FR.E.1: Measuring techniques and Instrumentation

Electron Holography and Lorentz microscopy for the quantitative measurements of local magnetic properties and *in-situ* experiments

Etienne SNOECK, C. GATEL, C. MAGEN*, A. MASSEBOEUF, L.A. RODRIGUEZ,

> CEMES-CNRS Toulouse, France

*Laboratorio de Microscopías Avanzadas (LMA) Instituto de Nanociencia de Aragón (INA) Universidad de Zaragoza - Spain

FR.E.1: Measuring techniques and Instrumentation

Electron Holography and Lorentz microscopy for the quantitative measurements of local magnetic properties and *in-situ* experiments

Etienne SNOECK, C. GATEL, C. MAGEN*, A. MASSEBOEUF, L.A. RODRIGUEZ,

> CEMES-CNRS Toulouse, France

*Laboratorio de Microscopías Avanzadas (LMA) Instituto de Nanociencia de Aragón (INA) Universidad de Zaragoza - Spain

Transmission Electron Microscopy

• Structure imaging

- Conventional BF-DF imaging
- High resolution TEM (HRTEM)
- HRSTEM HAADF

• Local chemical measurements and chemical mapping

- Electron Energy Loss Spectroscopy (EELS)
- EFTEM

- Mapping local fields
 - Magnetic fields
 - Electrostatic fields
 - Strain fields

→ Electron Holography

Outlook

◆ Lorentz TEM and Electron Holography

• Exple1 : Study of the phase diagram of Fe nanocubes by EH

• Exple 2 : *In-situ* Lorentz studies of the magnetic reversal of Co antidot arrays

Exple 3 : In-situ EH studies of the magnetic induction generated by a HDD writer-head in operando

Electron wave in a TEM

What information is carried by $\phi_s(\vec{r})$?

Etienne SNOECK - ICM2015 – Barcelona 5-10 July

1. LORENTZ Microscopy (Fresnel Mode)

Lorentz Microscopy is based on the **Lorentz Force** that experiment the electrons

$$\Phi_{s0}(\vec{r})) \xrightarrow{\mathsf{TEM}} \Delta z_{0} \xrightarrow{\mathsf{P}} \Psi_{s0} = a_{s0}(\vec{r}) \exp i(\vec{k}.\vec{r} + \varphi_{s0}(\vec{r}))$$

$$\Delta z_{1} \xrightarrow{\mathsf{P}} \Psi_{s1} = a_{s1}(\vec{r}) \exp i(\vec{k}.\vec{r} + \varphi_{s1}(\vec{r}))$$

$$\Delta z_{2} \xrightarrow{\mathsf{P}} \Psi_{s2} = a_{s2}(\vec{r}) \exp i(\vec{k}.\vec{r} + \varphi_{s2}(\vec{r}))$$

Etienne SNOECK - ICM2015 - Barcelona 5-10 July

 $\Psi_{obj} = a_0(\vec{r}) \exp i(\vec{k}.\vec{r} +$

Phase retrieval Process

1- Take a series of images in three focal planes:

- underfocus
- overfocus
- in-focus

 $\varphi(r) = -\frac{\pi}{\lambda \Delta_z} \nabla^{-2} \nabla \cdot \left| \frac{1}{I(r,0)} \nabla \left\{ \nabla^{-2} \left[I(r,\Delta_z) - I(r,-\Delta_z) \right] \right\} \right|$

2- Solve TIE

In-plane phase shift image

2. Off-axis Electron Holography

Phase retrieval

FFT of *I*_{hol}(**r**)

1- Calculate the Fast Fourier

recorded hologram $FT|I_{hol}(\mathbf{r})|$.

