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A numerical study of the flow-induced vibration of two elastically mounted cylinders
in tandem and staggered arrangements at Reynolds number Re = 200 is presented.
The cylinder centres are set at a streamwise distance of 1.5 cylinder diameters,
placing the rear cylinder in the near-wake region of the front cylinder for the
tandem arrangement. The cross-stream or lateral offset is varied between 0 and 5
cylinder diameters. The two cylinders are identical, with the same elastic mounting,
and constrained to oscillate only in the cross-flow direction. The variation of flow
behaviours is examined for static cylinders and for elastic mountings of a range of
spring stiffnesses, or reduced velocity. At least seven major modes of flow response
are identified, delineated by whether the oscillation is effectively symmetric, and
the strength of the influence of the flow through the gap between the two cylinders.
Submodes of these are also identified based on whether or not the flow remains
periodic. More subtle temporal behaviours, such as period doubling, quasi-periodicity
and chaos, are also identified and mapped. Across all of these regimes, the amplitudes
of vibration and the magnitude of the fluid forces are quantified. The modes identified
span the parameter space between two important limiting cases: two static bodies at
varying lateral offset; and two elastically mounted bodies in a tandem configuration
at varying spring stiffnesses. Some similarity in the response of extremely stiff or
static bodies and extremely slack bodies is shown. This is explained by the fact that
the slack bodies are free to move to an equilibrium position and stop, effectively
becoming a static system. However, the most complex behaviour appears between
these limits, when the bodies are in reasonably close proximity, and the natural
structural frequency is close to the vortex shedding frequency of a single cylinder.
This appears to be driven by the interplay between a series of time scales, including
the vortex formation time, the advection time across the gap between the cylinders and
the oscillation period of both bodies. This points out an important difference between
this multi-body system and the classic single-cylinder vortex-induced vibration: two
bodies in close proximity will not oscillate in a synchronised, periodic manner when
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their natural structural frequencies are close to the nominal vortex shedding frequency
of a single cylinder.

Key words: flow–structure interactions, vortex shedding, wakes/jets

1. Introduction
The vibration of an isolated elastically mounted circular cylinder in a free-

stream flow, constrained to oscillate in the cross-stream direction, is a canonical
problem in fluid–structure interaction and a large volume of literature exists on the
problem (Thompson, Hourigan & Sheridan 1996; Williamson & Govardhan 2004;
Singh & Mittal 2005; Leontini, Thompson & Hourigan 2006). When the vortex
shedding frequency from the cylinder is in the vicinity of the natural structural
frequency of the cylinder, ‘lock-in’ or nonlinear synchronisation can occur, where
the shedding frequency and the body oscillation frequency shift to exactly coincide.
Large-amplitude oscillations occur during lock-in. This lock-in regime occurs over a
range of natural frequencies for the elastic cylinder mounting (Williamson & Roshko
1988), and is the classic large-amplitude response that characterises the phenomenon
of vortex-induced vibration.

An isolated, completely circular cylinder is a highly idealised case, and one that
is rarely encountered in engineering or natural applications that involve the flow
past approximately cylindrical members. One flow complexity to be considered is
the presence of another, or several, cylinders in the vicinity of the single isolated
cylinder. When two stationary cylinders in cross-flow are placed close enough together,
their wakes begin to interfere. When one, or both, cylinders are mounted elastically,
a number of unique phenomena can occur, such as wake-induced galloping and
wake-induced vibration (Tsui 1986; Assi, Bearman & Meneghini 2010).

Figure 1 depicts the basic problem set-up of two cylinders in close proximity used
for the current study. The streamwise distance between the cylinders of diameter D
is defined as L and the cross-stream distance as T . For two cylinders, arrangements
are typically classed in three categories: tandem, side-by-side and staggered. Tandem
cylinders are arranged inline to the flow (L > D, T = 0.0). Side-by-side cylinders
are side-by-side with respect to the oncoming flow (L = 0.0, T > D). For staggered
cylinders, there is both a streamwise and cross-stream offset (L > 0.0, T > 0.0,
√

L2 + T2 > D). Staggered cylinders arrangements are also often defined in terms of
a pitch ratio, P/D, where P is the distance between the cylinders, and an incidence
angle, α.

The flow past static cylinders serves as a limiting case and a starting point for
examining the vibrating cylinders case. Zhou & Alam (2016) provides a recent
review of the subject. Here, three previous studies are highlighted that have separately
attempted to provide a regime map showing the various flow states that occur as the
position of the rearward cylinder is changed relative to the forward cylinder. These
regime maps, replotted on common axes at the same scale, are shown in figure 2.

Figure 2(a) shows the map from Zdravkovich (1987). The Reynolds number is not
explicitly stated in that paper. It appears that the data are compiled from a series of
studies for subcritical flows (Re< 105). The solid lines on the plot are those plotted
by Zdravkovich (1987), the dashed lines indicate approximate boundaries that in the
original paper were only described in the text or by approximate hashed regions on
the plot. The regimes comprise two main categories: ‘P’ regimes where the flows
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FIGURE 1. A schematic of the set-up studied.

around each cylinder are modified due to the proximity of the other; ‘W’ regimes
where the rearward cylinder is immersed in the wake of the forward cylinder. These
main categories are then further decomposed depending on the cylinders’ relative
position: tandem (T), staggered (S) and side-by-side (SS). These categories are then
decomposed again by a defining flow feature and given either an extra number or
letter designation – the reader is referred to the original paper (Zdravkovich 1987)
for fuller descriptions of each of the modes delineated in figure 2(a). Distinctions
between modes were made based on a combination of scalar measurements such as
lift force and frequency, and flow visualisation. It is clear that a rich collection of
regimes occurs, with subsequent changes in the shear layers, vortices and other flow
features, and temporal behaviour as the flow transits between them. One particular
feature to note is the high number of regimes that occur as a function of lateral
spacing T/D for a longitudinal spacing 1.5< T/D< 2.5.

Figure 2(b) shows the map from Sumner et al. (2000). This map was produced
using experiments where 850<Re< 1900, and using flow visualisation as the primary
identification method. The authors produced an independent, alternative classification
scheme to Zdravkovich (1987) and reclassified the flows into nine regimes: flow
where the two bodies acted as a single bluff body with no flow between them
(SBB1 and SBB2); flows where the jet formed between the bodies acted as base
bleed (BB); flows where the forward cylinder shear layers reattached to the rearward
cylinder (SLR); flows where the flow through the gap between the cylinders induced
separation of the shear layer from the rearward cylinder (IS); flows where the vortices
formed and shed from the front cylinder pair with and envelope the vortices from the
rear cylinder (VPE); flows where the front cylinder vortices pair with, envelope and
split the vortices from the rear cylinder (VPSE); flows where a clear vortex street is
formed from both cylinders individually (SVS); and finally flows where the formed
vortices from the forward cylinder impinge on the rearward cylinder (VI). Similar
to the scheme from Zdravkovich (1987), the features chosen to delineate each mode
were those that were most distinguishable in the given region of the parameter space.
Also of note is the range of modes identified for a longitudinal spacing centred
around L/D= 2.
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FIGURE 2. (Colour online) A comparison of the various classification schemes for two
fixed cylinders. All distances are centre-to-centre, so that the dashed line at a radius of 1
indicates the centre location of the rearward cylinder where the cylinders’ surfaces touch.
Schemes are from (a) Zdravkovich (1987), (b) Sumner, Price & Paidoussis (2000), (c) Hu
& Zhou (2008) and (d) all three studies combined. Note that the notation used to label
the various regimes is taken from the original papers. In spite of the different schemes
used, all studies show some correspondence in a series of regimes occurring at a fixed
L/D' 2.0 with increasing cylinder offset T/D.

Figure 2(c) shows the map produced by Hu & Zhou (2008). This map was
produced using experiments at Re= 7000, and using particle image velocimetry (PIV)
as the primary identification method, guided by flow visualisation of experiments
at Re = 300. Instead of investigating the flow around the two cylinders or the near
wake, Hu & Zhou (2008) classify flows based on the ‘intermediate’ wake, looking at
vortex configurations at a downstream distance x/D= 6. These regimes comprise two
main categories: flows where there is a single wake from both bodies (S) and flows
where there are two identifiable, but interacting, wakes, one from each cylinder (T).
Each of these categories is further delineated into subcategories: S-I, a single wake
with approximately ‘antisymmetric’ vortex shedding (S-Ia has strong vortices with
the bodies behaving as one, S-Ib has weaker vortices as the shear layers from the
forward body reattach to the rearward body and vortices are effectively shed from
the rear body only); S-II, where a vortex street is initially shed from both bodies,
but of unequal strength and width, the weaker and narrower shed from the forward
cylinder being amalgamated into the wake from the rearward cylinder; T-I, where
each body sheds a vortex street, generally at different frequencies, and these streets
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strongly interact; and T-II, where the two vortex streets occur at the same frequency
and form a symmetric pattern.

