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Abstract

Routing problems appear frequently when dealing with the operation of communi-
cation or transportation networks. Among them, the message routing problem plays a
determinant role in the optimization of network performance. Much of the motivation for
this work comes from this problem which is shown to belong to the class of nonlinear con-
vex multicommodity flow problems. This paper emphasizes the message routing problem
in data networks, but it includes a broader literature overview of convex multicommodity
flow problems. We present and discuss the main solution techniques proposed for solv-
ing this class of large-scale convex optimization problems. We conduct some numerical
experiments on the message routing problem with four different techniques.
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1 Introduction

The literature dealing with multicommodity flow problems is important since the publication
of the works of Ford and Fulkerson’s [20] and T.C. Hu [31] in the beginning of the 1960s. These
problems usually have a very large number of variables and constraints and arise in a great va-
riety of applications. The linear multicommodity flow problems have naturally attracted much
interest of researchers in Operations Research, first as basic optimization models for network
design and operation problems, and then as a natural illustration of decomposable structures
in Linear Optimization [28],[1]. Excellent surveys such as J. Kennington’s [37] and Assad’s [2]
have been published at the end of the 1970s. Numerical experiments with subgradient methods
have been conducted with noticeable successes. Those methods converge slowly but seem to be
relatively insensitive to the number of dual variables associated with the relaxation of the cou-
pling constraints [28]. More recently, the availability of multiprocessor and massively parallel
architectures has increased the interest for decomposition techniques, inducing efficient versions
of known decomposition algorithms for linear programming like Dantzig-Wolfe’s algorithm (for
example [34]), partitioning (for example [18]) which are able to solve large scale network flow
problems.

The first models with nonlinear costs appeared later and were studied in connection with
telecommunications and transportation networks. For instance, one of the most important
problem in the design of packet-switched computer networks consists in determining routes
on which packets have to be transmitted to achieve optimality according to some chosen cost
criterion. The average message delay is the most frequently used performance measure in the
literature for such networks. Under appropriate assumptions, this problem belongs to the class
of nonlinear convex multicommodity flow problems [21],[7]. Much of the motivation for this
work comes from these message routing problems.

The present study is concerned only with the nonlinear convex models for which, to our
knowledge, no overview has been published. In theory these models can be solved by gen-
eral nonlinear programming techniques. However, their special structure makes decomposition
methods much more attractive. That is, much efficiency can be gained by identifying easier
subproblems for which polynomial algorithms can be coded very efficiently, such as shortest
paths and minimum cost flow calculations.

After reviewing the existing literature, we have chosen to focus on four main algorithms,
the Flow Deviation Method (FD), the Projected Newton Method (PM), the Analytic Center
Cutting Plane Method (ACCPM) and the Proximal Decomposition Method (PDM). We briefly

describe their underlying ideas and perform a comparative analysis of their performance on a



real-life problem. We did not submit the other methods to numerical testing, partly due to
the fact that the codes are not readily available, partly because the non-tested methods can
be viewed as variants or enhancements of the methods we analyze more in depth. The Flow
Deviation algorithm [40],[21] is the oldest method among these four algorithms and it is still the
most popular either in Transportation or Telecommunications models. The reason is twofold:
the method easily generates feasible solutions from shortest path calculations and it enjoys
fast convergence in the early iterations. The projection algorithm proposed by Bertsekas et al.
[6],[7] is a primal method too. It alternates shortest path calculations with projected Newton
steps, allowing faster convergence when twice differentiable objective functions are at hand.
The other two algorithms are less classical dual approaches. ACCPM [25] belongs to the family
of cutting plane methods and PDM [45] to distributed algorithms issued from the Proximal
Point Algorithm [54].

Let us briefly mention that work has been done in the direction of nonconvex costs. See for
instance the survey of Minoux [47] for multicommodity flow problems with concave differentiable

cost functions and/or fixed cost.

2 The Convex Multicommodity Flow Problem

Let us state the notations we will use in the following. We are given a directed graph G =
(V, E) associated with a network with m nodes (which according to the context may represent
switching centers, terminals, concentrators, and so on) and n arcs (links between some chosen
pairs of nodes). Let K denote the number of commodities to be transported through the
network. Each commodity & has a single source-sink pair (s, t;) and we are given the flow
requirement 7, (traffic quantity which must be sent between sj and ;). The general nonlinear

convex multicommodity flow problems we are concerned with may be formulated as

min f(x) = ij(%j) + ZkaJ(IkJ)

k=1 j=1
K
s.t. xoj:Zxkj, j=1,...,n, (1)
Moy b E=1... K, 2)
0<ay k=1,...,K, (3)
0<=zp;<c¢; j=1,...,n, (4)

where



M 1is the m X n node-arc incidence matrix of G,

xr, denote the n-vector representing the kth commodity,

by, is the m-vector with all components 0 except bys, = —bgy, = 1,
c; the capacity of arc j,

xo; represents the total flow on arc j.

This model is known as a node-arc formulation. Constraints (2) and (4) are respectively clas-
sical network and capacity constraints. Constraints (1) are coupling constraints in the sense
that, when relaxed, K independent individual flow problems can be solved separately. The
nonnegativity constraints (3) express the fact that arcs are used in the direct way. The func-
tions fj; are associated with the flow of each commodity on each arc of the network and are

supposed to be convex!

as well as the functions f; associated with the total flow zg;.

The model uses directed graphs. In some applications encountered in practice, flows on the
edges of the network are bidirectional. In this case, each edge j = {u, v} is substituted by two
directed arcs j* = (u,v) and j~ = (v, u) in both directions. The node-arc incidence matrix is
then defined for the digraph G' = (V,U) where U contains the arcs j+ and j~ for each edge j,

and the cost function f; is charged on the total edge flow x; given by (see [25] for example)

K
Toj = Z(xkﬁ + Zpi-), Trj+, Tpj— > 0.
k=1
For sake of simplicity, we will not include the case of undirected graphs in the sequel.

Among the problems related to routing in data networks, the message routing problem plays
an important role in the optimization of network performance. This problem consists in the
determination of the sets of routes on which packets have to be transmitted in order to optimize
some cost function, which measures the global quality of service when operating the network.
Most models (see [38], [7]) use the Kleinrock average delay function, i.e. the sum over all arcs
of the average delay proportional to

f(woy) = —2—, (5)

Cj — ,I'()j

which imposes zp; < ¢; in (4). In this application, fi; = 0.
The above multicommodity flow problem can alternatively be formulated using flows through

paths of the network. More precisely, let N, denote the number of paths between the nodes s

!Most practical applications do not consider individual flow costs but they can be useful to force strong
convexity with respect to all flow variables.



and t;, and my, the arc-path incidence vector of the pth path defined by
1 if j belongs to the path,
ﬂ'kp(j) =

0 otherwise.

