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Résumé – Dans cette comunication, le problème de la sélection du modèle de bruit qui corrompt des données mesurées a été
étudié. Les données étant obtenues en sortie d’un système d’ordre deux, ce problème est couplé a un problème d’identification.
Dans le cadre bayésien, une solution jointe a été proposée. La sélection de modèle repose sur l’évidence dont le calcul est
délicat. L’approche utilisée pour calculer l’évidence est fondée sur les méthodes MCMC mais ne repose pas sur l’estimateur de la
moyenne harmonique qui est connu pour présenter des problèmes de convergence. Elle met à profit la condition de réversibilité
de l’algorithme de Metropolis-Hastings. Les performances de la solution ont été évaluées avec des résultats satisfaisants.

Abstract – In this paper the problem of model selection has been applied to the identification of the model for the noise that
affects the measured data. Performing the identification of a second order system has been considered as a side problem, in the
view that the output of such a system is what we are measuring. A joint solution for the two distinct problems has been proposed
in the context of the Bayesian statistical modelling. The main problem was with the approximation of the model evidence the
solving of which required the use of numerical methods. However, our approach is not based on the well-known estimator of the
harmonic mean which can exhibit bad convergence properties. As an alternative, the proposed estimation method takes advantage
of the reversibility property of the Metropolis sub-kernel. The performances of the proposed solution have been assessed with
encouraging results.

1 Introduction

The main problem addressed in this paper is performing
model selection in the Bayesian context. The objective is
to determine the appropriate noise model for noise cor-
rupted observed data. This problem is coupled with a
system identification one, more specifically with the iden-
tification of a second order system.

The problem of model selection has a long history, dat-
ing as back as Jeffreys and continuing into present time
with the works of [1–4,7–9] and the references therein, just
to name a few. Despite being under scrutiny for such a
long time, there still isn’t a definite solution to the prob-
lem. The issue that most often arises is the presence of
intractable integrals in the posterior distribution of the
models. The workaround usually involves numerical sam-
pling methods, most often in the class of Markov Chain
Monte Carlo (MCMC), in order to be able to sample from
the posterior. Regarding the numerical sampling meth-
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ods, there are two distinct approaches: within-model and
across-model sampling. The within-model approach con-
sists in running a Markov chain for each of the considered
models whereas the across-model approach runs just one
Markov chain for all the models, which is able to make
jumps also across the model space and not only within
the parameter space. Unfortunately, it is not an easy task
to design good jumping rules so as to allow a thorough
exploration of both the model and parameter spaces. As
such, a within-model approach was considered in our case.

The joint problem of noise model selection and system
identification has been recently tackled in [6], where a dif-
ferent approach based on the Laplace-Metropolis approx-
imation was used to approximate the model evidence.

Section 2 deals with the Bayesian modelling of the prob-
lem under study, i.e. specifying the likelihood, prior distri-
bution and obtaining the posterior. Section 3 introduces
the evidence approximation method, section 4 presents the
numerical results, while section 5 concludes the paper.



2 Bayesian noise model selection

The Bayesian statistical modelling process, as indicated
in [10], comprises three steps: model formulation, model
estimation and model selection. The first step involves
specifying the likelihood and the prior distributions, the
second step involves applying Bayes rule to determine the
posterior law while the third step is all about determining
the most appropriate model given the available data.

2.1 System and noise models

As the emphasis is on the noise model selection part, we
have chosen not to complicate the problem at hand by
selecting an intricate model for the system, thus we have
chosen to perform the identification of a second order sys-
tem. It is performed by analysing the step response of the
system, considering that the unit step signal is applied at
time t = 0. The model for the step response of the system
is defined in the time domain and it is given by:

r (t) = G0

(
1− cos (2πf0∆t) exp

(
−∆t

τ0

))
u (∆t) , (1)

where G0 is the gain, ∆t = t − t0 with t0 > 0 represents
the propagation delay, f0 is the ripple frequency and τ0 is
a time constant controlling the decay of the ripples. The
vector θs = [G0, t0, τ0, f0] groups together all the param-
eters.

What is actually measured at the output of the system
is a sampled and noise corrupted version of the step re-
sponse, where we have assumed an additive model for the
noise. As such, the model for the measurements is:

xn = rn + wn, (2)

where rn = r (nTs) with Ts the sampling period and wn

is the noise component. All N measurements have been
collected in the vector x = [x1, . . . , xN ]

T
.

The interest towards the noise model selection prob-
lem stems from the fact that the parameter estimation
procedure is tightly connected to the chosen noise model.
As such under the wrong hypothesis, the estimated val-
ues tend to be off with respect to the true ones. Table
1 presents the expressions for each of the three chosen
models. All three models have a simple parametrisation
with only one parameter, γk, and they are of zero mean1.
Each model is assigned a parameter vector θk = [θs, γk],
k = {1, 2, 3}, which we seek to estimate.

