	represent	mean	value	of	the	FSD	and	NFSD,	respectively.	(c)	
Posterior	probability	of	failure	given:	the	distance	from	the	crack	front	and	the	value	of	the	𝐷𝐹.	

The	strength	of	the	correlations	embedded	in	the	Bayesian	networks	probability	tables	
can	be	quantified	utilizing	𝑁𝑀𝐼	(Equation	10).	Specifically,	the	correlation	between	the	
probability	of	failure,	and	the	dissipated	energy	is	computed	as	follows:	

𝜒 𝑠 = 𝑁𝑀𝐼 𝐹𝑛𝐹, log!" 𝐷𝐹 𝑠 	  Equation	25	

Hence,	a	correlation	value	is	obtained	for	each	spatial	location	𝑠	(i.e.	for	each	attribute	
node	of	𝐵𝑁!"!).	Figure	9	(a)	depicts	the	spatial	relationship	between	𝜒	and	the	distance	from	
the	crack	front	and,	as	mentioned	in	Section	2.3.1,	the	value	of	𝜒	represents	the	reduction	in	
uncertainty	on	the	probability	of	the	crack	to	propagate	along	a	given	slip	direction.	The	
correlation	increases	almost	monotonically	moving	away	from	the	crack	tip,	noting	that:	(i)	this	
trend	will	not	continue	indefinitely,	(ii)	the	variation	in	magnitude	of	𝜒	is	limited,	and	(iii)	the	

(a) (b)

(c)

distance from the crack front [µm]
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correlation	has	been	computed	in	logarithmic	space	to	capture	the	influence	of	micro-plasticity	
away	from	the	crack	tip.	

To	unveil	the	reason	beneath	the	observed	unexpected	trend,	raw	distributions	of	the	
proposed	driving	force	need	to	be	investigated	in	more	detail.	Figure	9	(b)	depicts	normalized	
distributions	of	the	computed	𝐷𝐹	for	the	different	representative	values.	Moreover,	all	the	
data	belonging	to	the	training	dataset	of	𝐵𝑁!"! 	has	been	used.	Distributions	are	graphed	
separately	for	the	FSD	(i.e.	red)	and	NFSD	(i.e.	blue).	Symbols	denote	mean	values	of	the	
graphed	distributions.	

Mean	values	confirms	the	trend	observed	in	Figure	8	(d).	Focusing	on	distributions	
shape	and	range,	the	following	tendencies	are	detected:	(i)	distributions	representing	NFSDs	do	
not	show	localized	high-density	regions	and	exhibits	long	tails	towards	low	values,	and	(ii)	
distributions	depicting	FSDs	are	almost	normal,	exhibits	pronounced	tails	towards	high	values,	
and	the	probability	of	their	modal	value	(i.e.	the	most	frequent)	increases	with	distance.	
Moreover,	while	moving	away	from	the	crack	tip	the	range	of	shared	values	between	the	FSD	
and	NFSD	diminish.		

Thus,	it	becomes	apparent	why	better	correlations	are	observed	away	from	the	crack	
tip.	For	instance,	close	to	the	crack	tip	(e.g.	0.7 < 𝑠 < 1.4 𝜇𝑚)	the	distributions	representing	
the	FSD	and	NFSD	share	a	broad	range	of	values	and	exhibits	almost	comparable	densities.	
Therefore,	observing	a	value	of	the	𝐷𝐹	belonging	to	their	shared	region	does	not	provide	useful	
evidence	to	discern	between	a	FSD	and	NFSD,	therefore	lowering	the	correlation.	Far	away	
from	the	crack	tip	(e.g.	5.6 < 𝑠 < 6.3 𝜇𝑚),	distributions	are	more	distinct	than	in	the	previous	
case.	At	this	location,	the	range	of	shared	values	of	the	FSD	and	NFSD	is	smaller,	and	their	
probability	densities	are	dissimilar.	Therefore,	observing	a	computed	driving	force	value	in	the	
shared	region	will	provide	more	information	to	evaluate	the	posterior	probability	of	failure.		