Then the arc-path formulation of multicommodity flow problem is

n K n ]\f]c
min f(z) = Z fi(xo;) + Z kaj(z Thp(J)Thp)
j=1 k=1 j=1 p=1
K N
st Y mkp(f) Ty = 20, Vi€ E, (6)
k=1 p=1
Ny,
Zl‘kp =Tk, Vk, (7)
p=1
0<ump; <¢;, VjEL, (8)
0 S Thp, vka vpa (9)

where zy, is the flow of commodity & through the pth path.

The simple network constraints are now expressed by (7) and we have the same capacity
constraints (8) and coupling constraints (6). This formulation assumes an exhaustive enumer-
ation of all paths for each pair (sx,t;). This is unrealistic since the number of paths grows
exponentially with the problem dimensions. In practice, methods dealing with this formula-
tion do not require such an explicit enumeration but rather, they include some iterative path
generation procedure.

The reader interested in the effects of the formulation of the multicommodity network flow

problems in the framework of decomposition, is referred to [34].

3 Literature Overview

In this section, an attempt is made to give a synthetic overview of solution techniques in the
literature for nonlinear convex multicommodity flow problems. To this aim we take into account
some criteria which in our point of view characterize the approaches. These criteria are: the
decomposition strategy, the multicommodity flow model, the technique used to solve master
and subproblems, and the potential applications.

As is shown below, most approaches use a decomposition strategy. In consequence, a lot
of them are based on duality and relaxation of the coupling constraints. The efficiency of

dual schemes depends highly on the smoothness of the dual function. This is obtained with



a strictly convex objective function of the problem. For instance, Nagamochi [48] has studied
the model where all the functions f; and f;; are strictly convex. Strictly convexifying the
objective function is also possible as shown by Stern [62] who solved the message routing

problem considering the objective function

f) =3 " SN a2, (10)

where r should be small enough to keep the solution as realistic as possible. Because of the
importance of the characteristic of the objective function, we shall distinguish the following

model types according to the objective function
1. f convex.

2. f convex and differentiable.

n
T

3. f(z)= Z Y or flz) = ij(xoj), f; strictly convex, fy; = 0.

Cj — IOj

n K n
4. f(z) = Z fi(zoj) + Z Z fri(@ks)s  fj, fj strictly convex.
j=1 k=1 j=1
The second column of table 1 refers to these labels. It also indicates which formulation—node-
arc or arc-path—is used in the proposed algorithms. As already noted, the multicommodity flow
problem consists in determining a minimal nonlinear convex cost multicommodity flow through
a network that meets the demand for each commodity subject to arc capacities restrictions, flow
conservation at transshipment nodes of the network. Other constraints are sometimes added
to the models of section 2. One common example is to restrict individual commodity flows on
the arcs (see for example [48]).

The multicommodity flow problems of section 2 may be solved by mathematical program-
ming tools. Unfortunately, even for graphs of moderate sizes, the problem to be solved has
exceedingly large dimensions. For real-life problems, the models may have tens or hundreds of
thousands of constraints and hundreds of thousands or millions of variables: direct approaches
seem to lie beyond the capabilities of all existing softwares for convex optimization.

In contrast, the methods we review in this paper take advantage of the structure of the
problem in one way or another; many of them are based on decomposition. The main motiva-
tion for decomposition is to reduce the problem to smaller subproblems, but other important

motivations are present in multicommodity flow problems, namely to identify easier submodels
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as linear or convex minimum cost flow problems or shortest paths calculations, to parallelize or
distribute computations among commodities, arcs or paths. The latter motivation has renewed
interest for decomposition methods since the eighties with the increased development of par-
allel and distributed architectures (see [57]). Approaches that have been effectively coded in
parallel architectures are indicated in table 1 by the symbol “//”. The decomposition strategy
relies essentially on a problem manipulation: dualization (see for example [25],[23]), distributed
coupling [11], monotropic network programming [45].

Concerning the techniques, early approaches were based on classical mathematical program-
ming algorithms which were adapted to the convex multicommodity flow problem (steepest
descent, Newton methods, conjugate gradient methods). In particular the most popular among
existing algorithms such as Flow Deviation [21],[40], and Projected Newton [5] fall into the
category of feasible direction methods. Linear or piecewise linear approximation of the nonlin-
ear function (see [37]), modification of the objective function [40],[7] were also proposed. On
the other hand, some attempts have been made to solve the problem from a dual or primal-
dual point of view. It is the case of methods that use proximal techniques [11], [16],[45], dual
relaxation [3],[62], [48], cutting plane [25], subgradient methods [23].

For the underlying applications, we have just retained those that have been originally treated
in the papers. When no reference is given, it means that the tested networks have been randomly
generated. Other references on generalized transportation problems are not quoted here (see

[51])-

4 Main Solution Techniques

As already mentioned, the solution techniques for nonlinear multicommodity flow problems
were initially special cases of classical methods for general nonlinear optimization programming.
Recent techniques such as proximal and interior point ones have appeared later. In this section,
we describe a wide selection of existing algorithms with emphasis on four algorithms which are
numerically tested in section 5. We limit the algorithmic description to these four methods
and sketch the main characteristics of the other references with no attempt to get into the
details. This is mainly to alleviate the technical part of the survey and we give references
where the interested reader can find further details and convergence results. We do not aim
at ranking all existing methods. Instead, we intend to illustrate the difficulties of solving
large multicommodity flow models. Therefore, we put forth four particular methods. We
performed computational tests with these algorithms alone and show the impact on the various
performance measurements. As explained in section 5, the codes have been all written in
C with the same data structure adapted to specific networks issued from Telecommunication
applications. The common model is the message routing problem (f; given by (5) and f;; = 0).

8



4.1 The Flow Deviation Method (FD)

The Flow Deviation method is a primal method that has been simultaneously proposed for
the message routing problem by LeBlanc [40], and by Fratta, Gerla and Kleinrock [21]. It is
a special case of the so-called Frank-Wolfe method [22],[67] for solving nonlinear optimization
problems with linear constraints. To deal with capacity constraints, the delay function f; is

replaced by
) [i(@oz) = @oj/(c; — xo;) if o5 € [0, peyl,
Fi(wo;) = (11)
Y(xo;) (quadratic or linear) if zg; > pc;.
The quadratic (or linear) function is chosen such that the values of f; and 1 and their first two

derivatives (first derivative if ¢ is linear) coincide at at the point zy; = pc; (in general, p =
a— n —
0.99). Let f(xo) =Y fi(xo))-
7j=1

The message routing problem can then be written as min f(zg) s.t. (1) and (3). The method

successively solves linearized subproblems to get a feasible descent direction. If ) is a feasible
_ K

total flow vector at the start of iteration ¢ + 1, the subproblem is minimize V f(z£)7 (> y)
k=1

subject to network and nonnegativity constraints. Letting y§ denote the optimal total flow, the
direction y§ — x is searched for an improved solution z5™.