The general expression for the likelihood function is ob-
tained by making the assumption of i.i.d. measurements
and is given by equation (3). Replacing the fk term with
either one of the expressions found in table 1 yields the
likelihood function for the respective model.

f (x|θk,M = k) =

N∏
n=1

fk [(xn − rn (θs)) |γk] (3)

1location parameter for the Cauchy distribution

Tab. 1: Noise distributions

Gauss f1 (ω|γ1) = (2π)
−1/2

γ
1/2
1 exp

(
−γ1ω2/2

)
Laplace f2 (ω|γ2) = 2−1 γ

1/2
2 exp

(
−γ1/22 |ω|

)
Cauchy f3 (ω|γ3) = π−1γ

1/2
3

[
1 + γ3ω

2
]−1

2.2 Prior distributions

In the Bayesian modelling, the prior distribution plays an
important role as it is the tool to inject available initial
information into the inference problem. In our case how-
ever, we have chosen to use uninformative uniform prior
distributions for the parameters so as to provide a solution
as general as possible,

π (θk,l|M = k) = U (θk,l) (4)

where θk,l, l = 1, . . . , L (= 5) is the l-th component of the
parameter vector θk. Moreover, for a given parameter θk,l,
we have used the same prior for all models.

Under the assumption of the parameters being indepen-
dent among each other, the prior law factorises as:

π (θk|M = k) =

L∏
l=1

π (θk,l|M = k) . (5)

2.3 Bayesian model selection

Two key components in performing model selection are
the posterior distribution and the model evidence. For a
given model k, k ∈ {1, . . . ,K}, the posterior writes:

P (M = k|x) =
P (M = k) f (x|M = k)

K∑
j=1

P (M = j) f (x|M = j)

, (6)

where the term

f (x|M = k)=

∫
f (x|θk,M = k)π (θk|M = k) dθk (7)

represents the aforementioned model evidence and the term
P (M = k) represents the model prior probability. In or-
der not to introduce prior bias towards a given model, we
have considered the models to be a priori equiprobable.

The noise model selection procedure consists in select-
ing the model with the highest posterior probability, which
is an optimal choice as it minimises the zero/one risk [6].

M̂ = arg max
k

P (M = k|x) (8)

We have not managed to elude the common problem of
having to deal with intractable integrals as in our case we
cannot evaluate the integral found in equation (7). The
following sections discusses the solution employed in order
to overcome this problem.



3 Chib evidence approximation

The key component of the evidence approximation method
proposed by Chib in [3] is being able to obtain samples
from the posterior distribution. Moreover, the method it-
self is defined around the Metropolis-Hastings (MH) sam-
pler. The first step in approximating the evidence is to
recast the expression of the posterior distribution for the
parameters by swapping the posterior with the evidence:

f (x|M = k) =
f (x|θk,M = k)π (θk|M = k)

π (θk|x,M = k)
. (9)

As the posterior is not available in a closed form, the
method then resorts to numerically approximating it.

The above equation remains valid no matter the value
of θ, but as we will be performing a numerical approx-
imation of the posterior, one wants the point in which
the approximation is performed to lie in a region of high
posterior density. This is so because more samples are
available from such a particular region, thus ensuring a
better accuracy of the approximation [2]. In our case we
have used the posterior mean as the respective point.

To ease the numerical approximation of the posterior
distribution, we had to decompose it as a product of L = 5
conditional posterior laws2, one law per parameter

π (θ∗k|x,M = k) =

L∏
l=1

π
(
θ∗k,l|x,ψ∗

k,l−1

)
(10)

where θ∗k =
[
θ∗k,1, . . . , θ

∗
k,L

]
denotes the point at which we

approximate the posterior and where for simplicity the
notation ψ∗

k,l−1 = [θ∗k,1, . . . , θ
∗
k,l−1] was introduced.

Each conditional π
(
θ∗l |x,ψ∗

l−1

)
from equation (10) is

approximated as the ratio of two expectations:

π
(
θ∗l |x,ψ∗

l−1

)
=

En

{
α
(
θl, θ

∗
l |x,ψ∗

l−1,ψl+1

)
Jt
(
θl, θ

∗
l |x,ψ∗

l−1,ψl+1

)}
Ed

{
α
(
θ∗l , θl|x,ψ∗

l−1,ψl+1

)} ,

(11)

where for simplicity the index k has been eliminated and
the notation ψl+1 = [θl+1, . . . , θL] has been introduced.
The above formula was obtained starting from the re-
versibility property of the Metropolis-Hastings algorithm
sub-kernel [3]. The numerator expectation is with respect
to the distribution π

(
θl,ψl+1|x,ψ∗

l−1

)
whereas the de-

nominator expectation is with respect to the distribution
π
(
ψl+1|x,ψ∗

l−1, θ
∗
l

)
Jt
(
θ∗l , θl|x,ψ∗

l−1,ψl+1

)
. The terms

that intervene inside the expressions of the expectations,
i.e. α

(
◦, ◦|x,ψ∗

l−1,ψl+1

)
and Jt

(
θl, θ

∗
l |x,ψ∗

l−1,ψl+1

)
, re-

present the acceptance ratio and the proposition law of
the Metropolis-Hastings algorithm [5].

