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a b s t r a c t

Carbon nanotube/aluminum (CNT/Al) composites are prepared by a combination of flake powder metal-

lurgy and hot-isostatic-pressing. The specimens are investigated by several techniques including Raman

spectroscopy, optical microscopy, scanning- and transmission electron microscopy. The composites show

a layered-microstructure with a stacking of CNT/Al flakes with a CNT-rich layer between two flakes. The

individual Al grains forming the flakes are about 500 nm in size. The CNTs are well dispersed within a

flake and they bridge the micro-cracks. The results reveal that the coefficient of thermal expansion

(CTE) decreases markedly upon the increase in carbon content, reaching 15.4 ! 10"6 K"1 for the specimen

with a carbon content of 2.0 wt% (2.9 vol%), i.e. a 30% decrease compared to the CTE of pure Al. This could

arise from the layered-microstructure resulting from the utilization of Al flakes as opposed to rounded

particles.

1. Introduction

Silicon, the material at the basis of the semiconductor devices,

shows a low coefficient of thermal expansion (CTE) (5 ! 10"6

K"1) in comparison with the common packaging materials like

copper (17 ! 10"6 K"1) and aluminum (21–26 ! 10"6 K"1) [1,2].

The CTE difference will cause distortions at the interface upon

repeated changes in temperature, which ultimately will lead to

failure of the device. Aluminum-matrix composites with a lower

CTE than pure Al have been prepared by adding some low CTE

materials such as Si, SiC, AlN and diamond [2,3]. Carbon nanotubes

(CNTs) have been become an attractive additive material for reduc-

ing the CTE of the aluminum-matrix composites [4–13] because of

a very low or even negative CTE, in the range "2 ! 10"5–0.5 !

10"5 K"1 depending on the CNT characteristics [14]. The end

results however depend on many materials- or process-

parameters, including the precise nature of the matrix (pure or

alloyed Al), of its grain size (nano-, micrometric), of the carbon

content and of the kind of CNTs (single-wall, double-walled,

multi-walled) and of the consolidation route (hot-pressing, hot

extrusion. . .) and atmosphere (vacuum, N2, Ar) (Table 1). CTE as

low as 10 ! 10"6 K"1 have been reported when using

nanometric-sized Al with either single-wall CNTs [7] or multi-

walled CNTs (MWCNTs) [12]. Many techniques have been devel-

oped to prepare CNT/Al composite powders with a uniform disper-

sion of the CNTs [4,5,13,15,16]. However, high-energy ball-milling

[13] tends to damage the CNTs whereas molecular-level mixing

[15] and in situ synthesis of CNTs in metallic powders [16] may

lead to oxide impurities. Besides these techniques, the so-called

polyester binder-assisted (PBA) mixing technique has been

reported for dispersing CNTs in a metallic powder, without damag-

ing them, with the support of polyesters such as polyvinyl alcohol

(PVA), natural rubber and ethylene glycol [17–23]. Moreover, it

seems that using Al in the form of flakes, as opposed to isotropic

grains, to prepare CNT/Al composites, is beneficial, at least to

increase tensile strength without losing too much plasticity

[19,20,24–26]. The aim of this study is to investigate the CTE of

MWCNT/Al composites prepared by a combination of flake powder

metallurgy, PBA mixing technique and hot-isostatic-pressing.

2. Experimental

2.1. Composite preparation

A commercial Al powder (Hunan Jinhao Aluminum Industrial

Co., Ltd., 99.5%, average diameter 24 lm) was selected for the
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study. Commercial carboxyl-functionalized MWCNTs (Chengdu

Organic Chemicals Co. Ltd.) were used. The details of the function-

alization process are not known to the authors. The carbon content

in the MWCNT specimen is equal to 95 wt%, the balance probably

corresponding to some residual metal catalysts. The key character-

istics of the MWCNTs (number of walls, outer and inner diameters,

length and presence of defects) are determined later in the paper.