Figure 2(d) plots all of these maps on the same axes. While there is not a perfect
correspondence between the regime boundaries, there is a striking resemblance
between them, particularly considering the range of Re of the contributing experiments.
In particular, when the rearward body is placed in the near wake of the forward body
(L/D ' 2), there is a very close correspondence between all three studies. Note the
following, in particular:

(i) For T/D 6 0.4. Zdravkovich (1987) labels this regime W-T2: wake interference
in an essentially tandem configuration, with the separated shear layers from the
forward cylinder reattaching to the rearward cylinder and therefore producing no
‘gap flow’ between the cylinders, and vortices being shed only from the rear
cylinder. This description is almost identical to that from Hu & Zhou (2008) for
their corresponding S-Ib regime. Similarly, the shear layer reattachment (SLR)
regime from Sumner et al. (2000) is characterised by this same feature.

(ii) For 0.4 6 T/D 6 1.0. Zdravkovich (1987) labels this regime W-SG: wake
interference in a staggered configuration, with a strong ‘gap flow’, i.e. a
significant flow passes through the gap between the cylinders. Sumner et al.
(2000) identify two regimes in this range with increasing T/D: first regime
IS, where the gap flow is strong enough to induce separation of the boundary
layer from the rearward cylinder on the gap side, and then regime VPE, where
vortices are shed from the rearward cylinder on the gap side which are paired
and enveloped by the vortices from the forward cylinder. Hu & Zhou (2008)
identify a regime S-II, characterised by unequal-strength vortex streets from
both bodies that eventually amalgamate into one wake – a description very
reminiscent of the VPE regime from Sumner et al. (2000).
Taken together these descriptions highlight the importance of the flow between
the cylinders in this regime. The fact that there is flow through the gap delineates
this regime from the regime at lower T/D. The effect of the increasing strength
of this flow – first inducing separation from the rearward cylinder, and then
instigating vortex shedding – is the feature used by Sumner et al. (2000) to
differentiate the IS and VPE regimes.

(iii) For 1.06T/D6 1.3. Zdravkovich (1987) labels this regime P+W: a combination
of proximity interference caused by the interaction of two clearly formed wakes,
one from each body, and wake interference, where the rearward body is immersed
in the wake of the forward body. Sumner et al. (2000) label this region VPSE,
with complex vortex pairing, splitting and enveloping occurring between the
vortices shed from the forward and rearward bodies on the gap side. Hu & Zhou
(2008) keep the same designation as the lower T/D range, i.e. S-II, focusing
on the fact that the overall wake eventually amalgamates further downstream.
While not explicit in their descriptions, all of these studies hint that this region is
temporally complex, with complicated vortex dynamics generated by the fact that
the rearward body is almost completely, or completely, exposed to the oncoming
flow. This allows almost unfettered shear layer detachment and vortex formation
on the outer sides, but ensures a strong interaction between the forming shear
layers of opposite-sign vorticity from the two bodies in the gap.

(iv) For T/D>1.3. Zdravkovich (1987) labels this regime P-S2: proximity interference
caused by the interaction of two clearly formed wakes, one from each body, in
a staggered arrangement with the reference body upstream. Sumner et al. (2000)
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describe this region in a similar fashion, indicating that there are separate vortex
streets from each body and labelling the regime SVS. The description from
Hu & Zhou (2008) initially seems not to match, with two regimes S-II and
T-I described with increasing T/D. However, it should be recalled that Hu &
Zhou (2008) make their designation based on the vortex configuration at a
downstream distance x/D > 6. The S-II regime (unequal-strength vortex streets
that amalgamate) and the T-I regime (a clear vortex street from each body at
different frequency) can both describe the initial formation of two vortex streets
that then strongly interact, which is in line with the description of the other
studies.

So, it appears that, for moderate downstream separation distances L/D ' 2, there
are three major ‘modes’:

(i) 06 T/D6 0.4, where there is no net flow through the gap between the cylinders,
and vortices are shed only from the rearward cylinder.

(ii) 0.46 T/D6 1.3, where there is a gap flow of increasing strength with increasing
T/D, and the shear layers from the ‘inner’ sides of both bodies interact more
strongly with each other than with the corresponding ‘outer’ shear layer from the
same body. The formation of a gap jet, or paired and/or amalgamated vortices
from the roll-up of the inner shear layers into ‘gap pairs’, is an intrinsic aspect
of the dynamics.

(iii) T/D > 1.3, where the gap becomes large enough for the inner shear layers to
interact with the corresponding outer shear layer from the same body, and the
vortices roll up into ‘wake pairs’, in a similar fashion to a single isolated cylinder.
These wakes can then interact due to their proximity.

These regimes will be used for a base of comparison with the flow-induced
vibration cases investigated in this study.

The flow-induced vibration of the cylinders in tandem and side-by-side arrangement
has been considered by a number of authors. The tandem elastically mounted cylinder
arrangement investigated by Borazjani & Sotiropoulos (2009) consisted of an inline
offset of L/D = 1.5, with no cross-stream offset, T/D = 0.0. The cylinders were
found to oscillate at greater amplitudes than a single isolated cylinder and also to
experience greater lift force. Borazjani & Sotiropoulos (2009) categorised the flows
into two states, with state 1 being the state where the front cylinder oscillated at a
greater amplitude than the rear, and state 2 where the rear oscillated more. They found
that the transition with reduced velocity (U∗ = U/fND, where U is the free-stream
velocity, fN =

√
k/m/(2π) is the natural structural frequency, k is the spring stiffness

coefficient and m is the sprung mass) from state 1 to state 2 occurred near U∗ = 5,
identifying the maximum distance reached between the two cylinders, δy/D, as a
defining characteristic, with state 1 exhibiting δy/D < 1.0 and state 2, δy/D > 1.0.
They also examined the effect of having two degrees of freedom for the cylinder
motion.

Other studies have examined similar problem configurations: with two rigidly
coupled cylinders in tandem and side-by-side arrangement (Zhao 2013); with
side-by-side cylinders with two degrees of freedom (Huera-Huarte & Gharib 2011);
with tandem cylinders with the upstream cylinder stationary and the downstream
oscillating (Assi et al. 2010; Carmo, Assi & Meneghini 2013), tandem and staggered
cylinders with two degrees of freedom (Assi 2014), and tandem cylinders of unequal
size (Wang et al. 2014); with two tandem cylinders vibrating with two degrees of
freedom (Huera-Huarte & Gharib 2011); and with two and three tandem cylinders
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(L/D= 4.0) oscillating with two degrees of freedom (Yu et al. 2016). There has been
no comprehensive study of the flow-induced vibrations of two staggered cylinders.

The current study proposes to build on work in the literature, investigating
flows past cylinders with tandem arrangements, and then extending to staggered
arrangements by varying the cross-stream offset T , for both static and elastic
cylinder mountings. Given the large range of parameters to consider in addressing
the flow-induced vibration of staggered cylinders (L/D, T/D, reduced velocity U∗,
damping c∗ = cD/(mU), mass ratio m∗ = 4m/(ρD2l), and the Reynolds number
Re=UD/ν, where c is the damping coefficient, ρ is the fluid density, l is the length
of the cylinder and ν is the kinematic viscosity), the current study has restricted
its focus. The case investigated in Borazjani & Sotiropoulos (2009) (L/D = 1.5,
T/D= 0.0, c∗ = 0, m∗ = 2.546, 3 6 U∗ 6 14, Re= 200, with the motion constrained
to the cross-flow direction) is used as a base case and starting point for the current
investigation. Note that in some sense this is a limiting case, where the damping
c∗ = 0, which would be effectively impossible to achieve experimentally. However,
such a limiting case is informative of the range of behaviour possible, as the dynamic
response of the structure should be maximised. The value of L/D selected also puts
the cylinders at a distance that traverses the three modes of response identified for
static cylinders outlined above as T/D is varied.

The paper proceeds as follows. Section 2 defines the problem studied and the
specification of the bodies and mounting. Section 3 describes the numerical method
and set-up. Section 5 presents the results, with the regimes across the entire parameter
space shown in § 5.1, followed by more discussion of the limiting cases at U∗= 0 and
T/D = 0.0 in §§ 5.2 and 5.3, respectively. Section 5.4 describes flows for vibrating
cylinders and staggered configurations. The validity of the work and the applicability
of the results are discussed in § 6. Concluding remarks follow in § 7.

2. Problem definition
Figure 1 outlines the problem set-up. In the results presented here, the upstream

cylinder is positioned at x=−L/(2D), y= T/(2D) and the downstream cylinder is at
x= L/(2D), y=−T/(2D).