With the special structure of the constraints (2), the direction-finding subproblem is solved
by computing shortest paths between each pair (s, t) and loading the required amount of flow
onto the corresponding path. The link costs used when finding cheapest routes are the partial
derivatives of the objective function evaluated at the current solution.

More specifically, the entire algorithm consists of the four following steps:

1. (Initialization) Find a feasible total flow z), choose a tolerance parameter € > 0 and set
LB :=0, t:=0.

2. (Subproblem) For each commodity k&, find a minimum first derivative length path between
sy and 5 (the first derivatives are evaluated at the current solution zf) and let yi be the
flow vector obtained by loading the corresponding amount r; onto this path. Then,

update the total vector flow yf := Z Y.
k

(Step length search) Determine oy := arg min{ f(z§ + a(y5 — x4)), « € [0,1]}.

3. (Flow deviation) z5™ = (1 — ay)ah + auyb.



i 0j
Figure 1: Modified Objective Function in Flow Deviation Method.

4. (Termination criterion) Compute the lower bound?
LB :=max (LB, f(xg) + V f(x0)" (v — 70))
Stop the procedure if f(z5t") < (1 + €)LB; otherwise set ¢ := ¢ + 1 and go to step 2.

To retrieve the complete routes taken by each commodity, one should simply store the the
individual paths generated during the iterations. Should the optimal total link flows be the only
quantities of interest, then the implementation of the Flow Deviation method requires a small
amount of storage and thus allows to solve very large network problems. The characteristic
property of the method is that flow is shifted from the nonshortest paths in equal proportions.
This property distinguishes the Flow Deviation method from the method discussed in the next
section. Some variants of the method have been proposed in the literature [42],[19]. We also
mention that an algorithm for finding a feasible starting multicommodity flow can be found in
[38].

Schultz and Meyer [57] deal with a block angular optimization problem (which of course, in-

cludes the convex multicommodity flow problem of section 2). They use a logarithmic barrier

2Tf 2* denotes an optimal solution, from the facts that f is convex and that yt solves the linearly approximated
problem, we have respectively, f(zg) > f(zf) +Vf(zh)T (x5 —zh), and f(z3) > f(xh) +V f(xh)T (y§— ) (which
is a lower bound of the optimal value).

10



function to treat the coupling constraints. Then the barrier problem is solved by the method of
Frank-Wolfe which, as we have already noted, takes advantage of the constraints structure. The
search direction is a bit different here: the block structure of the problem allows a multidimen-
sional search, that is a K-dimensional optimization problem with simple bounds is solved to
coordinate the subproblem solutions. Some computational results are reported on test problems
referred to as the Patient Distribution Systems (PDS) problems in the literature.

4.2 Projection Method (PM)

The Flow Deviation method tends to keep all generated path flows strictly positive. Such a
behavior is improved in the so-called projection methods [7],[5],[6] in which the flow decreases
along a nonshortest derivative path proportionally to the difference between its length and that
of the shortest path. If such decrease results in a negative flow, the path flow is simply set to
zero.

Let xj, = {z},} be the vector of path flows for commodity & at an iteration ¢ and zf the
corresponding total vector flow. For each commodity, at that iteration, we have a set of active
paths consisting of at most (¢ — 1) paths. These paths were generated in the previous iterations
and all non active paths carry zero flow. For the purpose of the next iteration ¢+ 1, the message
routing problem is converted to a problem involving only positive constraints. The capacity

constraints are treated as in the Flow Deviation method (see (11)). Let pathy; be a shortest
Ny,

path between s and ¢, with link costs f]’(xf)]) From the network constraints Z Ty = T, We

p=1
have

Ty =Tk — E Thps

p#£p

thus, direct substitution into the objective function yields the equivalent problem
min ()
(12)
s.t.  Zy, > 0 forall k, p#p,
where 7 is the vector of all path flows which are not shortest paths (zy, = xy, for all k, p # p)

f@ =300 Y ).

k p:j€pathy,

and

A projected Newton step is then applied to (12) ([4] for more general results on these convex

problems)

S+l =t
Ty, =maxq 0,z — o [

Wﬂﬁmllaﬂﬂm

(OZkp)? 0Ty

11



Expressions for both first and second derivatives of f are straightforward and the paths flows

for the iteration t + 1 are updated according to:

,I'tk;;l = max {0, ,I'Zp — 5—:(dkp — dkﬁ)} for all k£, p 7ﬁ D, (13)
P

where dj, and dj; are first derivative lengths of pathy, and pathy; given respectively by:

dip = Z fgl'(xf)j)a dip = Z ﬂ($6j)a

jepathkp jepathkﬁ

and Hy, = Z fi(xh;) with Ly, = (pathy, U pathys)\(pathe, 0 pathyg;).

jELkp
The path flows of the shortest paths are then adjusted so that for each commodity £, the

sum of flows of all active paths equals the requirement ry:

Tt = e — Z zht for all k. (14)
p#D
To summarize, after an initialization procedure (which consists of finding an initial feasible

solution, as in the Flow Deviation method), the following steps are executed sequentially:

1. Compute a shortest path joining (s, ;) for each commodity & with length fi(xf;) on link
j where z! is the current solution. The shortest paths are added to the corresponding active

paths for each k, if they are not already in the list.

2. The path flows are updated using (13). The shortest path flows are then adjusted ac-
cording to (14).

The stepsize a; may be chosen by a variety of methods, see [7],[6]. Note that all the non-
shortest path flow that are zero will stay at zero. Hence, the computations of the path flows

are to be made for paths that carry positive flow.

Another projection method has been proposed by M. Schwartz and C. Cheung [58] for the
node-arc formulation of the message routing problem. The projection operator in this ap-
proach incorporates the constraint equations. As the authors pointed out, this algorithm is
well-suited to networks with a small number of commodities. Computational experiments indi-
cate that for a large number of commodities, the Flow Deviation method performs better than

this projection method.

12



4.3 Cutting Plane Algorithms

When formulated as a mathematical program, the nonlinear multicommodity flow problem has
a constraint matrix with a primal block-angular structure. Decomposition algorithms strive
to exploit this structure. First, using Lagrangian duality, the problem can be transformed
into a nondifferentiable problem of much smaller size. Next, some specialized algorithm for

nondifferentiable optimization is used to solve the transformed problem.