MWCNT/Al composite powders with a carbon content (Cn) equal to

0, 0.5, 1, 1.5 and 2 wt% were prepared by a PBA mixing route. They

will be noted as P0, P0.5, P1, P1.5 and P2 hereafter. First, the Al

powder was ball-milled (200 rpm, 2 h, ball-to-powder weight ratio

of 10:1, N2 atmosphere). The so-obtained Al flakes were slowly

added to ethylene glycol under magnetic stirring (400 rpm, 2 h),

forming the Al slurry. The appropriate amount of MWCNTs was

dispersed in ethanol as reported earlier [27,28] and the so-

obtained suspension was mixed with the Al slurry under magnetic

stirring (400 rpm, 2–3 h) at 80 "C in order to evaporate ethanol.

Finally, the resulting slurry was ball-milled (150 rpm, 2 h, ball-

to-powder weight ratio of 10:1, N2 atmosphere) and heated at

220 "C for 24 h in vacuum (residual pressure 200 MPa) to remove

ethylene glycol. The MWCNT/Al powders were consolidated by

cold uniaxial compaction (200 MPa, 5 s) followed by capsule-free

hot-isostatic-pressing (HIP, AIP6-30H, Isostatic Press Inc’s, US).

The specimens were heated (10 "C/min) up to 620 "C, applying a

1 h dwell at this temperature for the pressing process (100 MPa).

A natural cooling down to room temperature was performed. The

sintered specimens, in the form of pellets 10 mm in diameter

and about 5 mm thick, were polished down to 1 mm using diamond

slurries. The sintered specimens are noted S0, S0.5, S1, S1.5 and S2

hereafter.

2.2. Characterization

The MWCNTs were observed by high-resolution transmission

electron microscopy (HRTEM, JEOL JEM 2100F operated at 200

kV). Their length was evaluated from field-emission-gun scanning

electron microscopy images (FESEM, Hitachi S-4800 operated at 5

kV). The Raman spectra of the CNTs, powders and sintered speci-

mens were recorded with a confocal RAMAN Microscope (Labram

HR 800 Jobin Yvon) using 632 nm laser excitation. For each speci-

men, the spectra were averaged from five areas. The pellet density

was measured by Archimedes method. X-ray diffraction (XRD) pat-

terns of powders and sintered specimens were recorded using a

Rigaku Rint Ultima diffractometer with Cu Ka radiation. The Al

grain size in sintered specimens was determined by optical micro-

scopy (3D KEYENCE VHX-1000) on surfaces chemically etched by a

weak reagent (mixture of 0.25 mol L"1 KMnO4 and 0.25 mol L"1

NaOH) at room temperature for 6 s. The Al powders and flakes as

well as the sintered specimens were observed by FESEM (JEOL

JSM 6700F operated at 5 kV and Hitachi S-4800 operated at 5

Table 1

Consolidation method, relative density (q ± 1%), microhardness and CTEs of CNT/Al composites with different carbon contents (Cn, wt% or Cv, vol%).

Ref. Consolidation method Sample Cn (wt%) Cv (vol%) q (%) H (HV) CTE ( ! 10"6 K"1)