The ratio of the mass of each cylinder to the mass of the equivalent volume of fluid
is defined as m∗= 2.546, as used in Borazjani & Sotiropoulos (2009) in their study of
tandem vibrating cylinders. Each cylinder is elastically mounted with identical natural
frequencies, and therefore reduced velocity, U∗. There is no damping added to the
system, c∗ = 0. The y-position of a cylinder is defined as Y and the oscillation of
each cylinder is defined by the equation:

m[Ÿ1 + (2πfN)
2(Y1 − (T/2))] = Fy1,

m[Ÿ2 + (2πfN)
2(Y2 + (T/2))] = Fy2,

}
(2.1)

where Ÿ is the acceleration of the cylinder perpendicular to the free stream and Fy
is the lift force on the cylinder. In non-dimensional form, these equations can be
expressed as

πm∗
[

ÿ1

2
+

π2m∗

U∗2

(
y1 −

T/D
2

)]
=CL1,

πm∗
[

ÿ2

2
+

π2m∗

U∗2

(
y2 −

T/D
2

)]
=CL2,

 (2.2)
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where y is the non-dimensional cylinder displacement Y/D, and CL is the transverse
(lift) force coefficient per unit length, CL = 2Fy/(ρU2D). Hence, the position of the
cylinders can be described as

y1 = y1 + y′1 + (T/D)/2,

y2 = y2 + y′2 − (T/D)/2,

}
(2.3)

where yn is the non-dimensional mean position of cylinder n with respect to the
cylinder starting point and y′n is the oscillatory component of the non-dimensional
motion of cylinder n. The subscripts 1 and 2 denote the front and rear cylinders,
respectively. The cylinders are in a uniform free-stream flow and the Reynolds
number is 200.

3. Method
Simulations were carried out using a sharp-interface immersed-boundary method, in

which the vibrating cylinders are represented by a Lagrangian set of finite elements
immersed in an underlying Cartesian grid. The basic method follows closely that
outlined in Mittal et al. (2008), and further details of the implementation used here
for fluid–structure interaction problems is provided in (Griffith & Leontini 2017). A
concise description of the method is provided below.

The flow is simulated by solving the incompressible Navier–Stokes equations

∂u
∂τ
=−(u · ∇)u−∇P+

1
Re
∇

2u,
∇ · u= 0,

}
(3.1)

where τ = tU/D is the time non-dimensionalised by the advective time scale, u is the
velocity field non-dimensionalised by the free-stream velocity U, and P is the pressure
field non-dimensionalised by ρU2. These equations were solved by discretising in
space using a second-order central finite-difference scheme. To integrate the equations
forward in time, a two-way time-splitting scheme in employed.

First, the advection and diffusion terms (the first and third terms in the momentum
equation (3.1), respectively) are integrated to an intermediate time between the start
and end of the time step, over a first ‘substep’. The numerical scheme employed for
the advection term was an explicit second-order Adams–Bashforth scheme, whereas
an implicit second-order Crank–Nicolson scheme was employed for the diffusion term.
The resulting implicit equation was solved using Gauss–Jacobi iteration.

Second, the pressure term was integrated from this intermediate time to the end
of the step, over a second substep. For this to occur, the pressure correction (the
amount the pressure field had changed with respect to the previous time step) needed
to be first evaluated. This was done by taking the divergence of the pressure substep
equation, and enforcing continuity (i.e. that the velocity field is divergence-free),
resulting in a Poisson equation for the pressure correction. This Poisson equation was
solved using a hand-coded geometric multigrid method.

The velocity and pressure fields were collocated on the same cell-centred mesh. To
avoid ‘chequerboarding’, or odd–even decoupling of the pressure field, a process of
interpolating from cell-centred values to face-centred values was employed between
the two substeps, and the resulting values were used to form the right-hand side of
the pressure Poisson equation.
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Grid 1xfine A∗MAX1 A∗MAX2 CLrms 1 CLrms 2

M8 D/32 0.706129 0.639211 0.789822 0.734550
M9 D/64 0.711914 0.636717 0.840241 0.772704
M10 D/128 0.713498 0.639779 0.859318 0.792394
M11 D/256 0.716228 0.644450 0.872637 0.808310

TABLE 1. Maximum oscillation amplitudes and r.m.s. lift coefficients for the four
immersed-boundary grids tested, for the tandem cylinder arrangement of offset T= 0.0 and
with reduced velocity U∗= 5. The subscripts 1 and 2 refer to the front and rear cylinders,
respectively.

The immersed boundaries of the two cylinders were imposed using an interpolation
scheme for values at mesh points that were immediately inside the body (those points
that were inside the body, but had an immediate neighbour point outside the body),
essentially forming a modified stencil for these points. This interpolation scheme
maintained the overall order of accuracy of the differencing scheme. While such an
interpolation scheme can lead to spurious oscillations in the pressure field that the
distributed-force immersed-boundary scheme does not suffer from, the interpolation
has the advantage of maintaining a sharp representation of the boundary, which can be
important for multiple bodies in proximity. It should be noted that a recent study has
shown that these spurious oscillations pose no problem for fluid–structure problems
as long as the resolution of the mesh is adequate (Griffith & Leontini 2017).

The vibration of each cylinder is found by solving (2.1) in conjunction with the
Navier–Stokes equations (3.1) using a Newmark-β method, employing the standard
value of β = 0.25 (Newmark 1959). A free-stream Dirichlet boundary condition was
imposed for the velocity on the upstream and transverse boundaries, u = U, and
a Neumann condition for the velocity was imposed at the downstream boundary,
∂u/∂n = 0. For the pressure, a Neumann condition was imposed on the upstream
and transverse boundaries, ∂P/∂n = 0, and a Dirichlet condition imposed at the
downstream outlet, P = 0. On the immersed-boundary surface, the velocity of the
fluid was set to match the velocity of the body, while the normal pressure gradient
was set to zero.

The underlying Cartesian grid was designed with a regular grid spacing around
the origin, over a box region measuring 4D in each direction. Grid spacings were
then increased linearly to the domain boundaries. The inlet and lateral domain
boundaries were located 15D from the origin, while the outlet boundary was located
40D downstream. Twice as many grid points were used in the streamwise direction
as in the transverse direction; the number of grid points in each direction is restricted
to powers of 2, thereby leading to a grid size of 2N+1

× 2N , where N is a whole
number. We denote each grid as MN, such that M10 corresponds to a grid size of
2048× 1024 nodes.

A test of the sensitivity of the results to grid resolution was carried out. For the
tandem cylinder arrangement of offset T = 0.0, results were obtained over the U∗
range for grids M8, M9, M10 and M11. Table 1 presents the results for U∗ = 5
returned for maximum cylinder displacement, A∗MAX , and root-mean-square (r.m.s.) lift
coefficient, CLrms , for the two cylinders, the front and rear cylinders being denoted by
subscripts 1 and 2. For the grid M9, the results returned for A∗MAX are within 1 % of
the result returned by the higher-resolution M10 grid, while the r.m.s. value of the lift
coefficient is within 2 %. For all the results presented here for T/D 6 3.5, grid M9
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FIGURE 3. (a) A schematic of the regions defined that control the mesh resolution. (b) A
close-up of the mesh in the vicinity of the cylinders.

was used. For the upper range of cylinder offset, T/D> 3.5, the box region of regular
grid spacing around the origin was increased to 8D in the y-direction to encompass
the wider wake width and cylinder vibration that these cylinder arrangements produce.
For this grid the number of total grid points in the y-direction was doubled for the M9
grid, maintaining the same transverse domain boundary distance, but using the extra
grid points to increase the size of the box region of regular grid spacing. Simulations
run for values of T/D < 3.5 using both grids showed negligible differences in
oscillation amplitude and mean force coefficient. A schematic of the mesh set-up,
along with an image showing the resolution of the utilised M9 mesh in the vicinity
of the cylinders, is shown in figure 3.

All simulations were run for a minimum of τ = 1000, to ensure reliable statistics
and frequency content could be measured.

4. Validation
Here, a brief validation study of the vortex-induced vibration of a single elastically

mounted cylinder is presented. A more in-depth treatment of the validation of the code,
control of error and details of the implementation can be found in Griffith & Leontini
(2017). For this validation study, the mass ratio is set to m∗= 1, which is lower than
the mass ratio used for the two-cylinder problem (m∗= 2.546) that is the focus of the
current study. Lower body mass typically leads to larger accelerations, and therefore
provide a more difficult test of a numerical scheme.

Figure 4 presents the response of the single cylinder in terms of the maximum
amplitude of oscillation A∗MAX , the maximum lift coefficient CLMAX and the primary
frequency of oscillation as functions of the reduced velocity U∗. The results of
the immersed-boundary code are plotted along with results from a well-validated
spectral-element code (see Thompson et al. (1996) and Leontini et al. (2006) for an
explanation of the method and a relevant validation case).

It is clear that the two codes, based on two completely different schemes, produce
very similar results. This provides confidence in the ability of the immersed-boundary
code to accurately capture the dynamics of the fluid–structure system. Further
comparison with published data from Borazjani & Sotiropoulos (2009) is made
in § 5.3, providing more evidence that the dynamics are accurately captured.
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FIGURE 4. The response of a single elastically mounted cylinder for Re= 200 and m∗= 1.
(a) The maximum amplitude of oscillation obtained at any time, A∗MAX . (b) The maximum
lift coefficient obtained at any time, CLMAX . (c) The primary frequency of oscillation.
Results obtained using a spectral-element method (Thompson et al. 1996) (u) and the
current immersed-boundary scheme using the M9 mesh (E). The results from both codes
are very similar across the entire parameter space.