4.3.1 Decomposition Principle

Consider the node-arc formulation of the message routing problem. Since the objective function
K

is strictly increasing in z;, the coupling equality constraint (1) can be replaced by ) x4 < ;.
k=1
Associating with the coupling constraints (1) the dual variables u > 0, we construct the partial

Lagrangian:

ij xoj) + ZUJ Zxk] Toj). (15)
j=1

We associate the dual problem

max L(u) = max ZLOJ + Zle(u)), (16)

©>0 u>0

where
Loj(u) = min {f;(zoj) —ujzo; |0 < mo; <¢;} j=1,...,n (17)

are simple n nonlinear one-dimensional subproblems, and

le(u):giz%{Zujxkj : Mxkzrkbk} k=1,....K (18)
j
are K shortest paths problems with arc costs u;. Both types of problems are easily solved. In
particular, the solution of Problem (17) is given by the equation f;(zo;) = u;. A closed form
solution for the delay function (5) can be readily computed. From duality theory, the optimal
value of problem (16) is equal to the optimal solution of the primal problem.

As a by-product of the computation of the Ly; and L, one easily obtains an element of the
subdifferential. Indeed, let z;; be an optimal solution for the value u. Then, for any v > 0 one

has Ly (v) < Y ujwg; = Lig(u) + Y xkj(v; — u;). Hence, xy is in the subdifferential set. A
J J
similar reasoning applies to Lg;. The subdifferential elements can be concatenated in a single

vector £ € —J(—L(u)) and the inequalities are summarized into the valid inequality
L(v) < L(u) + £ (v — u). (19)

13



In conclusion, we transformed the initial problem into a nondifferentiable convex problem,
max, L(u), of much smaller size. Besides, the valid inequality (19) can be used to generate a

polyhedral outer approximation of L.

4.3.2 A Generic Cutting Plane Method

There exists many different strategies to solve the nondifferentiable problem (16). Let us
mention a few of them that has been applied in the context of multicommodity flow problems:
the bundle method [43, 66] used by [46], the standard cutting plane method [10, 36, 13] used
by e.g. [34], and the analytic center cutting plane method [26], thereafter named ACCPM. We
shall start with a generic description of cutting plane methods, and then focus on ACCPM.
Cutting plane methods are based on increasingly refined polyhedral approximations of the
epigraph® of —L(u). Let us give a very general description of those methods. Let {u'}L
be a sequence of query points. At each point, one computes L(u') and a subgradient &' €
OL(u'). As mentioned in the previous subsection, the subgradients are direct by-products of
the optimization in (17) and the shortest path computations. Consequently, the following
program
max {z | 2 < L(u") + () (u—u'), t=1,...T} (20)
is a polyhedral relaxation of (16). It is worthwhile noticing that any feasible solution for the

dual of (20) provides an upper bound for max, L(u). Also,

0r = max {L(u')}

t=1,..T

is a valid lower bound for the optimal value. Therefore, at any stage the optimal value can be

bracketed. One can associate with the lower bound 67 the so-called localization set
Hr={(u,2) |2>0r, z<L(u)+(E)(u—-u)t=1,...T,

The upper bound constraint v < U is introduced to enforce compactness. U is supposed to be

large enough to make the constraint inactive at the optimum. Note that the localization set

always contains the optimal solution of the original problem.

The basic step of the generic cutting plane is as follows. Assume Hy is given.
1. Pick uT*' € Hy and compute an upper bound via (20).

2. Compute L(u’™!) and the valid inequality (19).

3In our formulation L(u) is concave. Its epigraph is not convex, but the epigraph of —L(u) is convex.

14



3. Update the localization set, Hp, := Hp U {z < L(u™*1) + (6T (4 — o7+,
4. Update the upper and the lower bounds.

5. Check if the distance between the upper and lower bounds is below the stopping threshold

value.

4.3.3 The Analytic Center Cutting Plane Method

The standard cutting plane method [10],[36],[13] defines the next query point u? ! as the
maximizer of (20). Let us point out that the constraints of the dual of (20) can be interpreted
as a convex combination of the matrix columns, i.e, of the shortest paths. One can therefore
easily reconstruct a primal solution, which however may not satisfy the coupling constraint
restriction.

The standard cutting plane is reputed unstable. Many regularization schemes have been
proposed. Among them, one can find so-called central methods, which select in step 1 of the
generic cutting plane method some kind of center of the localization set. Not only does the
choice regularize the algorithm, but often it allows to derive complexity estimates. Among
possible centers, the analytic center is quite favorable because it is easily computed by interior
point methods and because one can construct a pseudo-polynomial complexity estimate.

The analytic center is the defined as the unique minimizer of the potential

T n

—log(z — 0r) = > _log(L(u) + (6" (u—u') = 2) = Y _(logu; + log(U; — uy)).
t=1 j=1
Interior point methods apply to this type of problem. The iterative step is a damped Newton
step. One obtains as by-product of the computations dual variables. At (approximate) centers
those dual variables become feasible to the dual of (20). One can thus construct upper bounds
for the optimal value of the original problem.

In practical implementations, it is best not to concatenate the subdifferentials of Lg; and
L, but to introduce as many valid inequalities as there are functions Ly; and Ly, i.e., the total
number of arcs and commodities. This multicut approach is much more efficient, see [14]. The
ability of the method to compute new analytic centers after adding many cuts is an important
implementation issue. It turns out that the method requires only a few Newton iterations to
recompute an analytic center. However, each iteration remains computationally costly. For a
detailed description of the method in the context of nonlinear multicommodity flow problems,
we refer to [25].

