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Abstract

Infrared spectroscopy data is characterized by the presence of a huge
number of variables. Applications of infrared spectroscopy in the mid-
infrared (MIR) and near-infrared (NIR) bands are of widespread use in
many fields. To effectively handle this type of data, suitable dimension-
ality reduction methods are required. In this paper, a dimensionality
reduction method designed to enable effective Support Vector Machine
Recursive Feature Elimination (SVM-RFE) on NIR/MIR datasets is pre-
sented. The method exploits the information content at peaks of the
spectral envelope functions which characterize NIR/MIR spectra datasets.
Experimental evaluation across different NIR/MIR application domains
shows that the proposed method is useful for the induction of compact and
accurate SVM classifiers for qualitative NIR/MIR applications involving
stringent interpretability or time processing requirements.

1 Introduction

Infrared (IR) spectroscopy is a non-invasive technique allowing the identification
and characterization of chemical compounds using their interaction with light.
Applications of IR spectroscopy in the mid-infrared (MIR) and near-infrared
(NIR) bands are of widespread use in many fields, including agriculture [1, 2],
food and wines quality [3, 4, 5], postharvest handling of fruits and vegetables
[6, 7] and plastic recycling [8].

Main advantages and limitations of MIR and NIR techniques can be ex-
plained by the differences in the origin of their absorption spectra. While the
MIR spectra follow from the vibration of fundamental bands, the NIR spectra
follow from the overtone and combination of fundamental MIR bands. Hence,
while the MIR spectra tend to be simple with very sharp and specific peaks,
the NIR spectra tend to be rather complex with many broad overlapping bands.
Thus, the interpretation of NIR spectra can be very challenging, especially for
complex mixtures of samples. However, since the absorption of light in the
NIR region (780-2500 nm) is less intense than in the MIR one (2500-15000 nm),
a deeper penetration of light into matter can be accomplished and a minimal
sample preparation is required for NIR applications.
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In practice, IR spectra are presented as high dimensional vectors of factors.
For the NIR case, factors are highly correlated. To effectively handle this type
of data, dimensionality reduction methods are required. For quantitative appli-
cations, with main focus on predictive modeling and not on the identification of
relations between factors, Partial Least Squares (PLS) regression methods [9]
are traditionally used. Briefly, by means of PLS regression methods, a handy
number of latent factors accounting for most of the variation of target responses
are first selected and then used to perform linear predictions. On the other
hand, for qualitative applications, with main focus just on the identification of
robust classification boundaries [10], PLS-DA [11, 12] methods can be applied.
However, when interpretability is also required feature selection methods, al-
lowing the identification of relevant classification factors, must be used [13].
This is especially true for almost real-time qualitative NIR applications based
on Support Vector Machines (SVM) classifiers [14], a class of machine learning
algorithms characterized by their high accuracy and its ability for modeling di-
verse types of high dimensional data [15]. Applications of SVMs can be found
in multiple fields, including bioinformatics [16], sound analysis [17] and chemo-
metrics [18]. Owing to the natural ability of SVMs classifiers to deal with high
dimensional data, initial works with SVMs in chemometrics focused more on
model selection than on data interpretation or time-processing issues [19, 20],
i.e., the complete spectrum of IR datasets were usually considered. However,
to accomplish compact and thus interpretable SVM classifiers for almost real-
time qualitative applications, a reduced fraction of the IR spectra is required.
From the application point of view, working with specific regions instead of the
complete spectrum would allow the utilization of IR sensors of higher resolu-
tion. To this aim, we first note that the highly correlated nature of the NIR
spectra limits the effectiveness of fast univariate feature selection methods as-
suming the independence between features [21]. Actually, to avoid the selection
of redundant features that may be induced by univariate methods, multivari-
ate feature selection, able to take into account interaction between features are
recommended. We note, however, multivariate feature selection methods dis-
miss specific learning aspects of classification methods, a critical aspect in the
construction of compact and accurate SVM classifiers.