To	quantify	the	effect	that	the	𝐷𝐹	has	on	the	posterior	probability	of	failure,	we	utilized	
the	Bayesian	network	framework	to	systematically	change	the	mean	of	each	attribute	node	and	
compute	the	associated	posterior	probability.	The	results	of	the	above	procedure	are	presented	
in	Figure	9	(c),	which	is	a	surface	representing	the	posterior	probability	of	failure	as	a	function	
of	the	𝐷𝐹	and	distance	from	the	crack	front.	It	should	be	noted	that	this	surface	can	be	used	
only	for	the	first	observation,	because	once	evidence	has	been	imposed,	the	joint	probability	
changes,	thus	altering	the	effect	of	the	next	observation.	

The	surface	in	Figure	9	(c)	exhibits	a	sigmoidal	shape	and	it	can	be	associated	to	a	
multidimensional	logistic	regression.	Therefore,	the	contour	line	representing	50%	probability	
can	be	interpreted	as	the	threshold	value	for	failure,	while	the	range	of	the	𝐷𝐹	between	low	
and	high	probability	(e.g.	between	30%	and	70%)	are	indicative	of	the	overall	uncertainty.		
Moreover,	values	of	the	𝐷𝐹	are	proportional	in	logarithmic	space	to	the	posterior	probability	of	
failure,	supporting	the	previous	discussion	and	being	in	accordance	with	the	premise	that	the	
amount	of	plasticity,	or	any	of	its	associated	quantities,	is	directly	correlated	to	the	probability	
of	failure.	Furthermore,	the	range	of	the	posterior	probability	slightly	increases	moving	away	
from	the	crack	front	accordingly	to	the	trend	exhibited	by	the	correlations	in	Figure	9	(a).	

The	above	results	can	also	be	explained	from	a	micromechanical	perspective.	In	the	
proximity	of	the	crack	tip,	the	imposed	stress	field	is	so	intense	that	multiple	dislocations	with	
distinct	Burgers	vectors	(George	and	Michot,	1993)	are	emitted.	In	BCC	materials,	the	
abundance	of	slip	planes	aids	the	above	process	and	explains	comparable	densities	of	the	𝐷𝐹	
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distributions	for	a	FSD	and	NFSD	in	proximity	of	the	crack	front	(see	Figure	9	(b),	0.7 < 𝑠 <
1.4 𝜇𝑚).	Away	from	the	crack	tip,	the	stress	field	imposed	by	the	presence	of	the	crack	decays	
proportionally	to	1 𝑠,	reducing	the	number	of	slip	systems	favorably	oriented	for	dislocations	
glide.	Far	away	from	the	crack	tip,	a	FSD	is	much	more	likely	to	show	a	high	value	of	the	𝐷𝐹	
than	a	NFSD	(Figure	9	(b),	5.6 < 𝑠 < 6.3 𝜇𝑚),	suggesting	that	slip	directions	embedded	in	larger	
plastic	zones	are	the	preferred	direction	for	failure.	Therefore,	supporting	the	proposition	that	
SC	propagation	is	a	non-local	phenomenon	driven	by	micro-plasticity	at	the	edges	of	the	plastic	
zone	(Devincre	and	Roberts,	1996).		

The	above	findings	also	suggest	that	some	care	should	be	used	when	utilizing	a	scalar	
quantity	(such	as	a	FIP)	as	the	small	crack	driving	force.	The	reasons	are	two-fold:	(i)	if	the	FIP	is	
computed	by	sampling	data	at	a	specific	distance	from	the	crack	front	(e.g.	as	if	only	one	
representative	values	is	used),	then	the	best	distance	to	sample	values	needs	to	be	identified	
and	(ii)	if	the	FIP	is	computed	by	averaging	along	a	specific	region	(e.g.	averaging	several	
representative	values,	Castelluccio	et	al.,	2016;	Musinski	and	McDowell,	2016)	then	care	should	
be	used,	because	the	correlation	is	a	function	of	the	distance.	A	more	robust	strategy	to	
compute	a	scalar	FIP	is	to	sample	while	moving	away	from	the	crack	front	until	a	
predetermined	threshold	value	of	the	FIP	is	found,	and	only	then	compute	a	density.	This	
method	helps	to	account	for	the	plastic	zone	size	and	micro-plasticity	ahead	of	the	crack.	