It should also be noted that the upper limit of the maximum amplitude for both
codes, A∗MAX ' 0.6, compares very well to the upper limit for laminar vortex-induced
vibration deduced from the data compiled in Williamson & Govardhan (2004).

5. Results
5.1. Regimes mapped across the parameter space of U∗, T/D

We first present data maps for the entire reduced velocity–cross-stream offset
parameter space, before examining particular cases. Figure 5 plots contours of
maximum oscillation amplitude, A∗MAX , maximum coefficient of lift, CLMAX , and
mean coefficient of drag, CD, over the range of reduced velocity, 0.0 6 U∗ 6 14.0,
and cross-stream offset, 0.0 6 T/D 6 5.0. The left-hand panels show data for the
upstream cylinder and the right-hand panels data for the downstream cylinder. Value
T/D = 0.0 indicates the cylinder arrangement where the upstream and downstream
cylinders have their origins at {x0, y0} = {−0.75, 0.0} and {0.75, 0.0}; that is, the
tandem case. The maximum value of cylinder offset, T/D = 5.0, indicates an
arrangement where the cylinders are free to oscillate in the cross-stream direction
around {x0, y0}= {−0.75,2.5} and {0.75,−2.5}. For the reduced velocity, low values of
U∗ mean stiff elastic mountings, with U∗ = 0.0 implying entirely static non-vibrating
cylinders. As reduced velocity, U∗, increases, the elastic mounting becomes slacker.

The two contour maps for maximum oscillation amplitude, A∗MAX , show those
arrangements that result in the largest displacements for the front and rear cylinders.
For the front cylinder, the largest excitation occurs at low and zero cross-stream
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FIGURE 5. Over the U∗, T/D parameter space, (a,b) contours of maximum amplitude of
oscillation, A∗MAX , (c,d) contours of maximum coefficient of lift, CLMAX , and (e, f ) contours
of mean coefficient of drag, CD. Maxima are calculated as an average of the greatest
10 % of peaks. Panels on the left are for the upstream cylinder and on the right for the
downstream.

offset, T/D, and in the range 5.0 6 U∗ 6 8.0. When the offset is increased further,
the maximum amplitude decreases before converging towards the result for a single
isolated cylinder, which is evident from the increasingly vertical contour lines, with
T/D. For the higher reduced velocities, the maximum amplitude oscillation occurs
around T/D= 0.0 and is greater than the result of the single isolated cylinder.

As evident from the darker contours, the rear cylinder oscillates at a greater
amplitude than the front cylinder for large parts of the parameter space. The
greatest amplitude occurs for low values of T/D and in the reduced velocity range
6.0 6 U∗ 6 11.0.

The contours of maximum coefficient of lift, CLMAX , show the highest values for
U∗ = 3.0 and 4.0, and intermediate transverse T/D ' 1. It is proposed that this is
due to the strong influence of the flow and subsequent vortex formation through the
gap between the cylinders, similar to the mechanism of excitation for wake-induced
vibration proposed by Assi et al. (2010); this point is further expanded on in § 5.4.

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.673


For the mean coefficient of drag, CD, the two cylinders give similar contour maps,
except for those cases where the downstream cylinder lies mostly, or entirely, in the
wake of the upstream cylinders, thereby hiding it from the oncoming free-stream flow.
The cases producing the lowest mean drag on the rear cylinder are the tandem cases
at low and zero reduced velocity; for these cases, the amplitude of oscillation is very
small, meaning the rear cylinder never, or hardly, comes out from behind the upstream
cylinder. Drag increases on the downstream cylinder as the offset, T/D, increases,
resulting in the downstream cylinder meeting more of the free-stream flow, and as
the reduced velocity increases. As the reduced velocity increases, the amplitude of
oscillation increases, with the increased drag on the downstream cylinder indicative
of a phase difference between the two cylinder oscillations, which is discussed more
later in the study (see § 5.3).

There are two broad regimes in the parameter space which can be differentiated
by the orientation of the contours in figure 5. For higher values of reduced velocity,
U∗ > 8.0, that is, less spring stiffness, the contours are mostly aligned horizontally.
This indicates a stronger dependence of behaviour on cylinder cross-stream offset,
T/D, than on reduced velocity, U∗, or spring stiffness. For reduced velocity, U∗< 8.0,
stiffer springs, the dependence is less on offset, T/D, and more on U∗. The exception
to both these categorisations is the section of parameter space around T/D=1.0. Here,
there is strong variation with offset, around for example U∗= 5.0, and some variation
with reduced velocity, around for example U∗ ≈ 10.0.

Across the parameter space, there are a number of frequencies present in the
dynamics of the system, the effects of which vary throughout. Firstly, for an isolated,
single cylinder at Reynolds number Re = 200, the vortex shedding frequency, or
Strouhal frequency, is St = 0.198. For rigid cylinders, with increasing cross-stream
offset, the frequency of the lift force on both cylinders is expected to approach
this value. When the cylinders are close to each other, the vortex formations will
be affected, so the frequency will likely change. As reduced velocity increases, the
natural frequency of the elastic mounting, fN(D/U) = 1/U∗, initially becomes more
important. As reduced velocity increases further, the forcing of the spring becomes
weaker and the cylinders are more free to move in response to the fluid forcing. For
U∗ =∞, the cylinders are entirely free to move and effectively have no equilibrium
position.

Figure 6 is a compilation of the frequency content of the lift force on the rear
cylinder, across the range of T/D tested and for eight values of U∗. To construct
the plots, the frequency spectra for each case of T/D are normalised by their
maximum and then stacked next to each other, thereby showing the variation of
frequency intensity in the fluid forcing as the offset is changed. Looking first at
the plot for reduced velocity, U∗ = 0.0, for the tandem case, T/D = 0.0, there is
a single dominant frequency, f (D/U) = 0.169. This is lower than the value for a
single isolated cylinder, 0.198. The single frequency is due to the fact that there
is no flow through the gap between the cylinders, and the two cylinders effectively
behave as a single body with vortex shedding from the rear cylinder only. As offset
increases, this frequency initially decreases, then increases again, until at offset of
approximately 1.4 a broadband response is evident, indicating a quasi-periodic or
chaotic fluid forcing and flow; the frequency content here will be investigated further
in the following section (§ 5.2). As offset increases towards 5.0, the single dominant
frequency emerges again, converging to the frequency for a single cylinder.

Note that the term ‘chaos’ here refers to a response that is not periodic, and has
a spectrum that contains at least three incommensurate frequencies. Such a response
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FIGURE 6. The frequency content of the lift signal on the rear cylinder across the offset,
T , range and for eight values of reduced velocity, U∗. Each plot is formed by calculating
the frequency spectrum for each case of T/D, normalising each spectrum by its maximum,
and then ‘stacking’ the spectra next to each other. Dark regions represent intensity of a
given frequency in the lift signal for a given T/D. Contour values vary from white, 1×
10−6, to black, 1. Also shown with dots is the difference in primary frequencies of the
two cylinders.

does not appear to repeat over any time scale, and as such this definition is the same
as that used in dynamic systems.

For the cases shown where the cylinders are free to vibrate, U∗ = 3.0, 4.0, 5.0,
6.0, 8.0, 10.0 and 14.0, a range of responses are evident. The dark areas represent
broadband response, indicating quasi-periodic or chaotic flows. The two maps most
qualitatively similar are the maps for reduced velocities, U∗ = 0.0 and 14.0. Out of

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.673


0 2 4 6 8 10 12 14

5

0

1

2

3

4

FIGURE 7. (Colour online) The parameter space, mapped by oscillation frequency content
of the coefficient of lift signals of the two cylinders. Symbols are the following: solid
black points denote periodic flows, with both cylinders oscillating at the same frequency;
hollow black dots denote periodic oscillations, but with period-doubling, or P2, oscillations;
hollow red dots denote periodic oscillations, with period-multiplying PN>2 oscillations;
solid red dots denote quasi-periodicity; while blue dots represent chaotic oscillations.

the cases shown, these two cases are effectively the cases where the frequency and
forcing of the elastic mounting are the weakest, i.e. where there is effectively no
response at the body’s natural frequency. For U∗ = 0.0, the cylinders do not vibrate
at all, while for U∗ = 14.0, the springs are slack, meaning that, for both, the fluid
forcing dominates, thereby giving similar frequency content maps (note that the data
for U∗ = 0.0 have higher resolution in T/D than the other reduced velocities tested).