To introduce specific learning aspects of classification methods into feature
selection tasks, embedded feature selection methods are required. For SVM
classifiers this can be accomplished with the SVM recursive feature elimination
(SVM-RFE) [22] method, a feature selection method built upon SVM classifiers
aiming to identify relevant feature subsets. We note, however, that few stud-
ies have considered the direct application of SVM-RFE to the problem of NIR
samples classification. As mentioned in [23], SVM-RFE can be too computa-
tionally expensive, specially when only one least useful feature is removed at
each iteration step. Also, SVM-RFE may be unstable with respect to variations
in the training data [24]. Although of both these problems may be mitigated
with SVM-RFE ensemble variants [25], we note that SVM-RFE does not specif-
ically consider the redundancy between features [26]. Hence, SVM-RFE on IR
datasets may lead to the selection of redundant wavelengths and this undesir-
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able effect may be just reinforced by SVM-RFE ensemble variants. Since direct
application of SVM-RFE to IR datasets may be suboptimal, alternative fea-
ture selection methods based on genetic algorithms [27, 28] and random forest
classifiers with PCA [29] have been reported in literature. These considera-
tions strongly suggest that further processing to IR datasets is required before
effective SVM-RFE can be accomplished.

In this paper, we show that preservation of the so-called spectral envelope
function, a smooth (slowly varying) function of frequency which passes through
most significant spectral peaks of IR training datasets, plays an important role
in the design of compact and accurate SVM classifiers for qualitative IR ap-
plications. With this aim, a two-stage feature selection algorithm designed to
capture main features of the spectral envelope function is presented. For this
propose, a set of prospective, yet raw, spectral regions is first identified using
an unsupervised approach around most significant IR peaks of the spectral en-
velope function. These regions are further refined using an stabilized version
of the SVM-RFE algorithm with respect to variations in the training data. To
favor interpretability issues, spectral regions are individually refined. In this
way, core spectral envelope information gets preserved. The complete set of
spectral points across refined IR regions is then used to train compact SVM
classifiers.

2 Spectral envelope functions towards effective

SVM-RFE on IR data

We notice that the problem of selecting a reduced set of discriminative wave-
lengths for challenging qualitative NIR applications closely resembles that of
the fundamental frequency estimation of a mixture of harmonic sources in the
context of music applications [30, 31]. We observe that in the audio setting,
data is often reduced for retaining salient information while omitting peripheral
details. A strong data reduction technique of music signals is the representation
of the full signal spectra to observed spectral peaks [32]. The usefulness of this
approach stems from at least two facts: it is largely known that resynthesis of
harmonic sounds from observed spectral peaks cause little changes in human
perception [33] and for harmonic sounds, spectral peaks tend to appear at in-
teger multiples of target fundamental frequencies. Spectral peaks define the
spectral envelope. As pointed out by [34], significant peaks are required to be
higher than a baseline, a kind of noise floor so that peaks under such baseline
have high probabilities of being generated by noise. On the other hand, it is
widely known that for quantitative IR applications, peaks of the IR spectrum are
associated with characteristic vibrations of specific functional groups and thus,
their heights are proportional to concentration of chemical species in samples
[35, 36]. Under these considerations, it follows that for qualitative IR appli-
cations, IR datasets may be characterized by spectral envelope functions and
that these functions may be valuable for extracting potentially discriminative
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wavelengths, i.e., wavelengths associated with harmonics of core fundamental
frequencies.

2.1 Unsupervised learning of IR spectral envelope func-

tions

Let us consider a IR dataset D containing m training samples, each sample

characterized by n wavelengths, i.e., D =
{

d
j
i , i = 1 . . .m, j = 1 . . . n

}

. The

raw spectral envelope function E induced by D (see Fig. 1-a) is given by Eq.1:

E (xj) = yj = max
i ∈ 1...m

d
j
i j ∈ 1 . . . n (1)

The raw spectral envelope function E is then processed for the unsupervised
identification of significant peaks. Hence, all wavelengths below a baseline b =
median ({yj , j = 1 . . . n}) are set to b (see Fig. 1-b); the choice of median rather
than mean of E aims to overcome the well-known sensitivity of the mean to
outliers. As a result, a truncated spectral envelope function E* is obtained:

E∗(xj)

{

yj yj > b ∀j ∈ 1 . . . n
b otherwise

The truncated spectral envelope function E* is then inspected for the iden-
tification of the set P of wavelengths xp associated with local maximums of E*.
In addition, the set M of wavelengths associated with local minimums of E* is
also computed.

2.2 Unsupervised identification of spectral windows

Taking into account the nature of the IR spectra, we expect that broad peaks
of the truncated spectral envelope function E* contains important harmonics
of core fundamental frequencies. Aiming to accomplish a compact representa-
tion of the IR spectra, the truncated spectral envelope function E* is used to
guide the identification of significant spectral regions, hereafter called spectral
windows. For this purpose, the Windows from Envelope (WE) algorithm (see
Algorithm 1) is introduced.