	 28	

	
Figure	10.	Results	of	the	small	crack	growth	propagation	framework	compared	to	experimental	observations.	Rows	1-4	(i.e.	
subfigures	(a,b,c),	(d,e,f),	(g,h,i),	and	(j,k,l))	represent	different	crack	snapshots.	Columns	1-3	(i.e.	subfigures	(a,d,g,j),	(b,e,h,k),	
and	(c,f,i,l))	depict	experimental	observations,	predictions	of	the	FSD,	and	predictions	of	the	FCGR,	respectively.	The	vectors'	
length	is	proportional	to	the	observed	or	computed	FCGR.	Histograms	in	Columns	2	and	3	summarize	the	distributions	
representing	the	amount	of	correctly	predicted	FSDs	and	of	correctly,	over,	and	under-estimated	FCGR	predictions.		
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Figure	10	compares	results	obtained	by	utilizing	the	proposed	small	crack	propagation	
framework	with	experimental	observations	for	different	crack	snapshots.	All	the	subfigures	
depict	the	crack	surface	colored	by	cycles	to	failure	(i.e.	from	black	to	white),	in	which	darker	
regions	represent	grain	boundaries.	Vectors	on	the	crack	surface	represent	slip	directions	(see	
Figure	10	caption	for	detail)	and	begin	at	the	crack	front.	The	vectors’	length	is	proportional	to	
the	observed	or	computed	FCGR.	At	each	crack	front	location,	if	the	predicted	FSD	is	the	same	
as	the	experimentally	observed	one,	then	it	is	classified	as	correct	(e.g.	green,	Figure	10	
(b,e,h,k)).	Moreover,	for	correctly	predicted	FSD,	the	computed	FCGR	is	compared	against	
experimental	observations	(Figure	10	(c,f,i,l))	and	classified	as	correct	(i.e.	green),	
underestimated	(i.e.	red)	or	overestimated	(i.e.	blue).	The	above	classification	is	performed	by	
quantizing	predictions	accordingly	to	the	discretized	FCGR	distribution	(see	Appendix	B	for	bin	
edges).	Histograms	in	Figure	10	(b,e,h,k)	depict	the	distribution	of	correctly	captured	FSDs,	and	
the	ones	in	Figure	10	(c,f,i,l)	represent	the	distribution	of	the	FCGR	predictions.		

The	analyzed	crack	snapshots	have	been	selected	as	follows:	(i)	cycle	34k	and	70k	are	
the	first	and	last	analyzed	propagation	cycles,	(ii)	cycle	53k	represents	the	crack	snapshot	
exhibiting	the	worst	predictions,	and	(iii)	cycle	60k	is	a	representative	example	of	the	mean	
predictive	performance	of	the	framework.	The	propagation	of	the	analyzed	crack	proceeds	as	
follows	(see	Figure	10	(a)	for	grain	nomenclature):		

1. At	cycle	34k,	the	crack	propagates	from	the	notch	on	one	of	the	available	{112}	planes	
available	in	Grain	1.	The	observed	FCGR	is	almost	uniform.	

2. At	cycle	53k,	the	crack	partially	propagated	into	Grains	1	and	3,	and	it	is	pinned	at	the	
GB	between	Grains	1	and	2.	The	portion	of	the	crack	still	embedded	in	Grain	1	is	
switching	the	plane	of	propagation	from	the	initial	{112}	to	two	distinct	{110}	planes	
(orange	and	magenta	box	in	Figure	10	(d)).	At	this	stage,	a	big	ligament	of	material	is	
present	in	Grain	1	(see	magenta	box	in	Figure	10	(d)).	Propagation	in	Grain	3	occurred	
on	a	{110}	plane.	