Transform (FFT) of the digitally

$$\Psi(\mathbf{r}) = A_{S}(\mathbf{r}) \exp i \left((\mathbf{k} \cdot \mathbf{r}) + \phi_{S}(r) \right)$$

Intensity image (hologram)

$$I_{Holo} = \left|\Psi_0 + \Psi^*\right|^2 = 1 + A_s^2(x, y) + 2A_s(x, y) \cdot \cos(2\pi R_0 \cdot x + \varphi_s(x, y))$$

$$FT\left|I_{hol}(\mathbf{r})\right| = \delta(u) + FT\left[A^{2}(\mathbf{r})\right] + FT\left[A_{s}(\mathbf{r})\exp(i\varphi_{s}(\mathbf{r}))\right] \otimes \delta\left(\mathbf{u} + \frac{\alpha_{h}}{\lambda}\hat{\mathbf{x}}\right) + FT\left[A_{s}(\mathbf{r})\exp(-i\varphi_{s}(\mathbf{r}))\right] \otimes \delta\left(\mathbf{u} - \frac{\alpha_{h}}{\lambda}\hat{\mathbf{x}}\right)$$

and center one of the

sidebands

FFT

2- Apply a mask to select

FFT⁻¹

3- Calculate FFT⁻¹ to obtain the amplitude and phase images.

Phase shift induced by the local electrostatic potential:

$$\phi_{Elec}(x) = C_{\rm E} \int V(x, y, z) dz$$

Phase shift induced by the local magnetic field :

$$\phi_{Mag}(x) = -\frac{e}{\hbar} \iint B_{\perp}(x,z).dx.dz$$

Total phase shift

$$\phi_{Total}(x) = \phi_{Elec}(x) + \phi_{Mag}(x)$$

But phase image $\phi(x, y) = \phi^{C}(x, y) + \phi^{M}(x, y)$

→ Need to separate different contributions to the phase shift

Phase shift contributions

$$\phi(x, y) = \phi^C(x, y) + \phi^M(x, y)$$

 $\phi_{C,Elec}(x,y) = C_E \int V(x,y,z) \, \mathrm{d}z$

$$\phi_{Mag}(x, y) = -\frac{e}{\hbar} \iint B_{\perp}(\vec{r}_{\perp}, z) \,\mathrm{dr} \,\mathrm{dz}$$

Typical phase sensitivity : few 10 mrad @ 5 nm spatial resolution

Measurements of the magnetic induction (B) components from $\phi_{Mag}(\vec{r})$

$$\phi_{Mag}(x) = -\frac{e}{\hbar} \iint B_{\perp}(x,z).dx.dz$$

• The equiphase contours give the B_{\perp} direction \rightarrow contours lines = in-plane magnetic flux

Magnetic components from ϕ^M

- The phase gradient is proportionnal to the in-plane B_\perp components of the induction

 \rightarrow B_x, B_y components

$$\frac{\partial \varphi_{Mag}(y)}{\partial y} = \frac{e}{\hbar} B_x(y).t$$

(t = thickness)

$$\frac{\partial \phi_{Mag}(x)}{\partial x} = \frac{e}{\hbar} B_y(x).t$$

•Only planar components of the induction can be measured

CEMES CITS

Outlook

◆ Lorentz TEM and Electron Holography

• Exple1 : Study of the phase diagram of Fe nanocubes by EH

• Exple 2 : *In-situ* Lorentz studies of the magnetic reversal of Co antidot arrays

Exple 3 : *In-situ* EH studies of the magnetic induction generated by a HHD writer-head in operando

<001> Vortex configuration of a single isolated 29 nm nanocube

a) Hologram b) Phase image corresponding to the magnetic phase shift, c) Contour map, d) Micromagnetic simulation (with bulk M_S) of the in-plane induction (OOMMF), e) simulated phase image f) phase profils

Single domain configuration of a single isolated 25 nm nanocube

CEMES

<111> Vortex configuration of a single isolated 27 nm nanocube

e-beam

Phase diagram (considering a 2 nm thick oxyde shell

LINSA

Outlook

◆ Lorentz TEM and Electron Holography

• Exple1 : Study of the phase diagram of Fe nanocubes by EH

• Exple 2 : *In-situ* Lorentz studies of the magnetic reversal of Co antidot arrays

Exple 3 : In-situ EH studies of the magnetic induction generated by a HDD writer-head in operando

In-situ Lorentz experiments under external applied magnetic field ?