Let us mention that ACCPM has been extensively tested on very large problems [25],[29].
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4.4 The Proximal Decomposition Method (PDM)

Consider the arc-path formulation of the message routing problem. Let uy € R* and u; € RE
be the dual vectors associated respectively with the constraints (6) and (7). The dual problem

may then be written as

max F(ug, u 22
ugER™, u1 EREK ( 0 1), ( )
where
F(ug,uy) = min Z fi(zo;) — uoj(@e; — Z Z Thp (1) Thep) +Z g (ry — Zxkp) :
0<zo; <cj, 0<zpp | 4
= k=1 p=1 k=1 p=1

In order to apply efficiently the Proximal Decomposition algorithm [44], we make a copy
of the dual vector uy for each path p = 1,..., N}, between origin-destination pair (s, ) for
commodity k, and a copy of the dual variable u; for each path p =1,..., N.. We denote these
copies respectively by ugk, and uy,; the components of wugg, are denoted by wok,(j). We then

introduce the subspace

A = {u = (uo, Uokp, Uikp) : Yo, Uokp € R”, w1y € Riug = ugpp, k=1..., K,p=1..., Ny,
Uikp = Ulkp, k:]-aKap#p,}a

to write the dual problem in the form

wax Pla), -

where the objective function is now separable with respect to uy and (ugkp, U1kyp):

K N
E min x UgiLoi f + E E min E s u u1 x .
0<:1:0] {f] OJ) 05 Oy} 0<ayy kp Okp N kp kp

k=1 p=1 —

The Proximal Decomposition Algorithm is a specialized version of the Partial Inverse
method designed by Spingarn [60] constrained program of the form (23). If AL denote the
orthogonal subspace to A, an optimal primal-dual pair (%, ) must lie in the Cartesian product
space A x AL, The algorithm performs two distinct steps at each iteration: a proximal step
which regularizes the objective function by adding a quadratic term depending on the previous
primal-dual pair of solutions, and a projection step on the corresponding subspaces. More pre-
cisely, given a primal-dual pair (u?,v?) € A x A+ and a positive parameter )\, the computation

of the new updates (u'™!, v**1) is done as follows:

1
Proximal step: y' = arg max{F(y) + ﬁlly —ut = WP}, 2= AT+ et =),
v

Projection step: (u!™!, v!™!) = Proj 4, 41 (v, 2%).
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We skip here the technical steps that lead to the distribution of the computations on each
commodity, each arc and each individual path, and updates of the dual variables (see [49]
for the intermediate steps). As the set of paths between s, and ¢ is not known a priori, we
substitute it at each iteration ¢ = 0,1, ... by a subset which contains the previously generated
paths. The proximal step consists of one-dimensional convex subproblems for each arc to find
aggregate flows azf)}“l. Then, new paths are generated by shortest paths calculation with link
costs f;- (xﬁjl) followed by a distributed updating for path flows and potentials. The whole
algorithm is presented below with the following notations: Nf denote the number of paths

corresponding to the commodity & at iteration ¢, d(j) denote the number of paths sharing j

and the residual (violation of constraints (6) and (7)) for a vector z = (xy, k = 0,..., K) are
denoted by :
K Nk. Nk'
ri(z) = ZZﬂkp(j)xkp —x9; and rg(x) =1)K — Zxkp.
k=1 p=1 p=1

1. Choose the convergence parameters 1,5, A > 0,. Set the iteration index ¢ := 0. The

initial vectors z°, u3, u) may be chosen arbitrarily.

2. For each arc j compute

_ A ri(zt)
zoit = arg | min {fj(%j) — ug,o; + 5((1’03')2 — 2(wg, + ch(j) )Toj) ¢ -
3. For each commodity k, compute the shortest path that joins the origin s, and the desti-
nation Zx. The length for each arc j used for this computation is f; (xﬁjl) This shortest
path is added to P} and N} := N} + 1 if it is not already there. Then, the path flows are

updated according to the following rule:

1 1 re(z?) r;i(z)
2= max O,xt T — - T k _ bAS
i o S Tl " 722 ) T | N 2
4. Update the dual variables
uttl .=yl + A ri(xtth), Wbt =l + ir (")
0j -— “0j d(]) J ’ 1k — Yk N}é k :

5. Test (xﬁ}fl,xgl, ugh!, uft") for convergence and set ¢ := ¢ + 1 if one decides to continue

the iteration.
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These five steps constitute the heart of (PDM) algorithm which will be used in the tests below.
Its good performance relies mainly on the arc-path formulation. The one-dimensional mini-

mizations at step 2 can be easily solved by Newton method.

Classical node-arc formulation has been proposed earlier: in [11], the subspace A represents
the coupling between commodities (equations (1)). Then, the proximal step splits into one-
dimensional convex programs for each arc and minimum quadratic cost flow subproblems for
each commodity. Hence, the flow conservation equations for all commodities are always sat-
isfied. This feature turns out to be very useful in practical applications. The projection step
consists on simple updates of the dual variables. Although this algorithm is efficient for solving
these problems, it is very slow when the number of commodities is large. One reason why this
happens is that the algorithm involves at each iteration quadratic flow subproblems. See [45]

for a comparison with the above PDM algorithm.

In [16], Eckstein and Fukushima give some reformulations of the generalized alternating di-
rection method of multipliers by Eckstein and Bertsekas [15]. These reformulations are then
applied to the multicommodity flow problem and other optimization problems. The resulting
algorithm for multicommodity flow problem is very close to the one derived from the proximal
decomposition method in [11] as it splits into one-dimensional convex programs for each arc
and single-commodity minimum cost flow problems for each commodity. The method has been
implemented with the data-parallel CM Fortran on the Connection Machine 5, and applied to

some randomly generated quadratic transportation problems.

Another interesting application of the proximal point algorithm is given by Ibaraki and Fukushima
[32]. The primal-dual algorithm which is proposed for a large class of convex multicommodity
flow problem, resembles in the separable case, to those proposed in [11] and [16]. At each
iteration, the flow conservation equations are satisfied and the dual optimality is attained when
the coupling constraints are satisfied. Computational experiments were performed on multi-

commodity flow test problems with separable quadratic costs.

4.5 Other Methods

In [62], Stern groups the variables by destination which allows to have linearly independent
set of flow constraints for each destination. In this relaxation method, the primal variables
must be uniquely defined as functions of the dual variables. To achieve that, it is sufficient to

use a strictly convex objective function with respect to all primal variables. Consequently, the
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objective function considered is of the form (10). The proposed method is of a Gauss-Seidel
type: dual vectors corresponding to each node are computed sequentially while the others are
kept fixed. Parallel asynchronous versions are also discussed in [8]. An example is presented to
illustrate the method.

Nagamochi has developed a relaxation method for the nonlinear multicommodity flow prob-
lem which requires the functions f; and fi; to be strictly convex. Hence, to apply this method
to the message routing problem, its objective function must be modified as suggested by Stern
[62] for example (see (10)). In the model he is concerned with, capacity constraints are added
to individual commodities. The proposed method is an extension of the relaxation method of
Bertsekas for network flow problems with separable strictly convex costs [64]. Computational
experiments have been conducted on randomly generated test problems where all the functions

f; and f; are quadratic.

The method proposed by Authie [3] fits in the general relaxation framework. It consists in
solving sequentially single commodity flow problems when the remaining commodity flows are
kept fixed to their former values, like in the block-coordinate descent method (see [8]). The
single commodity flow problems are solved by a dual approach. Some computational experi-

ments show that the method is comparable to the approach of Schwartz and Cheung [58].