Given a training IR dataset D, WE first computes the raw spectral envelope
function E (L.4), continues with a baseline b (L.6) and then its truncated version
E* with baseline b (L.8). From E*, the corresponding sets P of local maximus
(L.13) and the set M of local minimums (L.14) are computed. For each xp ∈ P ,
WE identifies the spectral window (L.16) centered on xp with width wp =
(

xr
p − xl

p

)

(see Fig. 1-c), where xr
p and xl

p are respectively the right and left
closer wavelengths to xp where E∗ falls to Max [b, decay ∗ E∗ (xp)]. The decay

parameter, 0 < decay ≤ 1, is used to control spectral window widths. For
sharp E* peaks, very narrow spectral windows are obtained despite the specific
setting of the decay parameter. The resulting set of spectral windows is further
processed for additional dimensionality reduction using the information about
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Algorithm 1 Windows from Envelope (WE) algorithm

1: INPUT: IR dataset D with m training samples and n wavelengths, D = d
j
i with i =

1 . . .m, j = 1 . . . n, parameter decay.
2: OUTPUT: A set of spectral windows F .
3: for j ∈ n do

4: E(xj) = max (dji ) // Compute the envelope E from D

5: end for

6: b = median (E(xj)) // Compute the baseline b from E

7: for j ∈ n do

8: if E(xj) > b then

9: E∗(xj) = E(xj) // Compute the truncated envelope E* with the median b of E

10: else E∗(xj) = b

11: end if

12: end for

13: P ← maximums (E*) // Compute the set P of local maximums of E*

14: M ← minimums (E*) // Compute the set M of local minimums of E*

15: for p ∈ P do

16: wp ← widths (P ,E*, decay) // Compute window widths wp centered on xp ∈ P

17: w∗

p ← narrow-widths (wp,E*,M) // Compute the set W∗ of final window widths w∗

p

using M

18: end for

19: F← build-windows (P ,W ∗) // Compute the final set F of spectral windows from P and

W∗

local minimums of E* available in M . Hence, narrower windows w∗
p (L.17) are

obtained by performing descendant walks from wavelengths xp until the first
local minimum of E*, if any, is found, p = 1 . . . |P | (see Fig. 1-d). Afterwards,
the final set of spectral windows F (L.19) is built from P and W ∗.
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Figure 1: The unsupervised spectral envelope approach for IR data dimensionality re-
duction. (a) The raw spectral envelope function E is induced from local maximums of IR
datataset. (b) The truncated spectral envelope function E∗ is obtained with a baseline
b = median ({yj , j = 1 . . . n}). (c) A set of spectral windows is induced from E∗. (d) Fi-
nal spectral window widths are computed using the minimums of E∗.
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2.3 Supervised SVM-RFE refinement of spectral windows

SVM-RFE makes feature selection using a backward elimination process based
on the weights computed by a linear SVM classifier. To deal with small varia-
tions in the training data, a robust version, built upon a 5-Fold CV approach
and called SVM-RFE∗, was proposed by the authors [25]. To further refine the
training dataset obtained after WE processing, SVM-RFE∗ was applied to each
spectral window. The rationale behind this decision is twofold. The first rea-
son is relate to computationally load, i.e., SVM-RFE scales quadratically with
the number of features and thus, its application on a per-window basis reduces
computational complexity by a factor proportional to the number of spectral
windows. The second reason is related to the importance of spectral envelope
functions in the characterization of IR datasets. Note that applying SVM-RFE
to whole and fused set of spectral windows may drop key wavelengths for the
definition of the spectral envelope function. Hence, if this function is indeed
important for the characterization of IR datasets, its main features must be
preserved. This objective can only be accomplished if SVM-RFE∗ is applied in
a per-window basis mode.

Based on the above considerations, spectral windows were individually re-
fined with an additional SVM-RFE∗ processing stage using a 5-Fold CV setup.
Therefore, for each cross-validation run and for each SVM-RFE iteration step,
a validation error was obtained using four folds for training and one fold for
validation. At the end of SVM-RFE iterations, the mean validation error was
computed and the smallest feature subset with a validation error below such
mean was selected. Aiming to promote feature selection stability, only those
features selected in the 5 cross-validation runs were finally selected. The union
of feature subsets obtained for each spectral window was then used to build a
reduced training dataset.