→ Use the magnetic field of the objective lens as external field

H_{max} = 2.1 Tesla @200 kV, 3 Tesla @ 300kV

→ Tilting the sample between to apply a magnetic in the sample plane

In-situ Lorentz experiments under external applied magnetic field

In-situ experiments under external applied magnetic field

MAGNETIC ANTIDOT ARRAYS

Regular antidot arrays in continuous magnetic thin films leads to modifications of :

- Coercivity
- Magnetoresistance
- Remanence
- → potential to form individual magnetic entities that could be used as **bits of information up to 10** Gbits/cm²

Motivation: Exploring the magnetization confinements effect on magnetic domain structures and switching processes at the nanometer scale

- Arrays of Co antidots have been fabricated on Si_3N_4 membranes (sputtering + FIB etching):
 - Thickness = 10 nm
 - Hole diameter = 55 nm

* Z.L. Xiao et. al., Nanotech 3 (2003) 357

TIE-RECONSTRUCTION

Vector map of the magnetization

Experimental (TIE-Reconstruction)

Magnetization Color scale

Shape anisotropy tends to align the magnetization:

- 1) Parallel to the edge between two holes.
- 2) Transverse to the lattice between four holes.

Magnetic Superdomain (SD) Magnetic Chain

In-situ Lorentz experiments under external applied magnetic field

Magnetization reversal processes

By Nucleation (N) and Propagation (P) of Superdomain Walls (SDWs)

Simultaneous N and P of Vertical and Horizontal SDWs 2 steps (1) N and P of Horizontal SDWs (2) N and P of Vertical SDWs

Magnetization reversal processes

Parallel Magnetic field

Magnetization reversal process occurs by **nucleation** and **propagation** of superdomains:

- 1. For H = 0, some vertical superdomains are nucleated
- 2. Magnetization switching by horizontal superdomains
- 3. Magnetization switching by vertical superdomains
- 4. Small magnetic domains just before the saturation

Transverse Magnetic field:

Simultaneous **nucleation** and **propagation** of horizontal and vertical SDWs.

L. A. Rodriguez et. al. Nanotechnology 23 (2014) 385703

Outlook

♦ Lorentz TEM and Electron Holography

• Exple1 : Study of the phase diagram of Fe nanocubes by EH

• Exple 2 : *In-situ* Lorentz studies of the magnetic reversal of Co antidot arrays

Exple 3 : In-situ EH studies of the magnetic induction generated by a HDD writer-head in operando

In-situ EH experiments of a writer head in operando

HDD Write Pole for Perpendicular Recording

From Computer Desktop Encyclopedia

Recording head technology

X

→ Electron beam phase shift is measured in front of the write pole while applying a current through the device.

Phase extraction from holograms

Hologram (dataset, -60 / +60 mA)

- → For all holograms (88) remove Fresnel fringes
- Correct for camera distortion →
- → Extraction of amplitude and phase images (8 nm resolution)

Etienne SNOECK - ICM2015 - Barcelona 5-10 July

Phase

 \rightarrow The phase images evidence the magnetic induction flux emanating out of the write pole for various applied current

From phase images to magnetic components

$$\phi_{Mag}(\mathbf{r}) = -\frac{e}{\hbar} \iint B_{\perp}(\mathbf{r}_{\perp}, z) dr dz \qquad B_{x} \text{ component} \qquad \int_{\infty}^{\infty} B_{x}(r_{\perp}, z) dz = -\frac{\hbar}{e} \frac{\partial \phi_{Mag}(\mathbf{r})}{\partial y}$$

$$B_{x} \text{ component} \qquad \int_{\infty}^{\infty} B_{y}(r_{\perp}, z) dz = \frac{\hbar}{e} \frac{\partial \phi_{Mag}(\mathbf{r})}{\partial x} - 60 \text{ mA}$$

$$\int_{\infty}^{\infty} \frac{10 \text{ mA}}{10 \text{ mA}} \qquad \int_{\infty}^{-10 \text{ mA}} \frac{B_{x}}{10 \text{ mA}} \qquad \int_{0}^{0} \frac{B_{x}}{10 \text{ mA}} = 0 \text{ mA}$$