Fukushima’s approach [23] is an adaptation of a nondifferentiable optimization technique to
the dual of the arc-path formulation of the multicommodity flow problem with f; strictly convex
and fr = 0. The dual problem is shown to be a problem of maximizing a concave function for
which functional values and subgradients can be calculated by using shortest path algorithms.
A nonsmooth optimization algorithm of descent type is proposed which takes special features

of the dual problem into account. The algorithm has been tested on traffic assignment problems.

Pinar and Zenios [52] considered a block angular optimization model with a smooth ob-
jective function (as Schultz and Meyer [57]). Their method uses a piecewise linear-quadratic
penalty function to eliminate the coupling constraints. This penalty function is continuous,
smooth and convex but not separable. The special structure of the constraints motivates the
use of a method based on linearization of the penalty function to solve the penalized problem.
Simplicial decomposition [65] has been chosen by the authors. See [53] for a comparative study

of this algorithm with two other algorithms for multicommodity flow problems.
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The Minimum Mean Cycles Canceling method proposed by Ouorou and Mahey [50], is
a primal method which is inspired by Karzanov and McCormick’s idea for separable convex
optimization in unimodular linear spaces [35], first worked out by Goldberg and Tarjan for
minimum cost circulations [27]. The authors deal with the node-arc formulation where each f;
is continuously differentiable and fi; = 0. The method starts with a feasible multicommodity
flow and at each iteration, a commodity flow with positive absolute mean (see [50]) is then cho-
sen and a negative cycle, feasible with respect to that commodity, is found and canceled. The
canceling step increases the total flow and the flow of the chosen commodity on forward arcs
in the feasible cycle and decreases them on backward arcs. It maintains the feasibility of the
new commodity and decreases the cost function. As the method needs to store all individual

flow vectors, it is suited to networks with a limited number of commodities.

5 Numerical Experience

Computational experiments have been conducted for most of the techniques discussed in the
previous section. But as we already noted, they were run with different codes and test problems.
However, in this section, we attempt to give a performance evaluation and computational testing
of some chosen solution techniques using an actual telecommunication network with 106 nodes
and 904 arcs and dense requirement matrix * (Recall that much of our motivation comes from
the message routing problem.) We use different densities of the requirement matrix (from 40%
to a fully dense matrix, i.e, 11130 = 106x105 commodities share the network for the latter
case) and introduce a load factor (up to 3 times the standard demand; the load factor is used
to scale up the rs) to have different offered traffic for this network, leading to twenty test
problems. All generated problems were feasible. We complete these tests problems with a set
of randomly generated feasible problems to have a sufficient variety of network structures.

We have chosen to test four solution techniques; two primal algorithms: the Flow Deviation
(FD) [40], the Projection Method (PM) [6],[7], and two primal-dual algorithms: the Proximal
Decomposition Method (PDM) proposed in [45], and the Analytic Center Cutting Plane Method
(ACCPM) [25]. Since there are many different performance criteria (speed, accuracy, stability,
robustness, path dispersion), we do not attempt to rank the methods. Our goal is to give
valuable information to help the network designer selects the method that best fits his/her

individual need.

4This material is issued from a real-world traffic situation which has been given by the Centre National
d’Etudes des Télécommunications.

20



All the computational tests were performed on an IBM RISC/System 6000 machine and
the codes are entirely written in C°. This programming language is able to work properly with
specific data structures. Double precision was used for all calculations. The candidate paths

were generated using Dijkstra’s shortest path algorithm and the same initialization procedure
is used for FD and PM.

Stopping Tolerances

To begin with, we point out that the performance evaluation heavily relies on the precision
measure which is used to stop the algorithms. It is not adequate to require that all algorithms
reach the same final accuracy. The first reason is that the stopping criterion is not unique and
differs from one method to another with varying effects on the final accuracies in constraint
violations, Kuhn-Tucker conditions and objective function values. The second reason is that
some algorithms cannot achieve a higher accuracy (especially on our large testbed network)
because they are not specially tailored for that quality criterion but for a different one, like
very fast early convergence (e.g.: FD) or ability to support distributed computations (e.g.:
PDM). Hence, we have chosen to stop each algorithm on its own optimality test.

At each iteration of the Flow Deviation algorithm, a lower bound on the optimal value
is available. Omne can terminate the procedure when the best obtained lower bound during
iterations is sufficiently close to the objective function value at the new current solution: all
the results below are obtained with an accuracy of 1%. One alternative is to utilize Wardrop’s
equilibrium conditions directly, measuring the difference in the first derivative lengths of the
paths used within an origin-destination pair [51].

PM is stopped when a normalized measure of deviation from the optimal solution falls below
a given tolerance, as proposed by the authors [6]. Here we use a tolerance of 1072,

For PDM, we stop computing when the maximal tolerance for both row residual and the
other Kuhn-Tucker optimality are respectively lower than 107" and 1073 (see [45] for more
details).

The case of ACCPM deserves a few lines of discussion. It does not directly solve the primal
problem. Rather, it solves its Lagrangian dual (16), and provides a lower and an upper bound
value for the optimum of this problem. However, the practical solution involves additional
box constraints on . Any lower bound for this modified problem is a valid lower bound for
the original one. One cannot assert that the same holds for the computed upper bound. But

the method offers an alternative for computing a valid upper bound. The primal variables

5The codes for the Flow Deviation and the Projection Method were originally written in FORTRAN.
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in the computation of the analytic center define feasible convex combinations of the path-
flows for each commodity. We can thus construct a feasible flow, and the associated delay
is a valid upper bound. This method of computing valid upper bounds for (16) requires a
slight modification of ACCPM. Indeed, ACCPM is a general purpose code aimed at solving
nondifferentiable problems such as (16). For our experiments, we have used the lower and the
upper bounds generated by ACCPM, with the risk of getting invalid upper bounds. This was
aslo the way things were done in [25]. To check the risk of error, we run our main example
(the actual network) with computation of the upper bound based on a feasible flow solution.
We found that the delay was each time inferior to the proposed upper bound. The tolerance
parameter for ACCPM is set to 1077,

All these tolerances were chosen after several experiments which have shown that with these
choices, the aggregate flow differs only slightly from one algorithm to another. Figure 2 displays
a semilog plot of the number of iterations and the CPU time versus the accuracy tolerance.
An actual 19 nodes-68 arcs network with 30 commodities has been used for these tests as high
accuracy requires much time on large networks. Note also that with large networks it is not
always possible (for reasons pointed out earlier) to require the algorithm to achieve some of the
tolerances we use for the small network in a reasonable amount of computing time.