3. At	cycle	60k	the	ligament	has	almost	failed;	the	crack	crossed	the	GB	between	Grains	1	
and	2	propagating	on	one	of	the	available	{123}	planes	in	Grain	2.	In	Grain	1,	the	crack	
is	still	propagating	on	a	{110}	plane.	Grain	3	has	almost	failed.	

4. At	cycle	70k,	Grain	3	failed,	the	crack	is	propagating	in	Grain	2	on	the	{123}	plane	and	is	
almost	completely	intragranular.	

	
The	spatially-resolved,	small	crack	propagation	framework	correctly	predicts	60%	of	the	

analyzed	crack	front	locations	when	establishing	the	propagation	direction,	and	of	the	above	
60%,	it	properly	estimates	the	FCGR	55%	of	the	time.	However,	the	amount	of	correct	
predictions	is	dependent	upon	the	crack	front	location.		

In	general,	when	the	crack	front	is	mainly	intragranular	(e.g.	cycles	34k,	60k	and	70k,		
Figure	10	(a,b,c),	(g,h,i)	and	(j,k,l),	respectively)	the	amount	of	correct	predictions	is	higher	
compared	to	the	overall	rate,	and	incorrect	predictions	do	not	spatially	cluster	together.	
Conversely,	when	a	significant	portion	of	the	crack	front	becomes	intergranular,	a	significant	
reduction	in	the	quality	of	prediction	is	observed.	The	above	scenario	is	illustrated	by	cycle	53k	
(i.e.	Figure	10	(e,f)).	Specifically,	a	high	density	of	incorrectly	selected	FSDs	and	overestimated	
FCGR	can	be	found	in	the	proximity	of	the	GB	between	Grains	1	and	2.	Nevertheless,	after	the	
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crack	overcomes	the	GB	(e.g.	cycles	60k	and	70k,	Figure	10	(h)	and	(k),	respectively),	the	
framework	recovers	its	ability	to	predict	both	the	FSD	and	FCGR.		

As	mentioned,	the	FCGR	reconstruction	procedure	requires	a	minimum	available	
distance	𝑙!	between	the	crack	front	and	the	first	GB,	otherwise	the	analyzed	slip	direction	is	not	
sampled.	Therefore,	some	degradation	of	predictive	performance	is	expected	in	the	proximity	
of	a	GB.	Another	factor	decreasing	the	percentage	of	correct	predictions	for	the	above	scenario	
may	be	the	limited	amount	of	data	available	for	it.	In	fact,	through	all	the	3DXTSM	results,	only	
in	a	few	instances,	the	distance	between	the	crack	front	and	GBs	is	suitable	to	capture	the	
interaction	between	them.	Therefore,	it	can	be	inferred	that	the	proposed	framework	is	able	to	
statistically	reproduce	the	behavior	of	a	tortuous	small	crack	propagating	in	a	polycrystalline	
BCC	alloy,	if	most	of	the	crack	front	does	not	interact	with	the	GBs.	

	
3.3 Small crack – grain boundary interaction 

	
Figure	11.	Correlation	between	the	computed	slip	transmission	criteria	with	respect	to	their	experimental	value.	The	legend	
shows	equations	of	the	investigated	slip	transmission	criteria	(for	name,	reference,	and	description	refer	to	Table	2).	The	
dashed-dotted	line	represents	the	perfect	correlation.	(b)	Schematic	representing	the	formations	of	steps	on	a	crack	surface	
after	propagating	in	the	adjacent	grain	while	minimizing	the	residual	Burger	vector.	

As	explained,	the	proposed	propagation	framework	exhibits	limited	predictive	
capabilities	when	a	portion	of	the	crack	front	impinges	upon	a	GB.	Therefore,	several	slip	
transmission	criteria	have	been	scrutinized	to	establish	the	predictive	nature	for	the	plane	or	
direction	of	failure	when	the	small	crack	crosses	a	GB.	Moreover,	when	performing	the	analysis	
all	slip	plane	families	(i.e.	{110},	{112},	and	{123})	have	been	considered	as	suggested	by	Schäf	
et	al.	(2013).		

