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Abstract

Planning issues in a continuous domain in the presence of noise lead to impor-
tant modeling and computational difficulties. The game of billiards has offered
many interesting challenges to both communities of AI and Optimization. We
present a two-layered approach consisting in a high level planner and a low level
controller. We propose here a refined controller for billiards based on robust
optimization combined with specific adjustments to take advantage of the do-
main knowledge. A multi-objective formulation of a robust controller will be
presented to provide the tools needed to execute any desired shot on the table,
as part of a two-layered approach for the game of billiards. Some results will be
then shown, followed by a short discussion on future work.

1. Introduction

A lot of research is currently done in the AI and optimization community on
game-related problems, often in the form of robotics (Robocup challenge [12])
or computational games competitions (ICGA [16] and AAAI [1] conferences).
Some of these games hide very complex problems which humans are often able
to decompose very quickly but demand an important analysis if to be modeled
and solved by a computer. It is our belief that some of the most interesting
challenges can be found in the mixed continuous-discrete stochastic domain
problems, and in one example in particular, billiards.

In everyday world, many of the variables affecting our decisions are con-
tinuous, like the speed at which we drive a car, or the time spent to reach a
destination. Others are discrete, like the fact that we need to stop at one or two
places before our final destination. We usually benefit from a lot of knowledge
which was previously acquired to help us plan, and it is not an easy task to
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design efficient planning algorithms, as it is to gather this knowledge and orga-
nize it in an intelligent manner. As such, planning in a continuous domain with
noisy parameters, which is the case of billiards, usually requires a great deal of
analysis and domain knowledge. Adding a notion of continuity to the possible
actions, making them infinite, and considering the resulting state space to be
infinite as well, greatly complicates things. If we picture a planning in such a
domain in which one wishes to plan a sequence of actions to reach a specific
goal, our search will quickly become intractable.

If approaching these types problems from a human’s point of view, a simple
way to see things would be to divide them in two layers: planner and controller.
Indeed, when trying to devise a plan for a series of tasks to perform, it is
not necessary to plan every little detail with our planner. A simple general
assessment of the best targets to aim for to minimize the chances of mistakes
might be enough to provide us a general plan to proceed. We can then consult
our controller that will compute all the necessary details (strike force, angle...)
to provide us with precise information at base-level and let us know of the real
value of such a plan, and if indeed viable. Of course, not every domain can be
easily approached, and simply building an accurate and fast-enough simulator
is another problem of its own.

We will focus in this work on one particular well-known game and hobby,
billiards. A lot of work has already been published on this topic, usually on the
of the aspects of robotics ([22], [14], [20], [11], [25]), physics ([19], [6], [30], [29],
[21], [24]) or player AI ([27], [10], [3], [18]). The latter, notably an automated
decision-making process for this game, is the one which we will further discuss.

Billiards is a very interesting and challenging game, characterized by the
presence of a theoretically infinite set of possible shots, each of which leading to
a different outcome, thus creating a vast continuous search space. One must also
account for the opponent’s shots, by either creating an environment in which he
will be able to keep the turn, or leave the opponent to play a very risky shot.

The physical aspects of the game must be simulated to a high level of ac-
curacy if hoping to one day apply the solutions found to possibly challenge
real-world professional players. Creating such a simulation also comes with its
share of problems. Although many game simulators currently exist on the mar-
ket, it is unclear as to how faithful these are to real world physics. Aspects like
ball-ball collisions or ball-rail collisions are often simplified to create something
visually pleasing, but not always physically accurate.

For the moment, we take for granted the availability of a physical simulator,
which will be described briefly, while still keeping in mind that the approach
used should be customizable to suit specific changes in the simulator.

It is our goal to explore this category of problems, and propose a solution
using optimization methods, to search the state space in an intelligent manner by
using knowledge deduced from the problem. The novel contribution we propose
consists in the following aspects: a redesign of a previous optimization model
to account for multi-objective shots to complete the array of tools needed by
the controller, a robust formulation of this model to account for the stochastic
aspect of the game, and finally a proposition of a general two-layered planning
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approach where we single-out the controller component with evidence of its good
performance.

In the first part of this paper, we will do a recall on the general problematic
surrounding the game of billiards to single out the research aspects on which
we wish to expand. We will present some refinements to a previously defined
optimization model ([18]) for the game of billiards. We will next take a closer
look at the specifics of the game, to determine a list of tools needed by the
controller. We will then proceed to the modeling of a robust form of the problem
we are trying to solve to account for the stochastic nature of the game, to finally
conclude with some results and future work.

2. The game of billiards

Of the many existing billiards variants, we choose here to take a closer look
at the game of 8-ball. This specific variant has been the focus of previous work in
[18] [5] [14] [19] [26]. It has also been used as a testing platform for various agents
in three past computational tournaments. Although the challenges present in
the various types of billiards games vary, the aspects we discuss here do not.

The game of 8-ball is one of the most commonly played variants in North-
America. It consists of 15 numbered balls, divided in a set of high (1-7) and low
(9-15) balls as well as the 8th ball. To win at 8-ball, a player must successfully
pocket all of his balls, high or low, and pocket the 8th ball last. If the 8th ball
is pocketed before by accident, the player loses the game. Each shot must be
specified (ball, pocket), and failure to complete the shot as called will result in
a loss of turn. The first shot (break) is decided in a random fashion, and if a
player pockets a ball on the break, he may then choose for which balls he will
play. If no balls are pocketed on the break, the turn and choice is given to the
opponent. A detailed description of the specific rules can be found on the site
of the Billiard Congress of America ([7]).