[39] SPS Al 0 – – 45 –

MWCNT/Al 0.5 – – 50 –

[40] SPS MWCNT/Al 2 – 99 88 –

[34] SPS MWCNT/Al 1 – – 44 –

3 – – 55 –

5 – 54.5 –

[18] SPS

+ Hot extrusion

MWCNT/Al 2 98 52 –

[32,35] Vacuum sintering Al 0 – 34 –

MWCNT/Al 0.75 – 50

[36] Hot-extrusion Al 0 99 39.4 –

MWCNT/Al 2.5 99 84.5 –

5 99 95.2 –

[37] Hot-extrusion MWCNT/Al 6 97 151 –

[6] Hot-pressing Al 0 – – 26.1

MWCNT/Al 4 – – 23.2

SWCNT/Al 3 – – 20.4

[7] Vacuum sintering n-Al 0 – – 26.2

SWCNT/n-Al 10 – – 14.8

15 – – 9.8

[8] Hot-extrusion 2024 Al 0 – – 26.3

MWCNT/2024Al 1 22.5

[9] Hot-pressing 2009Al 0 – – 23.6

MWCNT/2009Al 1.5 – – 21.3

MWCNT/2009Al 4.5 – – 17.5

[11] Hot-pressing + Vacuum sintering MWCNT/2024Al 3 – – 19.2

MWCNT/2024Al 5 – – 17.9

[12] Sintering in N2 n-Al 0 – 90 – 80.1

MWCNT/n-Al 1 92 – 54.4

MWCNT/n-Al 3 94 – 10.5

MWCNT/n-Al 5 92 – 23.2

[13] Sintering in Air + Hot-extrusion Al 0 – 64 26.0

MWCNT/Al 1.5 – 81 24.8

MWCNT/Al 2.5 – 95 24.0

MWCNT/Al 3.5 – 115 22.5

MWCNT/Al 4.5 – 130 21.5

This work HIP S0 0 0 98 44 22.0

S0.5 0.5 0.7 96 55 19.5

S1 1.0 1.5 96 69 18.0

S1.5 1.5 2.2 95 83 16.4

S2 2.0 2.9 94 62 15.4



kV). For the sintered specimens, a preliminary step of chemical

etching (mixture of 0.5 mol L"1 NaOH and 0.4 mol L"1 Na2CO3,

30 s) was performed [27]. Indentation tests (50 g for 10 s in air at

room temperature) on polished surfaces were performed with a

Vickers indenter (Shimadzu HMV 2000). The corresponding diago-

nals of the indentation were measured using an optical microscope

attached to the indenter. The calculated microhardness values are

the average of five measurements. The CTE (DIL 402 PC dilatome-

ter) was measured along the length of parallelepipedic specimens

(6 mm ! 4 mm ! 5 mm). The measurements were performed from

50 to 250 "C (heating-rate 5 "C min"1).

3. Results and discussion

3.1. Microstructure

FESEM images of the as-received Al powder show that it is

made up of rounded particles with an average size around 24 mm

(Fig. 1a, b). The Al flakes obtained after ball-milling have an aver-

age length equal to about 60 mm with a thickness of about 1.5

mm (Fig. 1c, d). FESEM images of the MWCNTs reveal that their

length is in the range 1–3 mm (Fig. 2). There are some structural

defects along the length, such as etched positions (Fig. 3a) and

Fig. 2. FESEM images of MWCNTs (a) as-received and (b) dispersed in water then dropletted on a Si substrate.

Fig. 1. FESEM images and grain size distributions of (a, b) the as-received Al powder and (c, d) after ball-milling resulting in Al flakes formation.



kinks (Fig. 3b, c), which are fairly typical of as-grown MWCNTs but

could partly result from the functionalization process. The number

of walls (Fig. 3d) and the outer and inner diameters (Fig. 3e) were

measured for about 100 CNTs on HRTEM images. The average

number of walls (N) is equal to 13.6, which is rounded to 14. The

average outer and inner diameters are equal to 17.4 nm and 5.8

nm. These values are in excellent agreement with the empirical

law giving the correlation between diameter and N for MWCNTs

prepared by catalytic chemical vapor deposition [29]. The theoret-

ical density of the CNTs (1.85 g cm"3) was calculated from these

data using the CNT density chart [30].

Low-magnification FESEM images of the MWCNT/Al powders

(left panel in Fig. 4) show the Al flakes and do not reveal MWCNT

agglomerate or cluster, let alone individual MWCNTs. Higher-

magnification images (right panel in Fig. 4) show individual

MWCNTs well distributed on the Al flakes for the P0.5, P1 and

P1.5 powders (Fig. 4b, d, f). For powder P2 (Fig. 4h), a few MWCNT

clusters are observed laying on the Al flake surfaces, along with

individual MWCNTs. The microstructure of the composite powders

is similar to that reported for milling times lower than 3 h [31].

The Raman spectra (Fig. 5) of the MWCNTs, powder P1 and sin-

tered specimen S1 reveal that ID/IG, the ratio between the intensi-

ties of the D band (ca. 1320 cm"1) and the G band (ca. 1580 cm"1)

is equal to 0.88, 0.89 and 0.89, respectively. An increased ID/IG cor-

responds to an increased proportion of disordered carbon, which is

generally attributed to the presence of more structural defects

along the CNT walls. The almost identical values observed here

show that the mixing process and the HIP process did not dramat-

ically damage the MWCNTs.