Figure	11	(a)	illustrates	the	results	obtained	by	applying	the	selected	criteria	(Equations	
15-21)	and	comparing	them	with	experimental	results.	The	dashed	dotted	line	is	the	reference	
for	correct	predictions.	Black	and	colored	symbols	represent	slip	planes,	and	slip	directions	
based	criteria,	respectively.		

Inspecting	Figure	11	(a),	it	is	evident	that	only	one	of	the	investigated	slip	transmission	
criteria	exhibit	a	high	correlation	between	experimental	results	and	calculations,	particularly	
the	minimization	of	the	Burgers	vector	(i.e.	red	diamond,	Lee	et	al.,	1989).	Sangid	et	al.	(2011)	
investigated	slip	transmission	and	nucleation	at	GBs	in	pure	Nickel,	observing	that	the	criterion	
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proposed	by	Lee	et	al.	(1989)	provides	an	exact	match	with	results	of	molecular	dynamics	
simulations.	Recently,	Schäfer	et	al.	(2016)	experimentally	investigated	the	resistance	of	the	
GBs	to	slip	transmission	in	a	Nickel-based	superalloy	and	confirmed	that	the	minimal	Burgers	
vector	is	key	to	establish	the	active	slip	system	in	the	adjacent	grain.	Conversely,	all	slip	plane-
based	transmission	criteria	show	poor	correlations.	Most	of	the	predictions	can	be	found	in	
upper	region	of	Figure	11	(a)	meaning	that	a	well	aligned	slip	system	is	always	present	in	the	
adjacent	grain.	Therefore,	for	BCC	materials	slip	plane-based	transmission	criteria	are	not	good	
candidates	to	predict	on	which	slip	system	the	SC	propagates	after	crossing	a	GB.		

Alternating	green	and	purple	striations	visible	on	the	crack	surface	within	Grains	1	and	3	
in	Figure	6	(a)	can	also	be	explained	by	the	minimization	of	the	residual	Burger	vector.	The	line	
of	intersection	between	a	small	crack	and	a	GB	plane	is	not	straight	because	the	crack	surface	is	
tortuous	and	the	GB	plane	has	a	curvature.	Due	to	the	minimization	of	the	residual	Burgers	
vector,	steps	on	the	crack	surface	will	appear	at	locations	in	which	the	line	of	intersection	
exhibits	strong	deflections.	Once	a	step	appears	on	the	crack	front,	it	persists	throughout	the	
propagation	process	and	its	wake	generates	a	striation	aligned	with	the	crack	propagation	
direction.	Experimental	results	suggest	that	these	striations	are	crystallographic	in	nature	
(Figure	6	(a)).	Figure	11	(b)	is	a	schematic	depicting	the	above	mechanism.	Finally,	we	note	that	
the	minimization	of	the	residual	Burgers	vector	may	be	embedded	in	the	proposed	propagation	
framework	to	improve	the	predictions	when	the	crack	impinges	upon	a	GB.	
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4 Conclusions 
In	this	work,	3DXTSM	results	were	coupled	with	CP-FFT	simulations	to	investigate	the	behavior	
of	a	small	crack	propagating	through	a	beta	titanium	alloy.	On	the	premise	that	BCC	materials	
deform	accordingly	to	a	pencil-glide	model,	3DXTSM	results	have	been	reinterpreted	
accordingly.	
	
Experimental	data	shows	that	during	the	early	stages	of	crack	propagation,	the	FCGR	better	
aligns	with	slip	direction	rather	than	with	the	radial	line	starting	from	a	single	crack	center.	
Therefore,	a	slip	direction	modeling	approach	has	been	proposed,	resulting	in:	

• A	reduction	in	the	number	of	degrees	of	freedom	required	to	describe	the	small	crack	
propagation.	From	42	slip-planes	to	4	slip-directions.	

• A	slip	direction	based	non-local	data	mining	procedure,	complemented	by	different	
regularization	schemes.		

• A	non-local	small	crack	driving	force	based	on	the	dissipated	energy	accumulated	along	
a	slip	direction.		
	