It is possible to view this game as a combination of two fundamental aspects.
The first and possibly most important of these aspects is related to the technical
parameters needed to sink a ball in a pocket. Indeed, once a ball and pocket
have been selected, a player must find out what are the optimal parameters to
successfully complete this shot. If a player doesn’t have the ability to execute
such a shot, he will fail to advance in the game. The second aspect of the game
is one that applies to better players, and that also makes the game such an
interesting challenge; the ability to plan a sequence of shots. When a player
executes his first shot, if he’s fairly confident of his success, he will gain a great
advantage carefully repositioning for his second shot. He must however analyse
and decide which position to reach, and which order would represent the optimal
sequence of balls to pocket. Such an analysis will depend on various parame-
ters, namely the technical level of the player, his weaknesses and strengths in
executing particular shots. In various games, other parameters like points and
faults will come into play, of which we will make abstraction in this paper since
these will need to be addressed at the planning stage of the process.
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Figure 1: Side view on left figure to illustrate shot parameters. Top view on the right figure
to illustrate cue angle parameter (φ).

2.1. Physics simulation

The poolfiz simulator ([19]) used in previous competitions allows for a two
dimensional physics simulation of a pool table, by simulating the various ball
interactions on the table following shot execution. The analytical solution of a
quartic equation describing the ball trajectories on a table allows for a direct
and precise computation of impact times, as well as a very fast simulation since
no approximation methods are used.

The format used to specify shots on the simulator corresponds to the impact
force transmitted to the cue ball by the cue stick, and is translated to the
following 5 parameters(Figure 1):

• a and b represent the horizontal and vertical offset from the center of the
cue ball;

• θ the elevation of the cue stick relative to the horizontal plan of the table;

• φ the orientation of the cue stick (in degrees) relative to the table;

• v, the initial velocity given to the cue ball.

By feeding these parameters to the simulator, the resulting table state is
given, and an analysis of the shot’s success or failure, as well as its value, may
be computed. Since the simulator is deterministic, the same results will always
be returned given the same input parameters are used.

2.2. Modeling the game of billiards

A defining and very important aspect of billiards is the principle of turn-
taking (see [5]) in the game. It corresponds to the fact that in billiards, one can
play all the way until the end of the game if he doesn’t miss a shot, but he’s
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also got the possibility of giving the turn to his opponent by the execution of
a safety shot, if he thinks this global strategy will be beneficial in his overall
game-plan.

In reality, defensive play is one of the most interesting and difficult aspects
of the game of billiards. It demands a very precise analysis of the game state to
weight the value of doing an offensive shot versus a defensive one. If a shot is too
risky, it may be more valuable to play defensively, but if no good defensive shot
is playable, one might as well take his chances and continue offensively. This
kind of situation is easier to see in the games of Snooker and Straight, where it
is often possible to have long exchanges of defensive shots, until one opponent
sees an opportunity for a great shot, or one of the players misses his defensive
shot.

The general model proposed in [5] defines the winning strategy as a perfect
Markov equilibrium between two players. This implies the existence of a value
function v on the state space such that

v(s) = max
u

[

∫
S

v(s′)p(s′|s, u)]

where s ∈ S is the state of the table and p is the probability to reach state
s′ when applying action u in the state s. Observe that, on his side, player 2
will minimize the same value function, but the model only considers offensive
strategies defining sequences of successful shots until the player loses his turn.
A defensive strategy should be an additional decision to leave the table in the
worst possible state for the adversary and this could be done if the value v(s)
is below some given threshold (high risk of missing the next shot). We will see
in section 2.5 that the decision variable can be resumed by the repositioning
target of the cue ball. To implement a winning strategy following this model
is obviously very costly and simplifications have to be made to drive the search
for the ’best’ shot on a reduced state space to minimize the simulator calls.

2.3. Model specification

If we take a closer look at the model in [5], the value of a shot in a given
state is defined as:

v′(s) =

{
maxa

[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 1

mina

[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 2

We start in state s0 and the active player defined by λ(s0) specifies an action
u0. The next step s1 is determined by the transition function associated with
probability p(s1|s0, u0) and the game continues with λ(s1) specifying the next
shot. The game continues in such a way until a terminal state sT is reached,
and the winning player receives the reward r(sT ) from the other player.

If we are able to find the sequence of shots leading to argmaxa

[∫
S
v∗(·)dp(·|s, a)

]
,

we should finally have the optimal solution with the best chances of success.
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As mentioned earlier, this model is of course very general, and although it
promises an optimal solution, it is not computationally tractable unless using
some form of simplification.

A classical and popular approach to this problem is to discretize the search
space, and use a Monte-Carlo sampling approach to explore the domain in a
timely manner. This approach was first explored with great results by Smith
M. in [26] and then refined in [3]. Although seemingly effective for the game of
8-ball, it is unclear as to how well such an approach would do when faced with
more complex variations of billiards games. Indeed, one of the assumptions made
for that approach was that a safety shot in 8-ball would never be made unless all
other offensive shots were discarded. However like mentioned earlier, in games
like Straight or Snooker, safety shot exchanges are more than just common,
they are almost always present in every game. Proceeding with a discretization
approach in such a situation might prove problematic since the breadth of the
search space will quickly explode. It is our impression that instead of exploring
the state space, a lot of time could be gained by rather exploiting the game
knowledge to our advantage, and thus eliminating useless calls to the simulator.