Analysis of the XRD patterns (Fig. 6) of the S specimens reveals

only the Al diffraction peaks. Aluminum oxides and carbides are

not detected. By contrast, Al4C3 was detected by HRTEM in speci-

mens prepared using spark plasma sintering and vacuum sintering

techniques at temperatures higher than 600 "C [18,32]. Al4C3 for-

mation results from the interfacial reaction between the Al matrix

and the carbon atoms from amorphous carbon or the defective

region of CNTs [18,33]. Moreover, partially damaged CNTs may also

act as carbon source for the formation of Al4C3 [32]. Liu et al. [33]

showed using XRD and HRTEM that Al4C3 in CNT/Al composites is

observed when the powders are ball-milled for over 4 h and is not

detected for shorter milling times. Therefore, we propose that our

milling and HIP experimental conditions are mild enough in order

that no detectable Al4C3 is formed. It is possible that it is below the

detection limit in our XRD experimental conditions. Thus, local for-

mation is not ruled out and future characterization by HRTEM

could shed light on that matter. The relative density (q - Table 1),

calculated using 1.85 and 2.7 g cm"3 for the MWCNTs and Al,

respectively, decreases upon the increase in carbon content, from

98% for S0 to 94% for S2, which reflects that the presence of the

MWCNT inhibits composite densification in agreement with sev-

eral works [18,32–37].

The specimens have been investigated by optical microscopy,

considering three concentric areas (noted as Areas 1, 2 and 3) from

center to periphery, respectively (Fig. 7). Optical microscopy

images of the surface (Area 1) of polished and chemically etched

specimens are presented in Fig. 8. For S0 (Fig. 8a), the Al grain size,

or more precisely the flake diameter distribution, is large (10–100

mm) and the average flake diameter is equal to 22 mm (Fig. 8b). This

Fig. 3. (a–c) HRTEM images of the MWCNTs and distributions of (d) the number of walls and (e) the inner and outer diameters.



is about half the value found for the flakes in the powder (Fig. 1d),

revealing that many were broken under the applied pressure dur-

ing cold compaction and/or HIP. Upon the increase in carbon con-

tent, there is no significant evolution for both the flake diameter

distribution and average value (Fig. 8f, h) but some pores and/or

CNT agglomerates (clusters) are observed, as black dots about 5

and 8 mm in size for S1.5 (Fig. 8e) and S2 (Fig. 8g), respectively.

For specimen S1, the three areas were investigated into more

details. A top-view image showing all three areas is presented in

Fig. 9a. A few isolated pores are observed in all of them. Higher-

magnification images reveal that the Al flakes are isotropic in Area

1 (Fig. 9b) and Area 2 (Fig. 9c) whereas they appear to be elongated

in Area 3 (Fig. 9d). This could reflect the effect of non-uniform

forces caused by a gradient in specimen densification. Indeed, den-

sification begins on the outside of the pressed specimen then pro-

gressively affects the inner parts of the compact. The outer shell

formed during the first steps of sintering may screen the inner

parts from high pressure and therefore the Al flakes in Areas 2

Fig. 4. FESEM images of the MWCNT/Al powders (a-b) P0.5, (c-d) P1, (e-f) P1.5 and (g-h) P2.



and 1 are subject to lower pressures than those in Area 3. A cross-

section image (Fig. 10a) reveals the essentially layered microstruc-

ture of the sample and that Area 1 (center) is more porous than

Area 2 and, more significantly, Area 3 (periphery). Note that all

black parts in Areas 1 and 2 are not pores, but could reflect that

some sample parts were removed because of the stronger influence

of the etching in those areas. Higher-magnification images show

that the multi-layered microstructure is much distorted at the cen-

ter (Area 1, Fig. 10b), the flakes (1–2 mm thick) being much less

aligned and ordered than at the periphery (Area 3, Fig. 10d).