Both expectations in equation (11) are approximated
using the Monte-Carlo integration technique. In the case

2in general other decomposition strategies are possible, as for
example performing a decomposition into groups of parameters

of the numerator expectation, samples distributed accord-
ing to the conditional posterior law π

(
θl,ψl+1|x,ψ∗

l−1

)
are required. To obtain these required samples we re-
sorted to the use of the Metropolis-within-Gibbs (MwG)
sampling approach, where the aforementioned conditional
posterior is further decomposed into a series of conditional
posteriors π

(
θj |x,ψ∗

l−1, θ−j

)
, where j ∈ {l, . . . , L} and

θ−j = [θl, . . . , θj−1, θj+1, . . . , θl]. Under this approach, ob-
taining one sample from the above posterior requires sam-
pling all the conditionals from the series whereas obtaining
M samples requires repeating the process M times.

Approximating the denominator expectation requires
samples distributed according to the product of distri-
butions π

(
ψl+1|x,ψ∗

l−1, θ
∗
l

)
Jt
(
θ∗l , θl|x,ψ∗

l−1,ψl+1

)
. By

taking a closer look at its expression, one can notice that
the conditional posterior distribution involved in it is noth-
ing more than the distribution that must be sampled in
order to approximate the numerator expectation for the
subsequent term in the decomposition from (11). This re-
cycling of samples is a noteworthy aspect of the model ev-
idence approximation method as for estimating one term
from the decomposition in equation (10) one must run the
MwG sampler only once as opposed to twice if this wasn’t
the case.

4 Simulation Results

One aspect worth mentioning with respect to the decom-
position in equation (10) is the order in which it is per-
formed. Initial experimental results indicated that the or-
der in which the decomposition is carried out requires fine
tuning for achieving better results. However, subsequent
investigations indicated that this might not be case, or at
least, not in the cases that were considered. For the pre-
sented results the order in which the decomposition was
carried out was hand chosen and is the order in which the
parameters are written in table 3.

In order to asses the performance of the presented model
selection method, for each of the three considered noise
types the method was run 100 times. At each run a num-
ber of 3000 posterior samples were drawn from which the
first 900 samples were discarded as burn-in samples. The
results for the noise model selection part are presented in
table 2. As it can be observed the proposed method per-

Tab. 2: Confusion matrix

M̂ = 1 M̂ = 2 M̂ = 3

M = 1 100 0 0

M = 2 0 100 0

M = 3 0 0 100

formed well, managing to select the correct model in all



of the considered cases.
Table 3 introduces the prior interval for each parame-

ter, the true values used in the experiments and presents
the results for the system identification part. The esti-

Tab. 3: Estimation results for the case of Cauchy noise

Prior True
Estimated PSD3

Gauss Laplace Cauchy Cauchy

G0 [1, 10] 3 4.974 3.086 3.025 0.088

γ [0.1, 10] 1 0.101 0.102 0.930 0.130

t0 [0, 0.5] 0.2 0.491 0.205 0.198 0.004

f0 [1, 50] 10 3.503 11.334 10.076 0.553

τ0 [0, 1] 0.1 0.169 0.077 0.093 0.020

mated values for the parameters were consistent with the
true values for all of the considered models. We have cho-
sen to present the estimation results only for the Cauchy
model as for it the estimated values exhibited the highest
standard deviation. As it can be observed, the method
performed also well in terms of estimating the values for
the parameters.

We have chosen to present also the estimated values for
the other two models in the case when the true model is
the Cauchy one. As it can be observed, the best results
are obtained for the case of the Cauchy model whereas the
worst are obtained for the case of the Gauss model. The
results obtained for the Laplace model are rather close to
the true values but they fall short of the ones obtained
in the case of the Cauchy model. This can be explained
by the fact that among the three distribution, the Gaus-
sian one has the thinnest tails while the Cauchy has the
thickest ones. As with the results, the Laplace distribu-
tion sits in between the previous two models. Care should
be taken when analysing the estimation results for the γk
parameter as it does not have the same meaning across
all models. The fact that it is underestimated for the
Gauss and Laplace models is the correct behaviour as for
the case of the two models a smaller value accounts for a
higher noise level which is the case considering the true
model to be the Cauchy one.

5 Conclusions

This paper tackled the joint problem of noise model selec-
tion and system identification, where the system identifi-
cation problem is nested inside the model selection one.

One of the biggest challenges in performing Bayesian
model selection is computing the, most often intractable,
model evidence. The solution to which we resorted, intro-

3Posterior Standard Deviation

duced by [3], makes use of a clever rewriting of the Bayes
formula for the posterior law of the parameters such that
the evidence is expressed as a function of the posterior
law. As sampling the posterior law despite not having it
in a complete form is possible, then the method proceeds
with using these samples to approximate the posterior law,
and in doing so to provide also an approximation for the
marginal likelihood.
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