Evidently, exploiting the knowledge of the game also has its downsides. One
must be very careful not to fall into the trap of encoding each and every possible
situation as a rule-based expert system, since it may become very hard to decide
with confidence if a shot really is better than another one. However some basic
pool knowledge can easily be applied when analysing a table to quickly discard
useless shots, as discussed in [18].

3. A two-layered approach

If we have to look at any professional tournament game, we can observe that
a player will never execute a shot to which he doesn’t know the exact outcome.
Unless trying to break a cluster, each and every shot will be carefully planned
to maximise the chance of a good reposition, and even when going for a cluster,
it will usually be a controlled shot aimed to separate one or two balls from the
pack and continue playing. It is very seldom that other balls than the cue and
target balls will move on the table since the more collisions we have the harder it
becomes to accurately predict the resulting trajectories, especially when noise is
present in the shot. There is no reason why it should be different for a computer
simulation. Thus if we are able to carefully determine the best positions to reach
on the table for the next shots, we should be able to easily find a shot sequence
maximizing our chances of winning.

For our model, this adds up to the following points:

• Discretization of the domain using repositioning targets.

• Partial ordering of the targets using shot difficulty coefficient.

• Listing of best shot sequences by planner.

• Consultation of the controller to discard bad shots and compute success
percentages.
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• Reorganization of shot sequences in order of success percentages.

This decision process is illustrated in the simplified Figure 2. It is important
here to note that the shots which are generated by the planner correspond to a
ball-pocket-target combination, rather than specific shot parameters. The shot
parameters themselves will be found by the optimization procedure.

Figure 2: Illustration of a two-layered approach, where the planner first elaborates a plan by
considering the best targets on the table and generating various shots to optimize, to then
consult the controller, which in return will provide the list of achievable solutions.

We hope to differ from the planning approaches used in [26] and [3] by using
a technique that first generates a plan based on interesting positions on the
table, to then explore the best of these plans in a robust manner. The planner
will then adjust the initial plan with the updated information and decide of the
optimal step to be taken. The contribution we make in this paper mainly relies
on the improvement of the controller aspect of the game, since the planning
aspect will have to be adapted on the type of game being played, as well as on
the stochastic aspect introduced by noise addition to the shot execution. We
wish however to stress the importance of the robust controller in relation to the
planner in the presence of noise-induced parameters. In a deterministic game,
the use of a planner might be rendered useless (discussed in section 5) since a
strong controller will most likely always find a shot, but with a stochastic game,
the solution found will not always be robust and thus not always optimal. We
still provide a few leads in the last section as to the direction we will take in
future work to plan in an efficient way.

To illustrate the necessity of a planner in some situations, and to motivate
the existence of a two-layered approach, we provide in figures 3 and 4 an example
of two possible shots leading to two completely different positions on the table.
For these two shots, gaussian noise was added to the shot parameters using the
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standard deviations of the past Computational Pool Olympiads (φ=0.125 deg,
θ=0.1 deg, v=0.075 m/s, a=0.5mm, b= 0.5mm). Although in most cases it
would seem that a very good controller on its own can compensate for the lack
of planning in the game of 8-ball, in this specific case, if the shot with the best
position is chosen (in relation to pocket distance and angle), it results in a much
harder next shot. Both shots are robust to noise (succeed in pocketing the first
and second 100% of the time) but over an average of 500 games starting from
this state, the shot 1 in Figure 3 led to victory in only 56% of the cases, while
if the second best shot was selected (shot 2 in Figure 4), its different position
on the table led to a 96% success rate. The reason for this is simple, if shot
2 is selected, it is easier to then follow with shot 1 and stay in good position
for the 8th ball since it is in the same half of the table. If shot 1 is selected
first however, a long shot has to be made to reach the next ball, thus failing
more often. This is an isolated case not often encountered in 8-ball but one that
serves as a reminder that a strong controller cannot always account for the lack
of planning.

Figure 3: Shot 1. Robust shot leading to best possible position on the table in average.
Success percentage to terminate the game: 54% (when testing with 500 states resulting from
noise-induced parameters). White dots represent the various cue-ball position reached for
noise-induced shot.

The following sections address the controller aspect of the game which will
execute the shots requested by the planner and return the resulting robust shot
with a success percentage.

4. Controller

The fundamental aspect of our approach consists in actually developing each
and every tool a good player would have at his disposal. By this we intend to
create a player with the ability to find out exactly what parameters to use for
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Figure 4: Shot 2. Robust shot with a slightly lower value than in shot 1. Success percent-
age to terminate the game: 96% (when testing with 500 states resulting from noise-induced
parameters). White dots represent the various cue-ball position reached for noise-induced
shot.

a shot, if such a shot is possible. Thus a part of this work consists in a pre-
analysis of a table state which will inform us on the targets to reach, and of a
formulation of the problem as a least-square problem to solve by minimisation
techniques.

4.1. Multi-objective shots

In this section we will revise a previous optimization model to account for
the problems of breaking clusters, and doing multi-objective shots, which can
be quite useful in some variants of billiards games.

4.1.1. Direct shots

We first explored the aspect of position play in [13] but reiterate here the
basic principles, from which we will derive other useful techniques for our player.
To compute a direct shot, we start by performing a quick analysis which allows
to determine at which point the cue ball should hit the target ball for it to reach
the pocket. This is only an estimate, based on the 90-degree rule (see [2]), but
allows us to find a suitable starting point for our optimization procedure. We
can also eliminate shots for which the angle isn’t achievable.