2.4 Sensitivity analysis of SVM-RFE refinement

In order to set the decay parameter, we analyzed its sensitivity to the combina-
tion of the WE algorithm and robust SVM-RFE (WE+SVM-RFE∗) with respect
to variations in the training data. To this aim, the fraction of preserved features
along with their stability and the classification accuracy of corresponding linear
SVM classifiers were evaluated for different settings of the decay parameter in
the range [0.5, 0.9]. Regarding the stability of feature selection, the similarity
index Is proposed by [37] was used. Given two subsets of features A and B,
respectively obtained with decay parameters dA and dB , the similarity between

both subsets is given by Is = |A∩B|
|A∪B| . To perform evaluations, a 5-Fold CV ap-

proach on the two following IR datasets was considered:

Diesel: This dataset, obtained from data in [38], contains 60 NIR samples of
three types of gasoline (17, 23 and 20 samples) defined by their octane number.
Each NIR sample consists of 401 wavelengths in the range of 900-1700 nm.
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Wine: This dataset, provided by Marc Meurens1, contains 124 MIR samples
of three types of wine (37, 36 and 48 samples) defined by their alcohol level.
Each MIR sample consists of 252 wavelengths in the range of 400-4000 cm−1.

Average 5-Fold CV results on the two datasets for the fraction of selected
features (see Fig. 2a) and the classification accuracy of corresponding SVM
classifiers (see Fig. 2b) suggested that a decay parameter between 0.65 and
0.8 may lead to satisfactory performance results. To make a final decision on
a robust value for the decay parameter, feature selection stability results (see
Tables 1 and 2) were analyzed. Hence, we searched for decay pairs in the grid
[0.5, 0.9] × [0.5, 0.9] showing the highest Is values with the smallest variations
near the diagonals. As a result of this analysis, even if other values are also
possible, the decay parameter was set to 0.75.

Table 1: WE+SVM-RFE∗ feature selection stability on the Diesel dataset for different
settings of the decay parameter. Average 5-Fold CV values of the Kalousis index Is are
reported for decay parameter pairs (da, db) on the grid [0.5, 0.55, . . . , 0.9]× [0.5, 0.55, . . . , 0.9].

da�db 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.50 1.00 0.45 0.44 0.41 0.42 0.44 0.36 0.37 0.31
0.55 0.45 1.00 0.49 0.45 0.42 0.41 0.34 0.34 0.32
0.60 0.44 0.49 1.00 0.77 0.69 0.63 0.52 0.56 0.42
0.65 0.41 0.45 0.77 1.00 0.78 0.69 0.58 0.57 0.48
0.70 0.42 0.42 0.69 0.78 1.00 0.82 0.65 0.63 0.52
0.75 0.44 0.41 0.63 0.69 0.82 1.00 0.79 0.63 0.50
0.80 0.36 0.34 0.52 0.58 0.65 0.79 1.00 0.65 0.47
0.85 0.37 0.34 0.56 0.57 0.63 0.63 0.65 1.00 0.62
0.90 0.31 0.32 0.42 0.48 0.52 0.50 0.47 0.62 1.00

Table 2: WE+SVM-RFE∗ feature selection stability on the Wine dataset for different
settings of the decay parameter. Average 5-Fold CV values of the Kalousis index Is are
reported for decay parameter pairs (da, db) on the grid [0.5, 0.55, . . . , 0.9]× [0.5, 0.55, . . . , 0.9].

da�db 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.50 1.00 0.49 0.49 0.43 0.39 0.35 0.26 0.19 0.14
0.55 0.49 1.00 0.41 0.41 0.36 0.31 0.22 0.18 0.11
0.60 0.49 0.41 1.00 0.67 0.41 0.51 0.40 0.23 0.12
0.65 0.43 0.41 0.67 1.00 0.50 0.68 0.40 0.27 0.11
0.70 0.39 0.36 0.41 0.50 1.00 0.63 0.41 0.35 0.14
0.75 0.35 0.31 0.51 0.68 0.63 1.00 0.65 0.37 0.12
0.80 0.26 0.22 0.40 0.40 0.41 0.65 1.00 0.51 0.21
0.85 0.19 0.18 0.23 0.27 0.35 0.37 0.51 1.00 0.37
0.90 0.14 0.11 0.12 0.11 0.14 0.12 0.21 0.37 1.00

1http://mlg.info.ucl.ac.be/index.php?page=DataBases
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Figure 2: (a) The fraction of selected features by the WE+SVM-RFE∗ method on the Diesel

and Wine datasets for different settings of the decay parameter. Average 5-Fold CV values
are reported for decay in the range [0.5, 0.55, . . . , 0.9]. (b) SVM classification accuracy on the
Diesel and Wine datasets. Average 5-Fold CV precision values are reported when WE+SVM-
RFE∗ feature selection is performed with the decay parameter in the range [0.5, 0.55, . . . , 0.9].