To	analyze	the	results	of	the	pencil-glide	modeling	approach,	a	data	driven,	spatially-resolved	
non-local	probabilistic	small	crack	propagation	framework	has	been	developed.	Results	show	
that:	
	

• The	SC	problem	can	be	divided	into	two	separate	problems:	(i)	identify	the	direction	of	
propagation	(i.e.	FSD)	and	(ii)	estimate	the	propagation	rate	of	the	FSD.	

• The	non-local	driving	force	statistically	captures	the	difference	between	a	FSD	and	
NFSD.	

• Correlations	between	the	proposed	driving	force	and	the	observed	propagation	
behavior	are	spatially	dependent.	Specifically,	a	slight	increase	is	observed	moving	away	
from	crack	front,	confirming	that	for	high	cycle	fatigue,	SC	propagation	is	a	non-local	
phenomenon	driven	by	micro-plasticity	at	the	edge	of	the	plastic	zone.	Based	on	the	
above,	care	has	been	advised	when	using	a	scalar	driving	force,	and	a	methodology	to	
mitigate	the	effect	of	spatially	varying	correlations	has	been	proposed.	

• The	propagation	framework	exhibits	consistent	predictions	for	intragranular	cracks,	thus	
making	it	suitable	to	evaluate	the	path	of	tortuous	cracks.	However,	a	degradation	in	
performance	is	observed	when	a	considerable	portion	of	the	crack	front	interacts	with	a	
grain	boundary.	

• The	predictions	of	the	FSD	are	accurate	60%	of	the	time,	and	the	FCGR	is	correctly	
captured	55%	of	the	times.	These	results	are	a	noticeable	improvement	compared	to	
Rovinelli	et	al.	(2017),	where	locally	computed	FIPs	show	an	average	reliability	between	
33%	and	41%.	

	
Moreover,	to	elucidate	the	interaction	between	a	SC	and	a	GB,	several	slip	transmission	criteria	
have	been	selected	and	applied	to	3DXTSM	results.	The	analysis	shows	that	in	BCC	materials	a	
SC	impinging	upon	a	GB	propagates	in	the	adjacent	grain	accordingly	to	the	slip	direction	
minimizing	the	residual	Burgers	vector.	The	minimization	of	the	residual	Burgers	vector	
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together	with	the	non-straight	line	of	intersection	between	a	SC	and	GB	also	explains	the	
formation	of	striations	of	the	crack	surface	in	adjacent	grain	parallel	to	the	direction	of	crack	
propagation.	
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6 Appendix  
A: Direction based fatigue crack growth rate reconstruction algorithm 
A.1 Standard procedure 
The	standard	procedure	to	reconstruct	the	crack	growth	rate	is	the	following:	

1. Squeeze	the	3D	crack	front	on	the	plane	perpendicular	to	the	loading	axis	(i.e.	the	crack	
plane).	

2. Identify	the	crack	center	of	the	crack	in	the	crack	plane.	
3. Construct	radial	lines	embedded	in	the	crack	average	plane	and	starting	from	the	center	

of	the	crack.	
4. Identify	intersection	between	the	lines	and	each	crack	front.	
5. Utilize	the	intersection	of	each	radial	line	with	two	subsequent	crack	fronts,	compute	

𝑑𝑁	and:	
a. compute	their	distance,	or	
b. project	the	line	connecting	the	subsequent	crack	front	on	the	actual	crack	

surface	and	then	compute	its	total	length.	
6. Compute	𝑑𝑎/𝑑𝑁	normalizing	the	result	of	Step	5	by	𝑑𝑁.	

	
Step	5(a)	gives	a	first	order	approximation,	which	is	reasonable	when	dealing	with	long	cracks.	
Step	5(b)	has	been	adopted	by	Herbig	et	al.	(2011)	and	Spear	et	al.	(2014),	it	accounts	for	the	
tortuosity	of	the	crack	surface,	therefore	increasing	the	fidelity	of	the	reconstructed	crack	
growth	rate.	The	latter	can	be	used	when	dealing	with	well-behaved	small	crack	(e.g.	no	
bifurcations	and	an	almost	ellipsoidal	front).		
	