Etienne SNOECK - ICIVI2015 · Barcelona JUI

... to local hysteresis loops

15

CEME

Angular spread

 $\theta = \arctan(B_Y/B_X)$

J.F. Einsle, C. Gatel et. al. Nano Research, 1-9, Nov. 2014

Back home message

- Electron Holography and Lorentz Microscopy are TEM methods allowing retrieving the phase of the electron beam with resolution of few nanometers.
- EH and LM necessitate **dedicated** instruments (C-FEG, biprisms, ...) and cautious experimental and image analyses processes
- Through the Aharonov-Bohm effect EH and LM allow quantitative measurements of local magnetic fields (and electrostatic) therefore allowing determining local magnetic configurations and local magnetic moments measurements
- In-situ EH and LM experiments permits to study phase diagram of magnetic nanomaterials and magnetic devices in operando

EH and *in-situ* dedicated **I2TEM** (Hitachi) TEM with C-FEG & Cs corrected Lorentz lens (B-Corr) & multibiprism set-up → Resolution in Lorentz mode : 0.5 nm

ESTEEM2 is an INTEGRATED INFRASTRUCTURE NETWORK

of electron microscopy facilities providing access for the academic and industrial research community in materials science to the most powerful TEM techniques available at the nanoscale.

14 European schools and workshops

to provide training in innovative methods in electron microscopy and a forum for discussing emerging techniques.

(including QEM2013: www.qem2013.com)

ESTEEM2 research program

focuses on the further development of :

- o electron diffraction
- o imaging
- spectroscopy
- 3D methods
- time-resolved microscopy

www.esteem2.eu

Free transnational access

to the most advanced TEM equipment and skilled operators for HR(S)TEM, EELS, EDX, Tomography, Holography and various in-situ state-of-the-art experiments.

ESTEEM2 available equipment includes:

- 19 FEI-Titan 60-300 and Tecnai G2
- aberration corrected microscopes
- 6 JEOL aberration-corrected TEM
- \circ A NION probe corrected Ultrastem 200
- The ZEISS SESAM
- The HITACHI I2TEM Cs corrected C-FEG

• Extensive FIB and sample preparation facilities.

www.esteem2.eu

The TEM group @ CEMES - Toulouse

Aurelien Christophe Patricio Masseboeuf nt Marc Gatel Benzo (PhD) Elsa Florent Fréderic Nikolay Javon (PhD) Houdellier Legros Mompiou Bénédicte Cherkashin Robin Warot Cours Martin Etienne Hÿtch Snoeck

The TEM group @ LMA/INA Saragosse

Instituto Universitario de Investigación en Nanociencia de Aragón Universidad Zaragoza

Thank you for listening

Magnetic samples

$$\varphi(\mathbf{x}) = \mathbf{C}_{\mathrm{E}} \int V(x, z) dz - \frac{e}{\hbar} \iint B_{\perp}(x, z) dx dz$$

 \rightarrow e⁻ beam phase is only sensitive to B_L

Pb. 1: The objective must be switched off => use of Lorentz lens to get sufficient resolution

- Object in a magnetic field free area
- Field of view up to $1\mu m$

f = 30 mm

Cs = 7430 mm (!!)

Cc = 39 mm

Ponctual résolution # 5 nm

IN-SITU EXPERIMENTS UNDER EXTERNAL APPLIED MAGNETIC FIELD

SUMMARY/RESULTS

At remanence, Lorentz images allowed detecting a transition in the magnetic structure due to the reduction of the hole periodicity.

A Fourier filter method permitted enhancing the visualization of magnetic contrasts in Co antidot arrays with periodicities down to 116 nm

The magnetization reversal process is given by NUCLEATION (N) and PROPAGATION (P) of SDWs.

- **Transverse Magnetic field:** Simultaneous N and P of horizontal and vertical SDWs.
- **Parallel Magnetic field:** At two steps: 1) N and P of horizontal SDWs. 2) N and P of vertical SDWs.

L. A. Rodriguez et. al. Nanotechnology 23 (2014) 385703

Surface plots Hysteresis loops