An example case where the elastic mounting does play a significant role is reduced
velocity U∗= 5.0. For the tandem configuration, T/D= 0.0, the oscillation is periodic,
dominated by the primary frequency, which is slightly below the natural frequency of
the structure. The other frequency that appears for zero offset is the third harmonic
of the primary. Energy in these odd harmonics is indicative of the spatio-temporal
symmetry in the forcing on the cylinder. Once an offset is introduced, this symmetry
is broken and the second harmonic increases in strength. Periodic vortex shedding
persists until the offset, T/D, is equal to ≈0.6. In the cylinder offset range 0.6 6
T/D61.8, the spectra of the lift coefficient signal is not periodic. The more broadband
spectrum indicates irregular, perhaps chaotic, vortex shedding. Beyond T/D≈ 1.7, the
shedding becomes more regular, with the broadband noise decreasing. In the range
1.7 6 T/D 6 2.4, the second and third harmonics are distinct as well as frequencies
spaced at one quarter of the primary frequency, indicative of quasi-periodic or period-
doubling behaviour. This pattern abruptly ends for T/D= 2.4 and the vortex shedding
becomes dominated by a single frequency.

Figure 7 provides a summary of the temporal behaviour over the parameter space,
where individual cases have been inspected and categorised as being periodic on
the period of vortex shedding, periodic over some multiple of the period of vortex
shedding, quasi-periodic, or chaotic. Figure 7 gives an overview of the temporal
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behaviour of the cylinder oscillations over the parameter space; examples of specific
cases appear later in the following subsections. Solid black points represent cases
where the oscillations are periodic and synchronised. Hollow black points represent
cases where the oscillations are still periodic and synchronised, but are period
doubling, the flow repeating over two cycles of oscillation. These oscillations are
designated as P2. The hollow red points present oscillations that are again periodic,
but repeat over N cycles, where N>2. The distinction between P2 and PN>2 oscillation
has been made to represent the increasing period of the oscillations as N increases,
which quickly becomes difficult to differentiate from a quasi-periodic response.

The solid red points represent cases where the oscillations of the cylinders are quasi-
periodic. This includes quasi-periodicity arising from disordered vortex shedding, but
also from small differences in the primary frequency of the oscillation of the two
cylinders. For example, the periodic synchronised oscillation for U∗= 5.0 and T/D>
2.5 is only present for a narrow range of reduced velocity. For the other reduced
velocities tested, at T/D = 4.0 and 5.0, the oscillations are strictly quasi-periodic.
However, this is due to each cylinder effectively shedding independently, but with a
small difference persisting in the frequency of vortex shedding of the upstream and
downstream cylinders. The wakes are interacting in that the presence of one cylinder
slightly changes the vortex shedding frequency of the other, but that is the extent of
the interaction. In figure 7, we have not attempted to distinguish between weak and
strong quasi-periodicity. The frequency content plots of figure 6 give some indication
as to the level of complexity of the flow and body oscillations over the parameter
space in the quasi-periodic regions.

Also plotted in figure 7 are solid blue points; these represent cases classified as
chaotic. The distinction between quasi-periodic and chaotic flows is made chiefly on
inspection of Lissajous plots of the cylinder displacements (plots of the displacement
of the front cylinder as a function of the displacement of the rear cylinder); where
the orbits do not immediately appear simply modulated, we have classified the flow
as chaotic. This distinction is subjective; therefore the boundary between solid blue
and red points on figure 7 is fuzzy. Nonetheless, it serves as an approximation of
regions of the parameter space where the flows are the most disordered.

Figure 8 attempts to categorise each case by the type of vortex formation on
each cylinder, based on such information as which cylinder sheds or does not shed
vortices, whether there is significant flow in the gap between the cylinders and which
vortices pair. For the tandem cases we have adopted a similar classification as used
by Borazjani & Sotiropoulos (2009), describing the low reduced velocity U∗ < 5.0
cases as mode 1. Borazjani & Sotiropoulos (2009) denoted U∗ > 7.0 cases as state
2, and flows in the range 5.0 6 U∗ 6 6.0 as a critical state, between states 1 and 2.
Instead, we choose to denote their state 2 as mode 3, and the critical state as mode
2. Discussion of these tandem modes will be continued in § 5.3.

The tandem modes only survive a short time for small cross-stream offsets. Modes
21 and 31 are one-sided versions of the tandem modes. The region marked as ‘Gap
flow dominated’ indicates states where the flow between the cylinders dominates,
with the flow characterised by pairing of either shear layers or vortices from the
inside side of each cylinder. This region is centred around offset T/D = 1.0, and is
generally characterised by smaller-amplitude and quasi-periodic or chaotic oscillations.
At greater cylinder offset, the ‘Wake pair dominated’ region occurs. Instead of gap
pairs of vortices and shear layers dominating, the flow is composed of pairs of
vortices shed from the same cylinder in a similar manner to the shedding from a
single isolated cylinder.
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FIGURE 8. The parameter space, mapped by oscillation and vortex shedding mode.
Shaded grey areas denote regions of the parameter space where cylinder oscillations are
periodic and synchronised.

Regions of periodic synchronised oscillation (both cylinders having the same
primary frequency) identified in figure 7 are included as greyed regions on figure 8.
The cylinders (or lift coefficient in the case of the rigid U∗ = 0.0 cases) oscillate at
the same primary frequency when reduced velocity and cross-stream offset are both
near zero. Periodicity occurs for high reduced velocity and low offset and tandem
cases, and for a narrow band of reduced velocity at offset T/D> 2.0.

Interestingly, when the cylinders are in close proximity, for T/D< 2, the oscillation
is disordered and not periodic around U∗ = 5. It is here where the natural structural
frequency of the bodies is close to the vortex shedding frequency of a single
isolated cylinder. This is in stark contrast to the single isolated cylinder, which
will synchronise or undergo lock-in when these two frequencies match, as do the
two cylinders for larger offset. This is perhaps not surprising: when the bodies are
close, they will each strongly influence the vortex formation and shedding from the
other, changing the time scale and therefore the frequency; there are other time scales
to consider, such as the advection time across the gap; and there are new physical
phenomena at play that do not occur for the single cylinder, especially the complexity
introduced by the flow between the cylinders.

To provide further detail of these identified modes and regions, the following
subsections treat subregions of the parameter space. First, § 5.2 examines the limiting
case of rigid cylinders, or a line along U∗ = 0 in figure 8.

5.2. The U∗ = 0 limiting case: stationary cylinders
Stationary cylinders represent a limiting case of (2.1) where the reduced velocity U∗=
0, resulting in no flow-induced vibration of the cylinders.
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FIGURE 9. For L= 1.5, the variation with cross-stream offset, T/D, of the mean values of
the drag and lift coefficients for the front and rear cylinders, denoted by subscripts 1 and 2,
respectively. The horizontal dashed lines mark the average lift coefficient CL and average
drag coefficient CD for a single isolated cylinder (CL = 0 and CD = 1.384, adjusted for
equivalent blockage ratio). Vertical dashed lines represent the boundaries between mode
1, gap flow and wake pair dominated regions, as on figure 8.

Figure 9 plots the variation with cross-stream offset of the mean values of the lift
and drag coefficients for both cylinders. For the tandem cylinders (T = 0.0), most of
the drag is experienced by the front cylinder; the rear cylinder experiences a negative
mean drag. The negative mean drag on the rear cylinder only occurs for offsets T/D<
0.2. The drag on the rear cylinder increases almost linearly up to offset T/D = 1.0,
from which point it exceeds the drag on the front cylinder.

The mean lift force is zero for the tandem T = 0.0 configuration. With increasing
offset, the mean lift becomes positive for the rear cylinder and negative for the front,
indicating a mean force on the cylinders away from the centreline. Around T/D= 1.2,
the lift on the front cylinder becomes positive again.

Figure 9 only describes the mean forces on the cylinders. Figure 10 plots the
variation with offset T/D of the intensity across the spectrum frequency in the
coefficient of lift signal, for both cylinders, replotting figure 6(a), but including the
data for both the upstream (top) and downstream (bottom) cylinders. The primary
frequency of the vortex shedding in each case can be identified by the darkest sections
of the plot. Immediately apparent is that, for T/D . 0.6 (i.e. mode 1 according to
figure 8), the vortex shedding frequency from both cylinders is similar, and is less than
the vortex shedding (Strouhal) frequency of the single isolated cylinder, St = 0.198.
This corresponds well to the first base ‘mode’ identified from previous literature and
described in the introduction (§ 1), for T/D. 0.4, where there is no gap flow between
the cylinders.

For 0.6 6 T/D . 1.5, figure 10 shows that the primary frequency of the flow starts
to increase with increasing T/D, and a stronger component at twice the primary
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FIGURE 10. For L/D = 1.5 and fixed cylinders (U∗ = 0), the frequency content of the
lift force as a function of T/D for both cylinders. The plots are formed in the same way
as described in figure 6. The horizontal dotted line indicates the Strouhal frequency for
a single isolated cylinder. Vertical dashed lines represent the boundaries between mode 1,
gap flow and wake pair dominated regions, as in figure 8.

frequency also appears. This corresponds to the second ‘base’ mode described in
§ 1 identified from the literature for 0.4 6 T/D 6 1.3, and characterised by a flow
through the gap between the cylinders that becomes stronger with increasing T/D.
The presence of a frequency at twice the primary frequency is a direct consequence
of the broken symmetry due to the non-zero offset – each vortex shed in the wake
has an impact on the gap flow, which induces a force in the same direction regardless
of the sign of the vortex, hence the doubling of the frequency.