We can then proceed to define an objective function, which corresponds to
the position of the cue-ball at its final resting time following a shot. We add
a constraint to this function, representing the fact that we want to sink the
target ball in a given pocket. However since this constraint will likely not be
solved when we start optimizing our function, we model it as a penalty added
to our objective function. This allows us to find a suitable solution to pocket
the target ball first, and then proceed to find the best possible parameters to
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get us as close as possible to the target position. Assuming vector x contains
the values related a given shot on the simulator, we can formulate the following
objective function to minimize:

min
x

1

2

(
‖pc (x)− c‖2 + ρ‖po (x)− p‖2

)
where pc, po represent the outcome of a call to the simulator, used as a black-
box for the moment, with the vector of shot parameters x (corresponding to
[a,b,θ,φ,v] in section 2.1). More precisely, pc, po are the positions of the cue
and target ball at final resting time, c the target position we wish to reach with
the cue ball, p the pocket at which we aim and ρ a penalty value to insure our
target ball is pocketed (fig 5).

Figure 5: Shot optimisation for repositioning on a specific target for the next shot.

4.1.2. Breaking clusters

We have already discussed the aspect of breaking clusters in ([18]) using pre-
computed tables to facilitate function optimization. The approach used made
it possible to break clusters but not in every situations, and the success of the
optimization was highly dependent on the starting points. As such, we proceed
to model our objective function in a different and more efficient way. We first re-
use our initial model in (4.1.1), but instead of aiming for a repositioning target
on the table, we switch this target to aim for a cluster target. We divide our
objective function in two parts. The first part will be to satisfy the constraint
of pocketing the target ball and to try to reposition at the center of the cluster
we are trying to move. Obviously, trying to replace the cue ball into a spot
where another ball is laying is quite difficult, and impossible in most cases.
However, we can attempt to aim for that position, and as soon as we get to a
collision with our target, switch to the second part of our objective function,
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which includes a minimum velocity for this collision, thus dispersing balls and
hopefully obtaining a better table state.

We get:

min
x

1

2

{ (
‖pc (x)− c‖2 + ρ‖po (x)− p‖2

)
if i=1(

obj2(x) + ρ‖po (x)− p‖2
)

otherwise

with obj2(x) = ‖vc (x)− vmin‖2 as our second objective, where vmin represents
a minimum velocity, and vc (x) the velocity at time of impact. i represents a
boolean value, which is set to true if there is an impact with the second target.
The minimization of our second objective obj2(x) will ensure a minimum speed
is given to the cue ball at impact time, dispersing our cluster. We do not specify
here a pc(x) since we don’t mind if the point of impact changes, as long as the
impact occurs at a specified minimum speed.

Another problem, which arises when optimizing a function with many clus-
tered balls in the table state is the time needed to do the simulations. For
example, using poolfiz, a break shot demands 300 times more time to simulate
versus a single impact shot. Our optimization methods also suffer when too
many events occur after a shot since the function becomes very chaotic and
the slightest variation in the parameters will result in a totally different table
state. As such, it is not worth trying to optimize such a function considering
the computing time constraints, and to work around this issue, we can proceed
to a very simple trick. If two or more balls are together in a cluster, we can aim
for the center of this cluster, and remove all other balls on the table. Once a
solution is found, we can put the balls back on the table and test our shot. Of
course this approach doesn’t guarantee that the solution found will always be
usable, but it is our experience that in most cases it easily breaks the cluster
and demands little computing time.

4.1.3. Double shots

Having just defined a way to execute complex shots to break clusters on the
table, we can use this secondary objective, and modify it to instead pocket a
second target ball if desired. Indeed, by simply redefining obj2(x) to obj2(x) =
‖po2 (x)−c2‖2 in our previous model, we will try to send our second ball (defined
by position po2 (x)) to the desired pocket c2, as can be seen in Figure 4.1.3.

It is possible to see that we removed our cue ball repositioning constraint,
since it most likely will be very hard or even impossible to control the cue ball
final position while having constraints on two previous hits. Of course, only a
limited number of impacts may occur before our ball loses all of its velocity,
but results show that it is easily possible to find the parameters of a two-ball
shot if one exists. This particular kind of shot is of little interest in the game of
8-ball, since it usually proves too risky and unnecessary. However, in the game
of 9-ball for example, one player is always constrained on hitting a specific ball
first, and this type of shot is exactly the kind that might allow the player to win
the game early.

It may also be important to note that the current version of the poolfiz sim-
ulator doesn’t impart the correct velocity after ball-rail impacts. This greatly
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Figure 6: Double shot execution, where the first target ball is pocketed to the center pocket
and the second target ball, to the corner pocket.

reduces the ability to reach various targets on the table, and also prevent fancier
shots otherwise possible on a real table. It will be interesting to test our opti-
mization model on a more faithful simulator to see the improvement in constraint
satisfaction, and hopefully new interesting shots.

4.2. A robust model

The initial model developed was targeted at providing our AI player with
the tools necessary to reposition anywhere he liked on the table. This feature
remains quite powerful and very desirable in that it is a very efficient way of
finding shots with good repositioning value. The strength of this approach is
also illustrated by the fact that a player is able to finish virtually any random
table state he is given.