A.2 Slip direction based reconstruction 
At	each	location	of	the	crack	front	the	following	algorithm	is	applied:	

1. Identify	the	cycle	number	of	the	selected	crack	front	(i.e.	𝑐𝑛! 	)	
2. Identify	the	corresponding	grain	orientation	and	compute	its	available	slip	directions.		
3. For	each	available	slip	direction	 𝑆𝐷 :	

a. Define	a	radial	coordinate	𝑠	starting	at	the	crack	front	and	aligned	with	𝑆𝐷		
b. Check	that	the	selected	𝑆𝐷	is	not	pointing	backward	(i.e.	is	going	behind	the	

crack	front).	If	this	statement	is	true	mark	the	𝑆𝐷	as	available	and	go	to	next	
step,	else	mark	the	𝑆𝐷	as	not-available	

c. Check	that	the	𝑆𝐷	is	embedded	in	the	crack	plane	(comparing	with	results	of	the	
macro	feature	tracking	algorithm)	and,	if	this	is	true	then	go	to	Step	3(d),	else	
mark	the	direction	as	non-failing.	

d. Follow	𝑆𝐷	for	a	predetermined	length	𝑙!	with	an	imposed	step	length	𝛥𝑠.	
e. For	each	step	record	the	failure	cycle	of	the	nearest	crack	surface	facet	(i.e.	𝑐𝑛!).	
f. Check	that	𝑐𝑛! 	is	ordered	in	an	ascending	manner	(i.e.	moving	further	from	the	

crack	front	the	cycle	of	failure	keep	increasing).	If	this	is	true	go	to	the	next	step,	
else	mark	the	𝑆𝐷	as	non-failing.	
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g. Compute	the	average	FCGR	along	𝑆𝐷	 𝑖. 𝑒.𝑑𝑎 𝑑𝑁 = 𝑙!
𝑐𝑛! − 𝑐𝑛!

 	and	mark	

𝑆𝐷	as	possibly	failing.	
4. Of	all	the	directions	marked	as	possibly	failing,	mark	the	one	exhibiting	the	highest	FCGR	

as	failing.	
	
In	this	work,	𝑙! = 6.3 𝜇𝑚	and	𝛥𝑠 = 0.35 𝜇𝑚.	The	reason	for	choosing	these	parameters	is	
explained	in	Section	3.1.			
	
As	a	note,	even	though	only	4	independents	 111 	slip	directions	exist,	the	mining	procedure	
needs	to	check	8	directions	to	account	for	the	conjugate	values.	For	example,	given	the	 111 	
direction,	its	inverse,	which	is	the	 111 	needs	to	be	checked.	
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Appendix B 
	
Table	4	and	Table	5	contain	the	edges	of	the	discretization	interval	obtain	by	utilizing	the	
genetic	algorithm	present	in	BayesiaLab.	
	
Table	4:	discretization	intervals	of	continuous	variable	for	BNFnF	

EDGE	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

DF(1)	 -Inf	 -9.473	 -8.223	 -7.131	 -6.120	 -5.249	 -4.502	 -3.634	 -2.521	 Inf	
DF(2)	 -Inf	 -9.704	 -8.498	 -7.539	 -6.638	 -5.867	 -5.107	 -4.108	 -2.700	 Inf	
DF(3)	 -Inf	 -10.093	 -8.722	 -7.646	 -6.639	 -5.831	 -5.115	 -4.065	 -2.809	 Inf	
DF(4)	 -Inf	 -10.609	 -9.161	 -8.042	 -7.035	 -6.177	 -5.285	 -4.193	 -3.015	 Inf	
DF(5)	 -Inf	 -10.914	 -9.435	 -8.322	 -7.328	 -6.462	 -5.674	 -4.798	 -3.365	 Inf	
DF(6)	 -Inf	 -11.475	 -9.855	 -8.976	 -7.838	 -6.597	 -5.753	 -4.874	 -3.418	 Inf	
DF(7)	 -Inf	 -12.402	 -10.011	 -9.064	 -7.830	 -6.602	 -5.704	 -4.771	 -3.336	 Inf	
DF(8)	 -Inf	 -12.675	 -10.368	 -9.096	 -7.902	 -6.677	 -5.902	 -5.002	 -3.520	 Inf	