The Flow Deviation method has the reputation of having a slow convergence tail when a
high accuracy is required. Its convergence is quick at the beginning and as we get closer to the
optimal solution, the algorithm becomes slower. The PM algorithm progress is shown to be

often satisfactory near a solution and better than that of FD (see [7], p. 472 for an illustration).

Path Dispersion

In the message routing problem, the paths flows are not unique although the total link flows are
unique. Solutions with a large number of paths are less desirable than solutions which use only
a few paths. On this basis, PDM is most likely to find solutions with a reduced number of paths,
while the other algorithms always find a solution with a larger number of paths. The reason
why PDM uses a fewer number of paths, can be explained intuitively by the update of path
flows procedure which tends to force many of them to zero. This intuition is here empirically
confirmed by our experimentation (more details on path dispersion and performance of PDM
can be found in [45]). At each iteration of the FD method, a vertex of the feasible set is
obtained by shortest paths computation (see section 4.1). Then the next iterate is obtained by
a search along the line joining the current iterate with the vertex. The line search will keep all
previously generated path flows strictly positive, unless the stepsize equals one which is unlikely

in practical situations. This point explains why the Flow Deviation method tends to generate
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Figure 3: Path Dispersion vs Traffic Load.

a large number of active paths. Observe that the behavior of FD to keep all generated path
flow positive is improved by PM: an increment of flow change is calculated for each path on
the basis of the relative magnitudes of the path lengths and the second derivatives of the cost
function; if the increment is too large so that the path flow becomes negative, the path flow
is set to zero. All these characteristics are observed on figure 3 (for K = 11130) and on the
tables, the column headed “Path Dispersion” gives the maximum number of paths used by a

commodity.

Other characteristics

The sensitivity of PDM w.r.t. the choice of the proximal parameter A is illustrated in figure 4.
We have used the same value of the parameter A = 1 in all the tests, but one can see that in
figure 4 the value could be good or bad depending on the data.

We would like to point out that at each iteration of FD and PM, the current solution is
feasible, while for PDM, feasibility is not maintained during the iterations like for all dual
methods. To implement ACCPM, we introduce the box constraint 0 < u; < U. At the
optimum the upper constraint should not be active. In this paper we chose the default value
U = 10. This was convenient since for most variables the optimal value were close to 0. In case
U = 10 appears to be an underestimate for some variable, the box constraint is automatically

expanded as in a trust region scheme.
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Discussion

Tables 2 and 3 provide a detailed account of the results obtained with each algorithm on the
twenty test problems (recall that K denotes the number of commodities) on the 106 nodes-904
arcs network. The times reported are in seconds and the column headed “Delay” corresponds
to the values of (5) computed for the solutions given by the algorithms. Since FD and PM are
primal-feasible, “Delay” means the best recorded primal objective value. For PDM, it is the
primal objective value of the final sum of the path flows. For ACCPM, it is computed using the
reconstructed feasible solution as indicated above. The table displays a great diversity in the
methods even if PM and PDM seem to converge faster. ACCPM is significantly slower on these
examples. These results also show how computational times increase with two characteristic
factors: the traffic load and the number of commodities. CPU time is certainly the most popular
criterion to evaluate an algorithm, but it must be put in perspective when observing that it is
often non monotonic with respect to some parameters and data. For example, ACCPM looks
quite insensitive to the problem size and to the load factor while the other three methods take
more time to solve heavy congested networks. On the other hand, FD showed high sensitivity
with respect to K while the other three methods seemed to be more robust when dealing with
dense requirement matrices. It is worth noting that many authors have tested their algorithms
on networks of increasing sizes, but very few used a full set of commodities as we do here.
Table 4 collects a representative subset of results obtained with the four algorithms on
some other networks. The first two are given by the CNET and the eight other are randomly
generated networks. The network generator which has been already used to validate ACCPM
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on nonlinear multicommodity flow problems, is described in more details in [25]. The problems
on table 4 differ in the size and the structure of the network (they are listed in increasing order
of the number of arcs). As for the 106 nodes-904 arcs network, there is a great diversity in
the methods. A significant observation from this table is that problem dimension is far to be
the most determinant parameter to explain efficiency of the methods. While PM seems to be
faster to reach its stopping criterion, it may happen that it converges slower (see results on the
300 nodes-2000 arcs network). ACCPM behaves better on these randomly generated problems.
PDM still provides solutions with less path dispersion. Recall that its performance can be
improved by a best choice of the penalty parameter A (see figure 4). The slow convergence of
FD is also observed on table 4 but it sometimes converges faster than PDM as already observed
in [45].

Finally, we have generated ten instances of a 300 nodes-2000 arcs network with 1000 com-
modities. Table 5 collects statistic informations obtained on these problems about the CPU
time, the number of iterations and the path dispersion. It confirms some general conclusions
drawn from Table 4. The largest standard deviation in CPU time and numbers of iterations
occurs with PM while ACCPM is the less variable. The other two methods have intermediate
variability though FD and PDM are closer to ACCPM than PM.

These limited numerical experiments do not allow us to draw definitive conclusions on the
comparative behavior of the tested algorithms. Our aim was to compare different aspects of
the convergence of some among the most efficient methods for the message routing problem.
Indeed, the above considerations indicate that the choice of the most adequate algorithm for
decision makers will be oriented by analyzing the tradeoff between precision and the different

criteria discussed above for a specific application.

6 Conclusion

The difficulty in solving convex multicommodity flow problem stems from the coupling con-
straints and from the fact that real-life instances have very large dimensions. This difficulty
is overcome by decomposition approaches which separate the issues of finding flows for the
individual commodities and coordinating the flows among the commodities to match the joint
capacity constraints. In this paper, we reviewed the main solution techniques. Comparing
algorithms from reported results in the literature is difficult since the authors perform their
experiments on different computers, code their method in different programming languages,
and run different test problems. However, our experiments on a real-life instance (and some
randomly generated ones) of the important message routing (flow assignment) problem in com-

munication networks give a fair idea of the relative performance of the four main algorithms
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| K=4452 |