For Area 1, top-view FESEM observations were performed on

the polished and chemically etched specimens (Fig. 11). The indi-

vidual Al grains that form the flakes appear to be about 500 nm

in size. Flake/flake boundaries and intra-flake micro-cracks, all less

than 250 nm wide, are observed in all specimens. MWCNTs tend to

bridge the micro-cracks (inset in Fig. 11f), as observed elsewhere

[38]. The MWCNTs spatial distribution is satisfactory for S0.5

(Fig. 11b), S1 (Fig. 11d) and S1.5 (Fig. 11f) whereas some MWCNT

clusters are observed for S2 (Fig. 11h) in agreement with the opti-

cal microscopy results presented above (Fig. 8). Cross-section

FESEM images for different Areas of specimen S1 (Fig. 12) clearly

confirm the layered microstructure with flakes stacked one upon

the other. Interestingly, the higher magnification images (right

panel in Fig. 12) show the surface of the MWCNT/Al flakes. The

flake/flake interface is therefore quite rich in MWCNTs, which

would decrease the sintering ability.

3.2. Microhardness and coefficient of thermal expansion

The microhardness (H - Table 1) increases upon the increase in

carbon content from 44 HV (S0) to 83 HV (S1.5) but decreases to 62

HV for S2, probably reflecting both the lower densification and the

higher agglomeration of MWCNTs for the latter specimen. These

results are in line with earlier reports [18,32–35,39,40]. Bradbury

et al. [37] reported a very high value (151 HV) for a MWCNT/Al

composite (6 wt% carbon), but note that it is macro-hardness (20

kg load). Yang et al. [13] reported micro-hardness up to 130 HV,

which could result from a number of factors although it is not pre-

cisely determined. Further studies concerning to the effect of CNT-

rich layer on the other mechanical properties such as strength and

ductility will be presented in future works. Note that other

researchers have demonstrated that the mechanical behavior of

CNT/Al composites prepared by flake powder metallurgy can

indeed be much improved. For example, Jiang et al. [19,20,26]

reported that CNT/Al composites showed tensile strength of 375

MPa and a higher (by 12%) plasticity. Similarly, Xu et al. [24]

reported the balanced strength and ductility in CNT/Al composites.

The average CTE of the composites in the temperature range

50–250 "C is shown in Fig. 13a. It increases from 50 to 150 "C

and reaches a plateau for this temperature. Interestingly the CTE

plateau value (i.e. the 150–250 "C value) decreases regularly upon

the increase in carbon content by about 12, 18, 25 and 30%, for

S0.5, S1, S1.5 and S2, respectively, compared to the value measured

for S0. For S2, the 150–250 "C CTE is equal to 15.4 ! 10"6 K"1,

which is significantly lower than results reported earlier for CNT/

Al composites with about the same carbon content and for which

the authors confirmed that the CNTs are uniformly dispersed on

the surface of the Al grains in the powders as well as inside the

Al matrix (Table 1). In fact, to the best of our knowledge, the only

lower values are reported for composites using nanometric-sized

Al and with higher carbon contents: a 65% decrease for 15 vol%

SWCNT/Al samples (CTE # 9.8 ! 10"6 K"1) [7] and a 70% decrease

for 5 wt% CNT/Al composites [12]. To evaluate the influence of

Fig. 7. Microstructure map of the sintered specimens, showing three different

Areas for further investigation. See text for details. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 6. XRD patterns of sintered specimen S0 (Al), S0.5, S1, S1.5 and S2.

Fig. 5. Raman spectra of the MWCNTs, powder P1 and sintered specimen S1.



the MWCNTs on the CTE of the composite, the rule of mixtures

(ROM) (Eq. (1)) and Turner’s model referring to interconnected or

continuous reinforcement ([41,42], Eq. (2)), were used in order to

estimate the CTE of composites [7,9,10,14]:

ec ¼ eCNTVCNT þ eAlð100" VCNTÞ ð1Þ

ec ¼
ECNTeCNTVCNT þ EAleAlð100" VCNTÞ

ECNTVCNT þ EAlð100" VCNTÞ
ð2Þ

where ec, eCNT (# 0 for MWCNTs with N = 14 walls [14]), eAl (# 22.1

! 10"6 K"1) [1] are the CTE of composites, CNTs and Al, respec-

tively; ECNT (# 950 GPa) [43], EAl (# 69 GPa) are the elastic modulus

of CNTs and Al, respectively; and VCNT is the carbon content (vol%).