3 Numerical experiments

3.1 Description of used datasets

Multiple datasets across different IR domains were selected for evaluating the
performance of the WE+SVM-RFE∗ feature selection algorithm in the con-
struction of accurate and interpretable linear SVM classifiers.

Polymers: This dataset was given from the XXX Project with XXX2 con-
tains NIR samples of four types of plastic bottles, namely, PET (47 samples),
PEHD (125 samples), Polypropylene (50 samples) and PVC (89 samples). In
order to be self-contained, a brief description of sample collection is made. NIR
samples were obtained using a reflexion setup with a halogen light source set to
irradiate plastic bottles and a white screen behind them to reflect the light. NIR
spectra were acquired using a StellarNet spectrometer (950 to 1700 nm, Black
comet model, 256 pixels) controlled by a computer via USB. The wavelength
region was chosen because it contains several plastic absorption bands. Bottles
were placed with the head below on a moving metallic stick and measurements
were performed on the bottom of the bottle in order to reduce interference
and be sure no liquid remained, which would dramatically affect spectral sig-
natures. NIR measurements were performed at 2 nm intervals thus giving 422
wavelengths per sample.

Apricots. This dataset, derived from [39], contains 731 MIR samples of
apricots of three types (230, 244 and 257 samples) defined by their Brix degree,

2http://www.ondalys.fr/
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i.e., by their water-soluble sugar concentration. MIR samples consist of 292
wavelengths in the range of 900-1500 cm−1.

Strawberry. This dataset3 contains 983 MIR samples of two types of fruit
pures, namely “Strawberry” (632 samples) and “Non-Strawberry” (251 sam-
ples) [40]. In the former case, pures are prepared from fresh whole fruits by the
researchers. In the latter case, purées are prepared from diverse collection of
other purées, including strawberry adulterated with other fruits and sugar so-
lutions, raspberry, apple, blackcurrant, blackberry, plum, cherry, apricot, grape
juice and mixtures of these. MIR samples consisting of 235 wavelengths in the
range 899-1802 cm−1 were acquired from each purée sample using attenuated
total reflectance sampling.

3.2 Experimental protocol

The effectiveness of the WE+SVM-RFE∗ feature selection method in the con-
struction of accurate and compact SVM classifiers for IR data was compared
against direct SVM-RFE∗ and four other popular feature selection algorithms
mentioned in the literature. Specifically, we first considered the SVM-RFE∗

approach that eliminates the least useful feature at each iteration step. We also
considered Relief [41], a well-known feature subset selection algorithm known
to handle strong dependencies between features and noise, and three entropy-
based feature selection algorithms [42]: Information Gain (InfoGain), Informa-
tion Gain Ratio (GainR) and Symmetrical Uncertainty (SymmU), all of them
assuming independence between features. One of the three methods of entropy-
based feature selection, InfoGain, was evaluated.

For the sake of completeness, dimensionality reduction methods were also
considered. These methods involve a space transformation which makes hard the
interpretation using the initial, raw, features. Nevertheless, they are widely used
as they do not require a feature selection process and they are able to exploit the
whole information of the input spectra. Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA) and Partial Least Squares Discriminant
Analysis (PLS-DA) methods share the way the new space is defined: the axes
are linear combinations of the raw features. They differ in the way these axes are
designed. PCA [43] maximizes the explained variance of the input spectra, the
axes are the eigenvectors of XTX. To make a classification, SVM classifiers are
evaluated in the new space. LDA [44] maximizes the between group variance, B.
The axes are the eigenvectors of T−1B, where T stands for the total variance
matrix. Finally, PLS-DA [45], maximizes the covariance between the input
spectra and the target. The axes are computed using iterative algorithms.