For T/D & 1.5, with the transition to a wake pair dominated flow according to
figure 8, a more complex behaviour appears. This results from the presence of a
difference in primary vortex shedding frequency on each cylinder, and the close
proximity of these vortex wakes occurring at different time scales. Again, this is
consistent with the third ‘base’ mode described from the literature for T/D > 1.3
in § 1. In these cases, the upstream cylinder is now forming and shedding its own
vortex pairs. These vortices have a smaller formation area because of the presence
of the downstream cylinder, which results in smaller vortices being shed at a higher
frequency than they do from the downstream cylinder. Figure 10 shows that the
flow can be highly complex, with a frequency response consisting of a series of
well-defined harmonics, or broadband noise in the range 1.5< T/D< 1.8, the focus
of the inset of the spectrum plot for the rear cylinder. The difference in primary
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FIGURE 11. (Colour online) For stationary cylinders, U∗ = 0, plots of vorticity contours,
time series of the coefficient of lift of each cylinder and the corresponding spectra, red
corresponding to the upstream cylinder and green the downstream, for cylinder offsets
T/D=0.0, 1.0, 2.3 and 3.5. Contours vary from blue to red in the range −16ωzD/U 61.

frequency decreases with increasing T/D, until they both converge to the value for
a single cylinder at large values of T/D. The phenomenon of different Strouhal
frequencies has also been noted in Alam & Sakamoto (2005), in a study of flow
past staggered cylinders. For non-tandem and non-side-by-side arrangements, they
observed, for a far greater Reynolds number than the current study, Re = 5.5 × 104,
sometimes intermittently, different Strouhal frequencies for particular cases, describing
the flow as bi- or multistable.

This range of cross-stream offset 0.0 6 T/D 6 5.0 was also covered numerically in
the work of Tong, Cheng & Zhao (2015) for Re= 103, but traversed in terms of angle
and pitch ratio between the two cylinders (see their figure 4). The description of the
regimes provided here is consistent with their figure 18 along a traverse at L/D= 1.5.

Figure 11 plots details of four cases, picking out the various regimes of behaviour
classified in figure 8 and further described in figures 9 and 10. The flows for offset
T/D = 0.0 correspond to mode 1 where the front cylinder does not shed vortices
and only one vortex street is present. Offset T/D = 1.0 however corresponds to the
gap-dominated flow regime and the flow is more complex with stronger contributions
from all harmonics of the primary frequency present in the lift coefficient signal of
each cylinder. Despite the gap flow, the cylinders still largely shed vortices as one
body. In both cases the vortex formation region is larger than for the single isolated
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cylinder, resulting in a lower vortex shedding frequency. For T/D= 2.3, the flow is
now wake pair dominated. A periodic beating is evident in the time series of the
cylinder oscillation, indicative of the difference in primary vortex shedding frequency.
For the case of T/D = 3.50, the frequency difference persists, but is much smaller,
resulting in a weaker, longer-period beating in the signal as the interaction between
the wakes lessens as the cylinders are moved further apart.

Figure 12 focuses on cases where there is a significant difference between the
primary frequencies, spanning the range 1.36 T/D6 1.9, the same range as shown in
the inset in figure 10. This range encompasses the transition from gap pair dominated
to wake pair dominated flow. The inset shows a frequency content strongly dependent
on cross-stream offset. Data have been obtained at a high resolution of T/D, and
figure 12 presents six example flows in this region. Figure 12 shows the complexity
of the wake and the subtle shifts that can occur with small changes in the offset, as
the flow generated through the gap between the cylinders is highly sensitive.

The images of the flow are all taken at a similar phase, when the lift force is at
a local maximum. The images show that the large-scale features of the wake are not
impacted greatly by the small change in offset. However, the associated time series
of lift force, and the resulting frequency spectra, show very strong variation driven by
the complex flow in the gap. For example, each second case shown (offsets, T/D=
1.43, 1.51 and 1.60) are PN-periodic, repeating over N vortex shedding cycles (where
N=2,4,5, respectively). This is indicated by the regular modulation of the time series
of the lift force and the ‘comb’ structure of the frequency spectra, with frequencies
occurring at increments that are f /N, where f is the vortex shedding frequency. In
fact, N can be discerned by counting how many spikes occur in the spectrum before
the primary frequency. The shedding locks on to these PN oscillations for extremely
narrow ranges of cross-stream offset. These periodic cases are interleaved with quasi-
periodic or even chaotic responses at offsets T/D = 1.40, 1.47, 1.54. In these cases,
the modulation in the time series is less regular, and the frequency spectra are more
broadband, with an essentially continuous distribution of energy across frequencies.
This interleaving of PN-periodic with quasi-periodic and chaotic responses leads to
an incredibly dense variation of frequency content (see the inset of figure 10). Such
a dense variation does not seem to persist for the vibrating cylinders (see figure 6),
or for the qualitatively similar U∗ = 14.0 case; in these cases the cylinders are not
rigidly held and hence the vortex shedding frequencies are not rigidly tuned to the
cross-stream offset.

5.3. The T/D= 0 limiting case: tandem cylinders
This section examines the case of vibrating cylinders aligned in a tandem configuration,
T/D= 0; from figure 8 traversing the bottom edge of the parameter space. Borazjani
& Sotiropoulos (2009) presented results for this T = 0.0 and L/D = 1.5 case, for
the reduced velocity range 3 6 U∗ 6 14. That work is compared and expanded on
in this section. Figure 13 plots a direct comparison of the slice of the parameter
space of the current study, at T/D= 0.0, with the work of Borazjani & Sotiropoulos
(2009), showing the variation of maximum displacement, and of r.m.s. values of
the coefficients of drag and lift for each cylinder. Also shown are comparison data
of a single isolated vibrating cylinder from both the current study and Borazjani &
Sotiropoulos (2009). The A∗MAX value is calculated as the mean of the greatest 10 %
of local peaks of Y . The general picture given by the current results and those of
Borazjani & Sotiropoulos (2009) is the same across the three scalars presented in
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FIGURE 12. (Colour online) For stationary cylinders, U∗ = 0, plots of vorticity contours,
time series of the coefficient of lift of each cylinder and the corresponding spectra, red
corresponding to the upstream cylinder and green the downstream, for cylinder offsets
T/D= 1.40, 1.43, 1.47, 1.51, 1.54 and 1.60. Contours vary from blue to red in the range
−1 6ωzD/U 6 1.

figure 13, providing a level of confidence in the results obtained. However, there
are some differences that need to be addressed. For the single isolated cylinder, the
values of A∗MAX for the range 46U∗6 7, for the current study, are greater than those
from Borazjani & Sotiropoulos (2009). For the tandem arrangement, the oscillation
amplitude of the front cylinder is greater, while that of the rear cylinder is reduced
slightly for 5 6 U∗ 6 7. Similarly for the lift and drag, some variation between the
present results and those of Borazjani & Sotiropoulos (2009) can be seen.
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FIGURE 13. For T/D = 0.0 and L/D = 1.5, the variation with U∗ of the maximum
displacement of each cylinder, A∗MAX , the phase difference between the cylinder oscillations,
γ , and the r.m.s. values of the drag and lift coefficients. Solid symbols represent results
from the current study, while hollow ones are from Borazjani & Sotiropoulos (2009).

Attempts to eliminate this variation by trying to match the numerical set-up between
the two studies were made. Borazjani & Sotiropoulos (2009) used an inlet length and
lateral clearance of 8D and an outlet length of 24D. Therefore, there is a significant
difference in blockage ratio between the two studies: for a single cylinder, 6.25 %
against 3.33 % for the current study. The code for the current study, run on this
restricted domain, produced only marginal differences in the returned results for A∗MAX .
There is also a significant difference in time step used between the two studies:
δt = 0.02 in Borazjani & Sotiropoulos (2009) and δt = 0.004 in the current. This
difference is mostly due to the higher grid resolution used in the current study. To
examine the effect of time step, we have also run both grid domain sizes using time
steps of δt= 0.004 and 0.002, to examine any sensitivity to temporal resolution. We
found no significant effect resulting from this change in time step. We ran further
tests at lower grid resolution and larger time step; the results for A∗MAX returned by
the M8 grid for a time step up to δt = 0.0125 were greater than those returned
for the higher-resolution grid. The loose coupling scheme outlined in Borazjani &
Sotiropoulos (2009) was also implemented in the current code, but had negligible
effect on the results. In short, it is not completely clear why this discrepancy exists.
We note that the single cylinder results from the current study match very closely
with the numerical results from Leontini et al. (2006) (see Griffith et al. 2016), which
employed a highly accurate spectral-element method.