Note that Turner’s model will be the same than the lower bound of

Schapery’s model [14] using elastic energy principles to derive

bounds for effective CTEs of anisotropic composites made from iso-

tropic constituents. The CTE values calculated using the ROMmodel

(open circles in Fig. 13b) are not in agreement with the experimen-

Fig. 8. Top-view optical images and flake size distribution of the sintered specimens (a-b) S0, (c-d) S0.5, (e-f) S1.5 and (g-h) S2.



tal data. This is mainly because the ROM does not take into account

the interfacial thermal stress between the CNTs and Al matrix and

the Al matrix restriction influence [7,44]. By contrast, the values cal-

culated using Turner’s model are in good agreement with the exper-

imental results, being only slightly higher. The model takes into

account the mechanical interaction between the phases in the

Fig. 9. Top-view optical images of S1 at different positions from center to periphery: (a) global image, (b) Area 1, (c) Area 2 and (d) Area 3.

Fig. 10. Cross-section optical images of S1 at different positions from center to periphery: (a) global image, (b) Area 1, (c) Area 2 and (d) Area 3.



heterogeneous composite material but disregards any shape and

distribution factor of particles within the composite which may

hold true for low loading fractions as is the case here. The good

fit could reflect, in addition to the input of the elastic constants into

the calculation, the uniform dispersion of both the CNTs and CNT-

rich layer, the contribution of the MWCNT-Al interface [7,9,10],

where within a given flake there is probably a relatively good bond-

ing, or also the influence of the MWCNT-rich flake/flake interfacial

regions, which could be viewed as a disruption of the composite

[42]. We propose that the present layered-microstructure with a

MWCNT-rich layer located between two MWCNT/Al flakes, result-

ing from the use of Al flakes as opposed to rounded particles, is

mainly responsible for the low CTE measured. The MWCNT-rich

layer located between two Al flakes will block the grain growth of

each Al flake in the vertical direction. Al flakes were broken into

smaller flakes during HIP but they are still connected together by

MWCNT bridges in the horizontal direction (Fig. 11). These MWCNT

bridges will act as joint splices to adjust the grain growth of Al

Fig. 11. Top-view FESEM images in Area 1 for (a-b) S 0.5, (c-d) S1, (e-f) S1.5 and (g-h) S2. Inset in (f) shows crack bridging by the MWCNTs.



flakes in the horizontal direction. This is the reason why specimen

S2, with a less uniform dispersion of MWCNTs, still has a lower

CTE compared to other specimens. Thus, the layer-by-layer struc-

ture, is an important factor that strongly affects the CTE of

MWCNT/Al composites, together with the uniform MWCNT disper-

sion. It is our opinion that none of the usual CTE models (Kerner,

Schapery, Turner and Hashin-Shtrikman) is simply applicable to

such complex materials where the load (MWCNTs) is highly

anisotropic, the matrix grains are flake-shaped and the billet struc-

ture is non-uniform. The influence of the layer-by-layer structure, in

particular, will be modeled in a future paper.

4. Conclusions

Layered-microstructure MWCNT/Al composites were prepared

by a combination of flake powder metallurgy, PBA mixing tech-

nique and hot-isostatic-pressing. The composites show a layered-

microstructure with a stacking of MWCNT/Al flakes 1–2 mm thick,

with a MWCNT-rich layer between two MWCNT/Al flakes. The

flakes however are much less ordered at the center of the specimen

than at the periphery. The individual Al grains forming the flakes

are about 500 nm in size. Flake/flake boundaries and intra-flake

micro-cracks, all less than 250 nm wide, are observed in all speci-

mens. The MWCNTs are well dispersed within a flake and they

bridge the micro-cracks. The CTE decreases markedly upon the

increase in carbon content, reaching 15.4 ! 10"6 K"1 for the spec-

imen with a carbon content of 2.0 wt% (2.9 vol%), i.e. a 30%

decrease compared to the CTE of pure Al. Turner’s model, referring

to interconnected or continuous additive, is a good fit to the exper-

imental data. The low CTE measured could arise from the present

layered-microstructure with a MWCNT-rich layer located between

two MWCNT/Al flakes, resulting from the use of Al flakes as

opposed to rounded particles. The study of a possible anisotropy

of the CTE is the subject of future work.
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