A randomized strategy based on 50 × 5-Fold CV experiments was used to
assess the performance of aforementioned feature selection and dimensionality
reduction methods. At each CV fold, an inner 5-Fold CV experiment was per-
formed to estimate the optimal number of features in the SVM-RFE, Relief,
InfoGain feature selection methods and the optimal number of components in

3http://www.ifr.ac.uk/Bioinformatics/MIRFruitPurees.zip
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Table 3: The number of features selected by WE+SVM-RFE∗, WE+SVM-RFE∗

a and
SVM-RFE∗ feature selection methods along with the classification accuracy accomplished by
corresponding linear SVM classifiers in a 5-Fold CV steup.

Dataset Type # Features WE+SVM-RFE∗ WE+SVM-RFE∗

a SVM-RFE∗

Diesel NIR 401 16 (0.94) 13 (0.80) 14 (0.80)
Wine MIR 252 18 (0.82) 19 (0.78) 18 (0.79)

the PCA dimensionality reduction technique. Feature selection performance was
evaluated by the mean number of features selected across the 50 runs of 5-Fold
CV experiments. Similarly, linear SVM classifiers built after feature selection,
PCA dimensionality reduction, PLS-DA and LDA classifiers were evaluated with
the mean classification accuracy.

In practice, the default implementations of the Relief and entropy-based fea-
ture selection methods provided in the R package “FSelector” [46] were used
for supervised feature selection. Similarly, the prcomp implementation of PCA
algorithm provided in the R Stats package [47] was used for unsupervised di-
mensionality reduction. Finally, the R package “plsgenomics” [48] was used
for optimized LDA classification and “mixOmics” [49] was used for PLS-DA
classification.

4 Results and discussion

4.1 The importance of the spectral envelope function

To appreciate the importance of the spectral envelope function in the charac-
terization of IR datasets, three operation modes of SVM-RFE∗ were evaluated:
i) per-spectral window after WE processing (WE+SVM-RFE∗), ii) all spectral
windows after WE processing (WE+SVM-RFE∗

a), and iii) the complete set of
wavelengths in the original training data.

A 5-Fold CV approach on Diesel and Wine datasets was considered. Aver-
age 5-Fold CV results for the number of selected features and the classification
accuracy (see Table 3) of corresponding linear SVM classifiers suggest that us-
ing SVM-RFE∗ in the per-window operation mode is the best data processing
strategy and that there is no advantage in applying SVM-RFE∗ to all spectral
windows over all wavelengths in the original training data.

We wonder whether these results may be due to the preservation of wave-
lengths of the spectral envelope function accomplished by the SVM-RFE∗ al-
gorithm when used in the per-spectral window operation mode. To shed some
light on this issue, selected features in three SVM-RFE∗ operation modes were
mapped to reference spectral windows obtained after WE processing. It was
observed that wavelengths of the spectral envelope functions were practically
dismissed by SVM-RFE∗ when used in the all-wavelengths operation mode and,
were only partially preserved in the all-spectral windows operation mode (see
Tables 4 and 5). Overall, these results suggest that the preservation of main
wavelengths of the spectral envelope function accomplished by the WE+SVM-

10

Author-produced version of the article published in Pattern Recognition Letters, 2016, N°71, p.59-65. 
The original publication is available at http://www.sciencedirect.com 
Doi: 10.1016/j.patrec.2015.12.007



Table 4: WE+SVM-RFE∗, WE+SVM-RFE∗

g and SVM-RFE∗ feature selection in the
Diesel dataset. Selected wavelengths (ID numbers) are mapped against reference WE spectral
windows specified by their lower and upper wavelength limits.

WE spectral windows
Feature selection [122− 128] [144− 150] [239− 255] Outside
WE+SVM-RFE∗ {122− 125, 128}{146− 147, 149− 150} {245− 247, 249− 252}
WE+SVM-RFE∗

g {124− 125, 127} {145− 146, 148} {245− 251}
SVM-RFE∗ {239, 251} 154-157, 164, 228, 230, 232, 236, 386,

Table 5: WE+SVM-RFE∗, WE+SVM-RFE∗

g and SVM-RFE∗ feature selection in the Wine

dataset. Selected wavelengths (ID numbers) are mapped against reference WE spectral win-
dows specified by their lower and upper wavelength limits

WE spectral windows
Feature selection [24− 28] [33− 37] [83− 90] [93− 108] [117− 126] [129− 133]
WE+SVM-RFE∗ {25, 27} {34} {85, 88− 90} {93− 94, 104, 106, 108} {117, 120, 126} {130}
WE+SVM-RFE∗

g {84, 87− 88} {96− 100} {117− 120} {129− 130, 133}
SVM-RFE∗ {24− 28}

RFE∗ algorithm is an important issue for the construction of compact and
accurate linear SVM classifiers for IR datasets.