This model, however, tends to lose most of its advantage in presence of noise-
induced parameters. As is discussed further in section 5, the success rate fell
far down when noise was added to the shot parameters. Two main hypothesis
can actually be made as to the explanation of these results; either the wrong
shot is selected amongst those generated, such that the shot chosen will have
a completely different outcome with the slightest amount of noise, either the
shots generated are riskier to achieve better repositioning, resulting in a higher
sensitivity to noise.

If the wrong shot is selected, it is simply a matter of adjusting the evalua-
tion function that is used to compare the available shots. This can be solved
by launching many more mini-tournaments to determine statistically the best
weights to be given to each computed shot. This calibration will need to be
done one way or another.

If instead the problem lies within the shot generation model, an adjustment
will be needed to our objective function. In the current model, the goal of aiming

12



for pre-defined target for the next shot works very well without noise. However
it is possible that the strength of the player (i.e. his ability to reposition almost
anywhere on the table) is also his greatest weakness. In hope of reaching a given
target, it is possible that the shots selected will be very fancy, that is, will have
strong spin effect. Actually in the current model, it is not possible to measure
this sensitivity unless we do sampling after a solution has been found to the
optimization model. This is not very helpful except in the case of shot selection,
since it will only help to evaluate the shots which were computed, but will not
provide us with more robust ones. This problem is illustrated in figures 7 and
8, where the white dots illustrate the type of shots we want to favour. We can
roughly estimate a shot difficulty by measuring the distance and angle between
the balls and pocket and this is useful in selecting good positions on the table,
but shot difficulty also depends on the parameters used to execute the shot. As
such, we need a way to find robust shot parameters, to sink the object ball, and
also retain a decent position for our next shot.

Figure 7: Illustration of possible repositioning targets, and sensitivity to noise when trying to
pocket the ball in the bottom corner pocket using various shot parameters. White dots rep-
resent positions which are attainable while still pocketing the target ball when noise-induced
parameters are used (90 to 100% of the time). Red dots represent positions which are reach-
able, but don’t guarantee we will successfully pocket the target ball (success rate is between
70 and 90%).

4.2.1. Robust counterpart

Robust optimization, as detailed in [9] and [8], can be defined as a method-
ology to treat uncertain problems usually formulated as:

min
u
{f0(u, ζ) : fi(u, ζ) ∈ Ki, i = 1, ..., I} (1)

where u is the vector of decision variables, f0 the objective function, and
f1, ..., fi, the structural elements of the problem (or constraints), and ζ the
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Figure 8: Harder shot where we can see the sure shots have considerably diminished. The
distribution of the reachable zone is most likely affected by bottom center pocket which would
result in a missed shot when noise modifies the cue ball trajectory and directs it in the pocket.

data of a particular problem instance. In our problem, this would correspond
to the objective function of maximizing the value of the position, f0, under the
constraints of pocketing the balls f1, ..., fi as described in model (6), with the
vector ζ representing the shot results with noise-induced parameters.

Many methods can be used to solve robust optimization problems, unfortu-
nately most of them are not directly applicable to our case since for the moment
we use the simulator as a black-box and can’t take advantage of any function-
specific knowledge. However, we can still use some basic principles to find a
good solution if one exists.

The first aspect which needs to be addressed is the value of a specific repo-
sitioning target. When choosing shot parameters, it is possible it will become
necessary to trade-off the repositioning value to a certain extend. It is, however,
also possible it will not be affected at all. This is why it would be better to
aim for a shot remaining in a good zone rather than at a specified position. A
good model should include two fundamental scalable variables; a shot success
probability α1, and a repositioning success probability α0.

Again, taking our initial model, using balls’ final resting positions as bi(u),
with the vector u representing our initial shot parameters and bcue(u) to repre-
sent our cue ball. Let’s use p as our pocket position for pockets 1 to 6.

The noise-less model, or as we will call it here a nominal model, can be de-
fined as a function minimizing the distance between the cue-ball’s final position
and a given target t on the table, under the constraint of pocketing the target
ball.

minf(u) = ||bcue(u)− t||
s. t.

||bi(u)− p|| = 0

(2)
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As we just mentioned, this model doesn’t hold very well with noise-induced
parameters. To counter this, it is possible to redefine it instead as:

minf(u) = Posval(u)

s. t.

||bi(u)− p|| = 0

(3)

The objective here will be to minimize the value of a reposition Posval(u)
(with a smaller value representing a better position), while still satisfying the
same constraint of pocketing a ball. The fundamental difference with this pa-
rameter is that we no longer try to reach a precise position on the table, but
rather maximize the value of a position in a zone for the next shot. The problem
with this approach is the discontinuity of the function. Indeed, many positions
will have a constant value of 0, and will create stationary points from which it
will be hard to climb out. However it is possible to use a two-step approach, by
first minimizing the distance to a target using model (2), to then switch to (3)
when we have reached the desired zone. The goal of this reformulation of the
initial problem is to introduce a model for which we will be able to formulate a
robust counterpart. Indeed, if we wished to robustify model (2), we would stray
from our initial objective which is to reposition in a decent zone for our next
shot. By using model (3), we are able to relax our objective function so that it
becomes easier to minimize under a robust constraint.