Figure 14 plots Lissajous curves of lift coefficient and displacement across the U∗
range. These curves show a strong similarity to those of figure 8 of Borazjani &
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FIGURE 14. (Colour online) For the tandem arrangement with zero offset T/D = 0.0,
Lissajous curves of lift coefficient and displacement for U∗ = 3, 4, 5, 6, 7, 8, 10 and
14. Red represents the front cylinder and green the rear cylinder.

Sotiropoulos (2009). The main differences here are that the orbits are much closer
to symmetric around Y = 0 and CL = 0 in the current results (which may account for
some of the differences between the two studies) and also the more meandering paths
of the cases for U∗ = 5 and 6, indicative of some quasi-periodicity.

It is shown below that these cases, U∗=5 and 6, occur in a distinct shedding regime
where vortices formed at the rear of the front cylinder are forced through the gap
between the cylinders to one side of the rear cylinder at one point in the oscillation
cycle, and then to the other side of the rear cylinder a half-cycle later, as the two
cylinders oscillate essentially out of phase. The result of this is that the lift forces on,
and the resulting motions of, the two cylinders come from complex vortex–vortex and
vortex–structure interactions, similar to the classic wake-induced vibration description
provided in Assi et al. (2010). Hence, it is probably unsurprising that there is not an
exact match between the two studies for these cases.

For zero cross-stream offset, T/D = 0.0, Borazjani & Sotiropoulos (2009) defined
two broad flow states: state 1 refers to those cases where the front cylinder oscillates
with larger amplitude than the rear, for U∗ 6 4.0; state 2, where the rear cylinder
oscillates with larger amplitude, for U∗ > ≈7.0. They classed the cases in between
these two ranges as ‘critical’ cases in the transition between the two states. Using the
vortex shedding pattern classification of Williamson & Roshko (1988), state 1 consists
of a 2S vortex shedding pattern, where a single vortex of each sign is shed from the
rear cylinder, with the rear cylinder enveloped by shear layers beginning at the front
cylinder. State 2 consists of a 2P vortex shedding pattern, with vortices of each sign
shed from both cylinders with complex vortex interaction and merging in the near
wake. The ‘critical’ case for U∗ = 5.0 shows similarity to state 2, but does not show
a 2P ordering, with complex interactions resulting from fast-moving vortices merging
with earlier-shed vortices, producing a less ordered wake.

As outlined in the discussion of figure 8, it is proposed that the two states described
by Borazjani & Sotiropoulos (2009) are better described as regimes or modes and
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that the ‘critical’ cases (U∗ = 5.0 and 6.0) are in fact a distinct mode, rather than
a transition case. The distinctions can be observed in the different Y–CL orbits of
figure 14 and the similarities between the orbits within the ranges of U∗ just described.

Plots of vorticity contours throughout the oscillation for representative cases of each
of the three modes are shown in figure 15. For mode 1 cases, shown for U∗= 4.0, the
rear cylinder sits in the wake of the front cylinder throughout the oscillation cycle. The
oscillation of the rear cylinder is small compared to the front cylinder (see figure 13).
Vorticity that forms on the front cylinder merges with vorticity of the same sign on
the rear cylinder. Vortices are shed only from the rear cylinder. One vortex of each
sign is shed in each cycle, forming a regular vortex street. Given that the vortices are
shed from the rear cylinder, we denote the shedding mode as 2SR. The mode exists
for cases of U∗= 3.0 and U∗= 4.0, with simulations requiring long run times (750U∗)
to reach a statistically converged solution.

For U∗ = 5.0 and 6.0, the rear cylinder oscillates more, coming out fully from
behind the front cylinder. The cylinders oscillate out of phase, γ =π (see figure 13).
In contrast to mode 1, vortices do not form on the rear cylinder; instead only a small
amount of vorticity is deposited in a trail. A vortex pair forms in the (periodically)
larger space now available between the cylinders. This larger space is now available
due to the elastic mounting of the springs, despite the close proximity of the cylinders
(L/D = 1.5). This large space allows the formation of vortices in the gap, creating
a wake-induced vibration on the rear cylinder (Assi et al. 2010). As the vortex pair
forms, it is cut off by the rear cylinder, its orientation rolling (see P1 in the second to
fourth images of figure 15), before meeting free-stream fluid and convecting at high
velocity downstream (P1 in the fifth to eight images of figure 15). The vortex pairs
overtake earlier pairs, merge and form an irregular vortex street. Because of the two
vortex pairs formed in each cycle, which mostly form on the front cylinder, we denote
this shedding mode 2PF. Apparent in the contour fields, plotted over one period of the
dominant frequency, there is some quasi-periodicity; tracking down the images from
top to bottom, one can see that the topology of the vorticity field is not going to
repeat in the next period. For that reason, we denote this case as the period-doubling
oscillation case on figure 7.

Mode 3 exists for U∗ > 7.0 and is characterised by large oscillation of the rear
cylinder, with the oscillation of the rear cylinder lagging the front cylinder by γ 'π/2.
Similar to mode 2, the rear cylinder traverses the wake of the front, but, instead of
a vortex pair forming in the gap, the rear cylinder effectively cuts through the shear
layers of the front cylinder (the third to fifth images of figure 15). In a complex
interaction, negative and positive vorticity from the front cylinder is subsumed by
the vortex formation on the rear cylinder each half cycle. Each cycle, this vortex
mingling creates two pairs of unequal-strength vortices. To account for the complex
formation of these vortex pairs, the shedding mode is denoted as a 2P. These three
vortex shedding modes cover the T = 0.0 parameter space. The next section will
examine the effect of increasing a cross-stream offset, introducing the staggered
vibrating cylinder arrangement.

5.4. Variation of cross-stream offset T/D
This section describes example cases from the U∗–T/D parameter space not contained
along the U∗ = 0.0 and T/D = 0.0 axes. On figure 8, the tandem modes (modes 1,
2 and 3) are marked on and near the T/D = 0.0 axis. As the cross-stream offset
increases, mode 1, featuring vortex shedding from the rear cylinder only, persists up
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FIGURE 15. (Colour online) For the tandem cylinder arrangement (T/D= 0.0), vorticity
contours for three cases, U∗ = 4.0, 5.0 and 8.0, describing the three vortex shedding
modes, 2SR, 2PF and 2P. Each series of images depicts an oscillation cycle of the primary
frequency, beginning with the front cylinder at its maximum displacement. Contours vary
from blue to red in the range −1 6ωzD/U 6 1.

until T/D = 0.6, when gap flow dominated flows appear. For modes 2 and 3, for
increasing offset, these first give way to modes 21 and 31, which are essentially one-
sided versions of the tandem modes 2 and 3.

Figure 16 plots four cases, showing examples of the tandem modes 2 and 3 and the
one-sided, or asymmetric, versions of these modes. In this figure, the period doubling
of modes 2 and 21 is evident in the presence of energy at a frequency of half the
primary frequency. Mode 21 differs from mode 2, in that the vortex pairs in the wake
(labelled in the bottom panel of the example in figure 15) are only shed from the
upstream cylinder; similarly, the rolling of the vortex pair in the gap identified for
mode 2 only occurs on one side of the cylinders. The resultant wake mode is a PF+SR,
with a single vortex shed from the downstream cylinder and a pair from the front.
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FIGURE 16. (Colour online) For U∗ = 5.0 and 8.0, and T/D = 0.0 and 0.4, plots of
vorticity contours, time series of the displacement of each cylinder and the corresponding
spectra for the displacements; red corresponding to the upstream cylinder and green the
downstream. These four cases give examples, top to bottom, of the modes 2, 21, 3 and
31, as shown on figure 8. Contours vary from blue to red in the range −1 6ωzD/U 6 1.

Similarly, the shear layer cut-through that occurs for mode 3 only occurs on one side
of the cylinders for mode 31. This results in a periodic P+S wake for mode 31, rather
than the periodic 2P wake for mode 3.

Moving further in the higher offset direction of the parameter space depicted in
figure 8, a region labelled ‘Gap flow dominated’ is encountered, centred around a
cross-stream offset of T/D = 1.0. Figure 17 presents six cases in this region, for a
cross-stream offset of T/D= 1.0, for values of U∗= 0.0, 4.0, 5.0, 8.0, 10.0 and 14.0.
These are cylinder configuration for which the gap flow is the predominant feature
of the flow; this implies an interaction of either shear layers or vortices emanating
or forming on the inside sides of the cylinders. These are shear layers and vortices
formed on different cylinders, having different formation areas and exposure to the
oncoming free stream. There are no pairs of alternating vortices being shed from one
cylinder at a given frequency; there are several frequencies possible, tied to vortex
and vorticity formation on both sides of both cylinders. Therefore, this region features
both periodic flows and flows characterised by quasi-periodicity and disordered vortex
shedding.