4.2 WE+SVM-RFE∗ performance

To better understand the difficulty of the three classification problems at hand,
a 2D visualization analysis was first performed using PCA. Highly overlapped
classes, with no clear linear separation boundaries were observed in all cases.
These results suggested the need of dimensionality reduction, e.g., by means of
PCA, or feature selection before any classification algorithm could be applied.

Regarding interpretability, Table 6 shows firstly that WE+SVM-RFE∗ leads
to the smallest sets of features compared to other alternatives, including SVM-
RFE∗. Further screening showed that selected features with WE+SVM-RFE∗,
as opposed to SVM-RFE∗, tend to be always contained in a reduced number of
spectral regions associated with more salient peaks, which seem to be related to
target classes. For instance, in the Polymer dataset the four spectral regions (A,
B, C, D) selected by WE+SVM-RFE∗ method (see Fig. 3) point out main fea-
tures of the four plastic bottle spectrum (PVC, PET, PEHD and polypropylene)
[50]. On the other hand, features selected by the raw SVM-RFE∗ are dispersed
across the full spectrum (lines in grey), which makes difficult the interpretation.
Altogether, these results suggest the usefulness of the proposed method when
both interpretability and classification of IR spectrum are of interest.

Regarding accuracy, Table 7 shows that WE+SVM-RFE∗ yields similar, or
even better, results than the concurrent approaches, including the optimized
LDA, PLS-DA and PCA based SVM classifiers. The largest gain is for the
Apricot dataset.
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Table 6: The number of features selected by the WE+SVM-RFE∗, SVM-RFE∗, InfoGain,
GainR, SymmU and Relief feature selection methods on benchmark NIR/MIR datasets. In the
fourth column between brackets the number of selected regions of the spectrum is expressed.

Dataset Type # Features WE+SVM-RFE∗(#Regions)SVM-RFE∗ InfoGain Relief
Polymer NIR 422 62(4) 90 97 80
Apricot MIR 292 20(4) 35 78 32
StrawberryMIR 235 45(6) 70 188 106

Table 7: The classification accuracy accomplished by linear SVM classifiers after the ap-
plication of the WE+SVM-RFE∗, SVM-RFE∗, InfoGain and Relief feature selection methods
and the PCA dimensionality reduction technique to benchmark NIR/MIR datasets. The
classification accuracy of optimized LDA and PLS-DA classifiers are shown as reference.

Dataset T ype SVM
WE+SVM-RFE∗ SVM-RFE∗ InfoGain Relief PCA LDA PLS-DA

Polymer NIR 0.95 0.93 0.95 0.92 0.95 0.93 0.95
Apricot MIR 0.96 0.85 0.87 0.85 0.90 0.85 0.91
Strawberry MIR 0.98 0.90 0.98 0.96 0.96 0.96 0.97

5 Conclusions

In this paper, a spectral envelope approach towards effective SVM-RFE on IR
datasets has been presented. As it happens with music applications, the spec-
tral envelope function provides a high level and compact representation of IR
datasets and thus, subject to suitable processing, it may be used to overcome the
difficulties found in the direct application of the SVM-RFE method. These con-
siderations motivate the introduction of the Windows from Envelope algorithm
allowing the unsupervised identification of a reduced set of spectral windows
supporting the spectral envelope function and thus, the effective application of
the SVM-RFE method on IR datasets. Taking into account the well-known
sensitivity of SVM classifiers to noise and outliers [14] and that a variety of
noise sources may affect the quality of IR datasets [51], an ensemble approach
to SVM-RFE was used.

These insights are captured in the WE+SVM-RFE∗ proposal for feature se-
lection on IR datasets. Experimental results across three different IR application
domains (polymers, agriculture and food) demonstrated that spectral regions
achieved with WE+SVM-RFE∗ can shed light on the relation between spectral
regions and target classes. Finally, experimental results across three different
IR application domains (polymers, agriculture, and food) suggest the useful-
ness of the proposed method for the construction of compact, interpretable and
accurate SVM classification models for qualitative IR applications.
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Figure 3: Polymer envelope function. Dashed blue lines represent the selected
regions with WE+SVM-RFE∗. Grey lines represent the selected features with
SVM-RFE∗.
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