	
	

Table	5:	discretization	intervals	of	continuous	variable	for	BNGR	

EDGE	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

FCGR	 -Inf	 0.0003	 0.0006	 0.0011	 0.0019	 Inf	 	     
DF(1)	 -Inf	 -8.028	 -6.877	 -6.100	 -5.566	 -5.055	 -4.517	 -3.845	 -3.132	 -2.316	 Inf	
DF(2)	 -Inf	 -8.099	 -6.874	 -6.202	 -5.670	 -5.203	 -4.639	 -4.038	 -3.272	 -2.330	 Inf	
DF(3)	 -Inf	 -8.489	 -6.778	 -6.116	 -5.684	 -5.200	 -4.515	 -3.611	 -2.473	 Inf	 	
DF(4)	 -Inf	 -8.665	 -6.994	 -6.385	 -5.816	 -5.285	 -4.540	 -3.614	 -2.572	 Inf	 	
DF(5)	 -Inf	 -8.830	 -7.069	 -6.492	 -5.932	 -5.453	 -4.819	 -3.889	 -2.627	 Inf	 	
DF(6)	 -Inf	 -8.797	 -7.127	 -6.588	 -6.077	 -5.704	 -5.222	 -4.261	 -3.044	 Inf	 	
DF(7)	 -Inf	 -8.928	 -7.151	 -6.660	 -6.210	 -5.875	 -5.443	 -4.833	 -4.147	 -2.936	 Inf	
DF(8)	 -Inf	 -8.956	 -7.172	 -6.620	 -6.084	 -5.617	 -4.990	 -4.188	 -2.891	 Inf	 	
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Appendix C: Macro feature tracking algorithm 
	

1. Divide	the	crack	surface	into	grains,	then	for	each	grain	
a. A	random	facet	is	selected	as	seed	point,	its	orientation	is	computed	and	the	

closest	available	slip	plane	is	selected	(minimizing	the	misorientation	angle).	
b. Utilizing	the	adjacency	matrix	of	the	crack	surface,	facets	in	a	small	region	

surrounding	the	seed	point	are	selected,	their	average	orientation	is	computed,	
and	assigned	to	the	closest	slip	plane.		

c. If	the	slip	plane	assigned	to	the	seed	point	is	the	same	as	the	one	assigned	to	its	
adjacent	region	(e.g.	if	the	selected	seed	point	belongs	to	a	flat	surface),	then	
the	selected	seed	region	is	marked	as	trustable	(i.e.	proceed	to	Step	1d),	if	not	
select	a	different	seed	point	(i.e.	go	back	to	Step	1a).	

d. Construct	an	analytic	representation	of	the	assigned	slip	plane	of	failure	
utilizing:	(i)	the	normal	of	the	assigned	plane	of	failure	and	(ii)	the	location	of	the	
trustable	seed	point.	Also,	record	the	slip	directions	available	for	the	assigned	
slip	plane.	

e. Identify	facets	neighboring	the	trustable	seed	region,	and	compute	the	distance	
between	their	barycenter	and	the	analytic	plane	of	failure.	All	the	facets	
showing	a	distance	smaller	than	an	imposed	threshold	are	marked	as	belonging	
to	the	assigned	plane	of	failure,	while	the	others	are	discarded.		

f. Repeat	Step	1e	until	no	more	suitable	neighboring	facets	can	be	found.		
g. Repeat	Steps	1a-1f	until	the	complete	area	of	the	crack	surface	belonging	to	the	

selected	grain	has	been	completely	assigned,	or	no	more	trustable	seed	region	
can	be	found.	

2. Repeat	Step	1	for	all	the	grains	embedding	the	crack	surface.	
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