From figure 17, the common feature of the cases shown is the gap flow. In all cases,
the positive vorticity generated from the upstream cylinder completely or substantially
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FIGURE 17. (Colour online) For T/D = 1.0, plots of vorticity contours, time series of
the displacement of each cylinder and the corresponding spectra for the displacements,
red corresponding to the upstream cylinder and green the downstream, for reduced
velocities, U∗ = 0.0, 4.0, 5.0, 8.0, 10.0 and 14.0. These six cases give examples of the
gap flow dominated region of figure 8. Contours vary from blue to red in the range
−1 6ωzD/U 6 1.

passes through the gap between the two cylinders. Following on from this is an
interaction or pairing of the shear layers and vortices on the inside sides of the two
cylinders; together with the elastic mountings of the cylinders, the combination of
several unrelated frequencies results in the quasi-periodic flows seen for the reduced
velocity cases U∗ = 4.0, 5.0 and 10.0 from figure 17. The case shown for U∗ = 5.0
exhibits a strong intermittency indicative of a chaotic flow.
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A distinction needs to be drawn between these gap flow dominated cases and the
tandem modes 2 and 3. The tandem modes also feature strong gap flow, but the gap
is present due to the elasticity of the cylinder mountings (U∗) – and can therefore
change sides – rather than the initial position of the cylinders (T/D). Therefore, the
‘Gap flow dominated’ region can extend over the entire range of U∗.

Increasing the cross-stream offset, the region marked ‘Wake pair dominated’ on
figure 8 covers the parameter space entirely for T/D > 2.0. In this region, instead
of being determined by the interaction of vorticity in the gap, the flow is dominated
by pairing of vortices shed from one cylinder. Figure 18 presents flows for the same
reduced velocities as in figure 17, but for a cross-stream offset of T/D = 3.0. All
of the flows are in the ‘Wake pair dominated’ region. Although mixing of vortex
streets can occur in the far wake (see the vorticity snapshots for U∗ = 4.0 and
5.0), the cylinder oscillations are determined by the pairing and interaction of the
vortices formed on each cylinder. This distinguishes the categorisation from the T-I
and T-II regimes described by Hu & Zhou (2008) and used by Tong et al. (2015),
which delineate the flow according to vortex interactions at six cylinder diameters
downstream. The ‘Wake flow dominated’ categorisation refers to the forcing on the
cylinder and hence on the near wake. In the cases shown in figure 18, the vorticity
topology in the near wake is clearly defined by the wake pairs shed from each single
cylinder.

For all six cases, the vortices appear organised. However, only the cases for reduced
velocity U∗ = 4.0 and 5.0 are classified as periodic, as shown on figure 7. For these
two cases, the cylinders oscillate at the same primary frequency, with significant
amplitude. For reduced velocities U∗ = 0.0, 8.0, 10.0 and 14.0, the cylinders either
strictly do not, or only barely, vibrate, maintaining transverse separation between the
cylinders. In each case, the cylinder oscillations are not synchronised, with small
differences between the primary frequencies of the two cylinders resulting from the
weak, but still present and noticeable, effect of the cylinders on each other; these
cases are therefore classed as quasi-periodic. The small difference in frequency can
be discerned in the time series of the lift coefficient shown for the U∗ = 0.0 case,
producing a corresponding long period (approximately 50 time units) beating. At
this point the separation between the cylinders is such that they are approaching
the state of a single isolated cylinder, which for these reduced velocities results in
quasi-periodic oscillation, due to the non-matching Strouhal frequency and structural
frequency.

The distribution across the parameter space of the cases featuring periodic
oscillations with the same primary frequency is interesting. For the cases where the
structural frequency is close to the Strouhal frequency (reduced velocity U∗ = 5.0),
single-harmonic periodic oscillation occurs only for high cross-stream offset, as it
does for the single isolated cylinder. In contrast, for the tandem cases, the flow is
characterised by period multiplying and quasi-periodicity for the reduced velocity
range 4.0 6 U∗ 6 6.0. It is only outside of this range (which gives quasi-periodicity
for the single cylinder vibration) that periodic flow occurs for the tandem, or almost
tandem, configuration.

6. Validity of the current work

The direct numerical simulations of this study are all two-dimensional, and at Re=
200. There is strong evidence to suggest that these flows will be essentially two-
dimensional at this Re. The transition to three-dimensional flow for a single rigidly

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.673


1

0

–1

2

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2

10–4

10–8

100

10–4

10–8

100

10–4

10–8

100

10–4

10–8

100

10–4

10–8

100

10–4

10–8

100

900800 1000 0 0.2 0.4 0.6 0.8 1.0

FIGURE 18. (Colour online) For T/D= 3.0, plots of vorticity contours, time series of the
displacement of each cylinder and the corresponding spectra for the displacements, red
corresponding to the upstream cylinder and green the downstream, for reduced velocities,
U∗ = 0.0, 4.0, 5.0, 8.0, 10.0 and 14.0. These six cases give examples of the wake pair
dominated region of figure 8. Contours vary from blue to red in the range −16ωzD/U61.

mounted cylinder occurs at Re' 190 (Williamson 1988; Barkley & Henderson 1996).
However, it has been shown that transverse oscillation can delay this transition to Re'
280 (Leontini, Thompson & Hourigan 2007). Also, the transition to three-dimensional
flow occurs at higher Re for two rigidly mounted tandem cylinders, becoming higher
as the cylinder spacing becomes shorter. At a spacing of L/D= 3.5, this transition is
delayed to Re = 250 (Deng et al. 2006). However, without further stability analysis,
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three-dimensional simulation, or experiments, it cannot be absolutely ruled out that
some of these flows may be three-dimensional.

How much impact the development of three-dimensional structure has at Re= 200,
or as the Reynolds number is further increased, is not clear. For the related problem
of two tandem, rigidly mounted cylinders, the Reynolds number seems to have little
impact on critical spacings for the development of vortex shedding regimes, and the
frequency of this vortex shedding. However, the magnitudes of the induced forces
are certain to be Re-dependent, which will impact the dynamic response. For a
single elastically mounted cylinder, the Reynolds number has a strong influence on
the amplitude of vibration and the character of the vibration (Raghavan & Bernitsas
2011), and it seems likely that this will also be the case in the multi-cylinder problem.
Assessing this impact is left to future work.

7. Conclusions

This study has detailed the dynamic response of two identical elastically mounted
cylinders placed in tandem and staggered arrangements in a free-stream flow at
Reynolds number 200. The streamwise separation of the cylinders was held constant
at L/D = 1.5. The parameter space investigated spanned: the range of cross-stream
offset 0.0 6 T/D 6 5.0, from tandem arrangement, through staggered, to nearly
isolated; and reduced velocity 0.0 6 U∗ 6 14.0, from rigid, stationary cylinders
through to cylinders mounted on slack springs.

It is shown that the main distinguishing feature between different modes of response
is the existence and influence of a significant flow through the gap between the
cylinders. For the elastically mounted cylinders, this gap flow can be dynamic, as
the direction of the flow through the gap switches as the relative position of the
cylinders changes as they oscillate. A map of regimes was provided, detailing major
vortex shedding modes. The temporal quality for the flow was also classified. These
temporal classifications were then used to further decompose the major modes into
periodic and non-periodic modes. It is shown that, unlike a single cylinder, matching
the natural frequency of the two cylinders to the vortex shedding frequency of a
single cylinder does not result in synchronised oscillations, but instead generates
quasi-periodicity and chaos.

For rigid cylinders (U∗ = 0.0), three base modes were identified from the literature
and confirmed via simulations, corresponding to no gap flow, gap pair dominated and
wake pair dominated flows with increasing offset. However, for offsets close to the gap
pair/wake pair transition (around T/D= 1.5), complicated PN-periodic, quasi-periodic
and chaotic flows are generated.

On the other axis of the parameter space, T/D = 0.0, a new description of
the oscillations was presented, describing three modes differentiated by oscillation
amplitudes, oscillation phase difference and gap flow vortex dynamics. Mode 1, for
0.0 6 U∗ < 4.5, involves small, or no, oscillation and vortices shed from the rear
cylinder only. Mode 2, for 4.5 6 U∗ < 6.5, produces greater-amplitude out-of-phase
oscillation, producing a periodically larger gap between the cylinders. Vortex pairs
from the front cylinder travel and roll through the gap, producing a period-multiplying
2PF wake. Mode 3, for U∗> 6.5, produces the largest oscillation. It involves the rear
cylinder ‘chasing’ the front, lagging by a quarter of a period. Vorticity from the front
cylinder combines with vorticity from the rear to shed vortices from the rear cylinder
only, producing a 2P wake. Modes 2 and 3 feature significant periodic gap flow, with
the gap resulting from the elastic cylinder mountings.
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Moving away from the tandem configuration, modes 21 and 31 occur, essentially
one-sided versions of the tandem modes 2 and 3. Around T/D = 1.0, the flow is
dominated by the gap flow, with the gap between the cylinders determined principally
by the initial cross-stream offset. Here, the gap flow results in shear layers and
vortices shed from the inside sides of the cylinders. This leads to smaller-amplitude,
quasi-periodic and chaotic oscillation. Beyond T/D = 2.0, the flow is dominated by
vortex pairs shed from each cylinder, converging towards the behaviours of a single
isolated cylinder for the given reduced velocity.
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