Assuming our perturbed shot parameters(for a given noise) vector ζ. If we
consider U as the set of the normal range of the parameters under which our
shot still remains successful U = {ζ : bi(u, ζ) = p},

We can formulate the comprehensive robust counterpart of (3) as:

min
u
σ

s. t. Posval(u, ζ) ≤ σ + α0dist(ζ, U)

||bn(u, ζ)− p|| ≤ α1dist(ζ, U)

(4)

∀ζ. Thus, our minimized value σ will represent a robust solution, with con-
straints and objective weighted by the adjustable α values, and the noise effect
on the satisfaction of our constraint. Of course, to solve this model, we will have
to proceed to a discretization of our normal range values U , but it should provide
us with a good estimate of a shot’s chances of success. It should be noted here
that we used a comprehensive robust counterpart to describe our problem, since
it is possible to imagine a solution where the constraints (pocketing the ball)
will not be satisfied for every ζ in U . This would result in a possible imbalance
where a shot with guaranteed success but a guaranteed useless position, would
be chosen over a shot with 95% success rate and very good reposition.

4.2.2. Penalized robust model

As was needed for the earlier described position-play model in section 4.1.1,
we will now proceed to a slight reformulation of the robust model (4) to consider
the constraints as penalties to our objective function. Solving our problem in
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this manner allows us to optimize a function that will not only maximise the
value of the position reached, but also minimize the distance between the target
ball and the pocket so that when searching for an optimal solution, we remain
in the region closest to satisfying the constraint of pocketing this ball.

min
u
f(u) = max(Posval(u, ζ)−Valmin, 0) + ρ||bn(u, ζ)− p||∞ ∀ζ (5)

By finding the parameters of u which minimize this function, we should be
able to reach a solution that is not only robust, but also leaves us a very good
zone for the next shot. We use the infinity norm on our constraint as to penalize
it in a linear fashion to facilitate its optimization, and try to reach a position
with a minimum value Valmin for the zone.

5. Results

We present in this section the result of various tests, mainly to illustrate
the potential of the proposed approach, but also to show the progress which
has been made in regards to alternative methods used to solve the game of bil-
liards. As has been mentioned before, it is very hard and complex to design a
physically-accurate simulator for the game of billiards. We are currently work-
ing on such a simulator 1, in hope of having it carefully and precisely calibrated
to a real billiards table. In the meantime, however, two options are available
to us; the Poolfiz ([19]) and the Fastfiz ([15]) simulators. Poolfiz was used
as the basis for the first three computational pool tournament. Subsequently,
Fastfiz, a re-engineered version of poolfiz, was developed by the Stanford Com-
putational Billiards Group ([15]) to be used in future competitions. Fastfiz has
the advantage of being must faster than poolfiz, and as such, allows for more
computations in the same time, and for such reason we made the necessary
conversions in PoolMaster to use it. A deep and well-described analysis of the
winning player of the last computational pool olympiads ([3]) allows us to get
an idea of the level at which it currently stands. Since we are in preparation
for the next tournament, we will do some comparisons here with the another
player (Pickpocket) that will not be participating this year and which was made
available to us by its author 2, and was also used for comparisons in [3]. It is im-
portant to keep in mind that these comparisons are simply to show the validity
of the robust controller model proposed here. The true benefit of such a model
may be more apparent in other forms of billiards (9-ball, snooker, straight), but
as we show here, even the robust controller on its own performs relatively well
for the game of 8-ball.

For these tests, Pickpocket is used exactly as provided by the author, using
the default settings, where a search breadth of 15 shots is done at the first search

1Julien Ploquin, forthcoming Master’s thesis, Université de Sherbrooke
2We wish to thank Mike Smith for graciously providing us with his player, Pickpocket, to

perform various tests.
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level. The only thing which was adjusted was the noise level used for the shot
evaluations, which was adjusted to the correct values depending on the noise
used for the various tests.

PoolMaster was used with the optimization library NLOPT([17]), using the
method BOBYQA ([23]) to minimize the objective functions. Bound-constraints
were set on the shot parameters to limit shot velocity and stay within the bounds
of a physically possible shot. A sample of 15 shots was done to evaluate the
value of f(u) in model (4).

5.1. Random tables

To determine the efficiency of the robust approach, we generated 500 tables
with balls randomly positioned, and constrained the player to play on stripes on
each of these table states. In such a way, we hop to minimize the variations which
may occur from a table state to another after a break shot, to better compare
the two players. A maximum time of 10 minutes was allowed players to compute
their shots on the same computer, to conform with the previous rules used for
computational pool tournaments. Players were all given the same starting table
states and played until they missed a shot, if they finished all their shots, this
counted as a success, otherwise as a failure. We justify the sample size of 500
table states by pointing at the comparison graphs. These show a cumulated
average of the successes for cleaning the table at different noise levels. It can be
seen that the average usually stabilised at a sample of around 300. We were also
interested to see how the two players would fare at different noise levels. Such
a study has already been done in depth in [4] to determine optimal noise level
for a competition. We are not interested in reproducing these tests here, but
we nonetheless performed each test at levels of 0, 0.5 and 1 of the parameters
used in previous tournaments (standard deviations of φ=0.125 deg, θ=0.1 deg,
v=0.075 m/s, a=0.5mm, b= 0.5mm) to see if the improvement of the player
would be similar independently of noise levels.