Load Factor Delay | CPU Time | Number of Iter. | Path dispersion

FD 12.5850 109.61 380 16
1.0 PM 12.5846 47.82 185 9
PDM 12.5894 51.56 209 3
ACCPM | 12.5846 2185.04 15 11
FD 19.1808 188.25 643 17
15 PM 19.1799 52.25 188 11
PDM 19.1904 51.28 208 3
ACCPM | 19.1798 1997.56 14 11
FD 25.9768 269.24 887 22
20 PM 25.9755 101.26 345 12
PDM 25.9934 62.01 253 4
ACCPM | 25.9754 1918.72 14 11
FD 32.9826 353.29 1180 22
25 PM 32.9809 98.21 342 11
PDM 33.0108 85.9 353 4
ACCPM | 32.9808 1854.81 14 12
FD 40.2093 462.82 1507 29
3.0 PM 40.2072 143.79 460 13
PDM 40.2526 96.45 392 3
ACCPM | 40.2072 2262.37 14 11

| K=6678 |
FD 19.6487 241.34 629 20
1.0 PM 19.6481 115.7 312 10
PDM 19.6546 90.85 265 3
ACCPM | 19.6481 2251.27 11 10
FD 30.1790 419.53 1066 26
15 PM 30.1775 209.83 519 13
PDM 30.1904 91.87 267 3
ACCPM | 30.1775 3140.37 14 10
FD 41.2086 619.01 1534 36
20 PM 41.2065 197.18 478 12
PDM 41.2315 175.64 519 3
ACCPM | 41.2065 357717 14 10
FD 52.7817 828.18 2090 36
25 PM 52.7789 217.82 505 13
PDM 52.8240 231.15 679 3
ACCPM | 52.7789 2291.84 12 10
FD 64.9493 1092.53 2713 37
30 PM 64.9461 164.28 390 12
PDM 65.0173 390.14 1024 4
ACCPM | 64.9460 3396.46 14 11

Table 2: Summary of Results on the Test Problems Using the 106 nodes-904 arcs Network
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| K=8904 |

Load Factor Delay CPU Time | Number of Iter. | Path dispersion

FD 26.4738 442.04 912 31
1.0 PM 26.4730 259.33 518 13
PDM 26.4792 505.34 960 5
ACCPM | 26.4730 2973.46 14 12
FD 40.9763 737.39 1503 47
15 PM 40.9741 357.32 651 15
PDM 40.9888 391.73 894 4
ACCPM | 40.9742 3274.3 14 10
FD 56.4262 1105.23 2229 47
20 PM 56.4232 340.65 609 18
PDM 56.4569 326.27 738 4
ACCPM | 56.4232 3190.93 14 10
FD 72.9429 1597.0 3214 51
25 PM 72.9391 418.53 748 17
PDM 73.0019 513.56 1132 5
ACCPM | 72.9392 3023.41 14 11
FD 90.6668 2131.28 4244 51
30 PM 90.6620 397.88 699 14
PDM 90.7651 617.19 1381 5
ACCPM | 90.6620 3105.18 14 11

| K=11130 |
FD 33.4941 642.33 1120 40
1.0 PM 33.4930 379.9 579 16
PDM 33.5006 456.19 845 5
ACCPM | 33.4930 3233.59 14 11
FD 52.2704 1189.32 1981 53
15 PM 52.2676 434.55 663 20
PDM 52.2867 688.61 1276 4
ACCPM | 52.2677 3441.67 14 11
FD 72.6471 1843.18 3093 58
20 PM 72.6433 471.17 688 17
PDM 72.6846 1168.62 2097 6
ACCPM | 72.6433 3186.16 14 11
FD 94.8886 2733.1 4443 60
25 PM 94.8835 558.02 741 17
PDM 94.9672 1114.79 2022 5
ACCPM | 94.8837 3276.89 13 11
FD 119.3122 3824.44 6118 63
30 PM 119.3057 501.78 691 20
PDM 119.4434 1729.36 3054 7
ACCPM | 119.3060 3544.01 13 11

Table 3: Summary of Results on the Test Problems Using the 106 nodes-904 arcs Network
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Network

Fodes | # arcs | K Delay CPU Time | Number of Iter. | Path dispersion

FD 34.5839 2.25 1792 5

PM 34.5815 0.07 44 4

19 68 %5 PDM 34.5817 0.74 477 4
ACCPM | 34.5815 0.74 11 5

FD 68.8435 2.32 594 8

PM 68.8389 1.13 94 4

21 68 420 PDM 68.8389 7.79 980 4
ACCPM | 68.8390 4.0 13 6

FD 53.0840 27.41 1397 8

PM 53.0807 0.43 36 5

60 280 100 PDM 53.0809 7.65 644 5
ACCPM | 53.0808 6.74 12 8

FD 84.9723 82.99 988 8

PM 84.9674 35.13 708 6

100 600 200 PDM 84.9675 125.86 2507 4
ACCPM | 84.9676 34.32 15 8

FD 139.1048 222.23 2151 9

PM 139.0965 8.26 92 7

100 800 500 PDM 139.0968 156.53 2122 7
ACCPM | 139.0970 72.94 13 8

FD 258.4942 932.98 2452 8

PM 258.4781 18.23 58 5

150 1000 2000 PDM 258.4781 756.09 3007 5
ACCPM | 258.4790 613.91 14 8

FD 291.6393 1819.25 2548 15

PM 291.6221 52.38 123 9

200 1200 1000 PDM 291.6223 1523.08 3601 7
ACCPM | 291.6241 383.93 13 9

FD 339.5748 1832.65 2029 20

PM 339.5553 78.04 143 9

200 1600 2500 PDM 339.5553 4890.37 8942 8
ACCPM | 339.5573 1164.47 14 9

FD 304.4062 3397.54 1346 25

PM 304.3894 13110.5 9949 13

300 2000 1000 PDM 304.3922 5387.12 3739 8
ACCPM | 304.3902 779.11 15 11

FD 474.8706 6167.79 2340 12

PM 474.7893 292.1 204 10

300 2000 2000 PDM 474.7893 5101.6 3483 5
ACCPM | 474.7899 3073.26 14 9

Table 4: Results on Some Randomly Generated Networks
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Average | Min. | Max. | Standard deviation | Norm. Stand. Dev.
FD 4608.2 | 2855 | 6500 1231.7 0.267
CPU Time PM 3398.2 389 | 13111 4294.7 1.264
PDM 5188.7 | 3547 | 6869 1134.4 0.219
ACCPM 848.4 612 1441 243.4 0.287
FD 1920.2 | 1346 | 2550 380.6 0.198
Number of Tterations PM 2488.6 289 9949 31034 1.247
PDM 3942.7 | 2857 | 5399 890.5 0.226
ACCPM 14.6 14 16 0.70 0.048
FD 154 9 25 4.74 0.308
Path dispersion PM 10.3 7 13 2.26 0.219
P PDM 9.2 6 i1 181 0.197
ACCPM 114 11 12 0.52 0.046

Table 5: Statistic on Ten Instances of a 300 nodes-2000 arcs Generated Network With 1000 Com-
modities

described in the paper. In particular, it appears that the user may discriminate algorithms in
view of a particular application according to his/her tradeoff between precision and the different

characteristics discussed above.
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