To first gauge the effectiveness at which the nominal model could clean off
the random table states with the added capacity to break clusters, we ran some
preliminary tests with no noise added to the shot parameters. The result was a
success rate of 100% for 500 games (not shown in graphs for obvious reasons),
which means the player is now well-rounded enough to deal with almost any
given situations on the table. By watching some of the games of these tests, we
were able to see that some extraordinary, and very unlikely shots were performed
in many games. These kinds of shots are rarely observed on real life games and
for a good reason, they are highly susceptible to the sightless change in the
shot parameters. The same success rate was observed for the robust version of
PoolMaster. Pickpocket reached an average of around 90% for these tests, as
can be seen in Figure 9. This means that even without noise, it is not guaranteed
that any approach will always find a solution in any given state. Of course if the
cue ball is isolated in a corner by adversary balls, it is possible that no offensive
shots are possible. Thus it is more than likely that the robust and non-robust
versions of PoolMaster performed some interesting gymnastics to find a solution
in every table state.
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Figure 9: Average rate to clean off the table without missing a shot when no noise is applied
on the shot parameters. Score for PoolMaster is not displayed since it is at 100% for the whole
set.

We next proceeded to tests the players with various levels of noise. First
at a level of 0.5x (in Figure 10), we saw the success percentage fall all the
way down to 32% with the non-robust approach. This gives us a great deal of
information concerning the problem at hand. It means that shot planning will
probably not be as important as shot evaluation no matter which method is
used. This agrees with the findings in [3] which states that a better solution is
not necessarily found if a deeper search is done rather than a more thorough
search at the first level using the same time constraints. The robust approach,
however, yielded a much better average of 82% in this case, while Pickpocket
reached an average of close to 66%. Although it is too early to conclude on the
efficiency of the robust method, it does show some worthy potential in low noise
situations.

The final tests for the random table states were performed at a noise level of
1x. These results are shown in Figure 11. The non-robust approach, predictably,
performed quite poorly with an average of 14%. This illustrates the fragility
of the shots generated when noise is not part of the evaluation. The robust
approach of PoolMaster stabilized at a rate of 64% to clean off the game, while
Pickpocket remained at around 50%. A non-negligible amelioration of 50% was
achieved by using the robust model for PoolMaster. This shows great potential
as any improvement to the function for position evaluation will likely provide
better positioning, which at the moment doesn’t take into account rail or ball
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Figure 10: Average rate to clean off the table without missing a shot when a noise factor of
0.5 is used.

proximity, thus limiting the range of possible shots importantly. The difference
in success rate with Pickpocket also seems to be consistent with the 0.5x noise
level, thus confirming the value of the robust approach.

If we compare these results to those obtained by the defending champion
Cuecard [4], the average success rate is not as high. Cuecard was able to clean-
off-the-break with success close to 70% of the time at a noise level of 1x. It is
important to remember however that the set-up for tests used here is not exactly
the same. In [4], each player used the same break, which was we assume was the
same as in [3] (the result of extensive off-line search). In this case we completely
removed the break from the equation by only using randomly generated tables.
It is important to remember that since players are always constrained on aim-
ing for stripe balls, it may be possible that in given situations, the only possible
shot is highly risky, thus making a perfect score very hard to reach unless using
noiseless shots.

5.2. Full games

We provide here some full games between the robust version of PoolMaster
and Pickpocket, in order to give a general idea of the state of the player. Since
many factors come into play in a tournament like the break shots, safety shots
and positions selected for ball-in-hand, these have to be taken for what they

19



Figure 11: Average rate to clean off the table without missing a shot when a noise factor of
1x is used.

are; a general view of how the player would behave in a tournament when all
its features are put to the test.

As can be seen in Figure 12, PoolMaster stabilizes at averages close to 75%
over Pickpocket with noise levels of 0 and 0.5x. We could have expected Pool-
Master to perform better when no noise was added to the shot parameters, how-
ever since both players were using their own break shots, it may have played an
important part in keeping the turn after the break. Since the break shots are
always different even when no noise is added to the shot parameters, it is not
guaranteed that it will succeed every time.

If we now look at the results for a noise level of 1x, the difference between
the two players is not as significant, with PoolMaster finishing at an average of
64%. Once again if we refer to [3] where tests were performed against the same
player, the margin we have here is not as large (74% reported for Cuecard when
using a single-CPU version). However since many other factors come into play
when playing full games, such as ball-in-hand behind line (see [7] for detailed
rules), safeties and initial choice of breakshot, these will have to be fully tested
individually.

Overall, we can infer from these tests that PoolMaster in its current state will
have a tendency to perform much better at lower noise levels, also confirming
some of the conclusions in [5] that a player doing no planning would be at its
advantage in lower-noise situations.
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Figure 12: Cumulated average success rate for PoolMaster against Pickpocket, using noise
levels of 0, 0.5x and 1x

6. Future work

The aspects discussed in this paper were mainly focused at the controller
aspect of our planner. The reason for this choice is that at the moment, 8-ball
was the best variant of billiards to test strategies with the upcoming 4th Com-
putational Pool Olympiad. It was also our feeling that even though planning
could be helpful in a very small number of cases in 8-ball like shown in figures 3
and 4, given the short time-limits, the advantage was offset by the time required
to perform the additional computations to look-ahead while it could be better
used to find a better robust shot. It is very likely however that in other variants,
planning will be more challenging and require greater analysis, such that the
importance of a good planner may be as great as the need for a good controller.
For this reason, and to hint onto the direction of future work to complete the
two-layered approach, we still provide a base model for the planner.

6.1. Planner

Since we possess a controller on which we can rely to provide us with feasible
shots, and a given success rate, we can define a new way of discretizing our search
space. If a defines an action on a table state s, and our decision variables defined
by:

• b: target ball, from 1 to n,
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• p: target pocket, from 1 to 6,

• c: repositioning target,

then it is possible to define the transition function as s′ = f(s, b, p, c).
The model defined in 2.3 remains valid with actions u now redefined for each

combination of the decisions (b, p, c) for all possible shots. Thus, we find:

v′(s) =

{
maxa

[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 1

mina

[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 2

with actions a now redefined. The set of actions A is now partitioned in a subset
of {b, p, c} combinations for all possible shots. Thus, we find ourselves with a
shot sequence represented by: b1

p1
c1 =?

→
 b2

p2
c2 =?

→ ...→

 bn
pn

cn =?


where we know the target balls and target pockets, but wish to determine the
repositioning targets to reach our objectives on a n shot horizon.

6.1.1. Shot sequence planning

To solve model (2.3), it is first necessary to proceed to a few simplifications.
Indeed, it is clearly impossible to do a complete search of the min-max for
the game of billiards. If we take the game of chess for example, the complete
sequence of shots is directly dependent on our opponent. It means the structure
of the game forces the turns to be alternated between both players, and as
such it is mandatory to follow a strategy in which we will minimize the possible
value of the shot chosen by the opponent. With billiards, however, this kind
of situation remains a special case; a player that makes no mistakes will have
the possibility to finish the game without his opponent even doing a single shot.
Thus there exists strictly two situations in which the adversary will gain his
turn:

• A defensive shot.

• A missed shot.

Since the global aspect of the model is already about minimizing the chances
of missing a shot, we still need to find a way to assess defensive shots.

A defensive shot, optimally, would normally correspond to a computation
by which a player would decide that it is more advantageous to let his opponent
play in a bad position, hoping to regain control of the game afterwards, rather
than play offensively. Since billiards is a continuous game in nature, the infinity
of shots available to the opponent is already hard enough to predict without
also trying to predict the case where the opponent would play more than one
shot without losing his turn. It is why using this model, we will restrict our
search to successful defensive shot to a horizon 1. This means that a defensive
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shot leading to a situation where the opponent has any possible shot at all will
be defined as a failed defensive shot.

Thus when planning our shot sequence we’ll have to deal with the fact that
we try to maximise our chances to keep playing until the end, with the special
case of possibly playing defensively with a horizon of 1 shot. Assuming that we
know the order in which we will execute the shots on the table, then the problem
can be resumed as a simple problem of finding the repositioning targets.

If we define the following variables:

• b(u) : target ball position after fixing the shot parameters u

• p: Pocket for the given target ball.

If we consider un as the shot parameters of our nth shot, we can minimize
function f as:

minf(u0, u1, ..., un) = Posval(c0, c1, ...cn) ∀t : 0...n

s.t. ‖bt(ut)− pt‖ = 0, t = 1, ..., n
(6)

where the function f would correspond to the position value heuristic described
in [18], which associates a value with a position relative to the available shots
at this position(depending directly on the position reached cn).

By using this model, we wish to search for the repositioning targets c1, c2, ...cn
to reach after each shot on the table, as can be seen on Figure 13.

Figure 13: Shows sequence determined by the repositioning targets c1, c2, c3.

Thus, by finding the solution of (6), we will find a list of targets to reach
to maximise our chances of shot success. However, we should not forget that
this is a very simplified version of the problem. We ignore for the moment
the dynamical aspect of billiards, which makes it very hard to define targets
c1, c2, ...cn without having an impact on the rest of the system. When optimizing
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a shot, it is possible that the cue ball enters in contact with more than one ball,
thus changing the global table state and changing the value of the solution we
were hoping to find. It illustrates the convenience the robust version of the
problem where we aim for a given zone instead of a specific target.

7. Conclusion

The aspects which are described in this paper represent the tools we devel-
oped to obtain a fully functional player, with all of the abilities observable in
a professional player. We have shown the potential of a using multi-objective
model to achieve any desired shots on the table, so that the controller used
can easily be applied to any forms of billiards games. We have also shown the
effectiveness of using a robust model to only generate shots that will succeed
under noise-induced parameters. Our hope is that by carefully using these tools
with proper planning, it may be possible to create a decision-making AI able to
challenge world-class professional players. A lot of work remains to be done on
the analysis of safety shots versus offensive shots, but these are also very much
game-dependent, and will need to be adjusted accordingly. The planning aspect
for the sequence of shots to be chosen is also likely to be a lot more important
when other variants than 8-ball will be played. As our test results showed for
8-ball, a success rate of 100% when no noise is added to the parameters means
that it is easily possible to find a solution which leads to victory. Thus it is only
a matter of making these solutions robust to noise to create a stronger player.
Some situations like the one shown in section 3 will still require planning in the
game of 8-ball, but their occurrence seems to be very rare. It also motivates us
to explore other games variants in future work like Straight pool, where a player
has to call each of his shots, even on the break, making the game planning and
multi-objective shots much more important. It will also be interesting to test
the approaches described here in a game like Carambole, where less planning is
required but better shot exploration is needed, thus possibly taking advantage
of the technical skills of the player.
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and pool). In Scientific American, July 1983.

[30] R. Evan Wallace and Michael Schroeder. Analysis of billiard ball collisions
in two dimensions. In Am. Jour. Physics vol. 56 no. 9, pages 815–819,
September 1988.

26


