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Vortex-induced vibration of a rotating sphere

A. Sareen1, J. Zhao1,†, D. Lo Jacono2, J. Sheridan1, K. Hourigan1

and M. C. Thompson1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and
Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia

2Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,
CNRS, Toulouse, France

Vortex-induced vibration (VIV) of a sphere represents one of the most generic
fundamental fluid–structure interaction problems. Since vortex-induced vibration
can lead to structural failure, numerous studies have focused on understanding
the underlying principles of VIV and its suppression. This paper reports on an
experimental investigation of the effect of imposed axial rotation on the dynamics
of vortex-induced vibration of a sphere that is free to oscillate in the cross-flow
direction, by employing simultaneous displacement and force measurements. The
VIV response was investigated over a wide range of reduced velocities (i.e. velocity
normalised by the natural frequency of the system): 3 6 U∗ 6 18, corresponding to
a Reynolds number range of 5000 < Re < 30 000, while the rotation ratio, defined
as the ratio between the sphere surface and inflow speeds, α = |ω|D/(2U), was
varied in increments over the range of 0 6 α 6 7.5. It is found that the vibration
amplitude exhibits a typical inverted bell-shaped variation with reduced velocity,
similar to the classic VIV response for a non-rotating sphere but without the higher
reduced velocity response tail. The vibration amplitude decreases monotonically and
gradually as the imposed transverse rotation rate is increased up to α = 6, beyond
which the body vibration is significantly reduced. The synchronisation regime, defined
as the reduced velocity range where large vibrations close to the natural frequency
are observed, also becomes narrower as α is increased, with the peak saturation
amplitude observed at progressively lower reduced velocities. In addition, for small
rotation rates, the peak amplitude decreases almost linearly with α. The imposed
rotation not only reduces vibration amplitudes, but also makes the body vibrations
less periodic. The frequency spectra revealed the occurrence of a broadband spectrum
with an increase in the imposed rotation rate. Recurrence analysis of the structural
vibration response demonstrated a transition from periodic to chaotic in a modified
recurrence map complementing the appearance of broadband spectra at the onset of
bifurcation. Despite considerable changes in flow structure, the vortex phase (φvortex),
defined as the phase between the vortex force and the body displacement, follows the
same pattern as for the non-rotating case, with the φvortex increasing gradually from
low values in Mode I of the sphere vibration to almost 180◦ as the system undergoes
a continuous transition to Mode II of the sphere vibration at higher reduced velocity.
The total phase (φtotal), defined as the phase between the transverse lift force and
the body displacement, only increases from low values after the peak amplitude
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response in Mode II has been reached. It reaches its maximum value (∼165◦) close
to the transition from the Mode II upper plateau to the lower plateau, reminiscent
of the behaviour seen for the upper to lower branch transition for cylinder VIV.
Hydrogen-bubble visualisations and particle image velocimetry (PIV) performed in
the equatorial plane provided further insights into the flow dynamics near the sphere
surface. The mean wake is found to be deflected towards the advancing side of the
sphere, associated with an increase in the Magnus force. For higher rotation ratios,
the near-wake rear recirculation zone is absent and the flow is highly vectored from
the retreating side to the advancing side, giving rise to large-scale shedding. For a
very high rotation ratio of α = 6, for which vibrations are found to be suppressed, a
one-sided large-scale shedding pattern is observed, similar to the shear-layer instability
one-sided shedding observed previously for a rigidly mounted rotating sphere.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Vortex-induced vibration (VIV) of structures can occur in a variety of engineering

situations, such as with flows past bridges, transmission lines, aircraft control surfaces,
offshore structures, engines, heat exchangers, marine cables, towed cables, drilling
and production risers in petroleum production, moored structures, tethered structures,
pipelines and other hydrodynamic and hydroacoustic applications. VIV is a significant
cause of fatigue damage that can lead to structural failures. Numerous studies
have focused on understanding the underlying principles of flow-induced vibrations
and its suppression, especially for cylinders. The immense practical significance of
VIV has led to various comprehensive reviews, including Bearman (1984), Blevins
(1990), Sarpkaya (2004), Williamson & Govardhan (2004), Païdoussis, Price & De
Langre (2010) and Naudascher & Rockwell (2012). However, unlike the situation for
cylinders, there are relatively fewer studies on VIV of elastically mounted or tethered
spheres (e.g. Govardhan & Williamson 1997; Williamson & Govardhan 1997; Jauvtis,
Govardhan & Williamson 2001; Pregnalato 2003; Govardhan & Williamson 2005; van
Hout, Krakovich & Gottlieb 2010; Behara, Borazjani & Sotiropoulos 2011; Krakovich,
Eshbal & van Hout 2013; Lee, Hourigan & Thompson 2013; van Hout, Katz &
Greenblatt 2013a,b; Behara & Sotiropoulos 2016), despite its ubiquitous practical
significance, such as marine buoys, underwater mines, other offshore structures and
tethered or towed spherical objects. Because of the geometric shape of the body,
VIV of a sphere represents one of the most fundamental fluid–structure interaction
problems. It is a generic symmetrical three-dimensional prototype, and improved
understanding of VIV of a sphere provides a framework to comprehend VIV of more
complex three-dimensional bluff bodies around us.

Govardhan & Williamson (1997) and Williamson & Govardhan (1997) reported,
for the first time, the dynamics and forcing of a tethered sphere in a fluid flow. They
found that a tethered sphere could oscillate at a saturation peak-to-peak amplitude
of close to two body diameters. Jauvtis et al. (2001) discovered the existence of
multiple modes of vortex-induced vibration of a tethered sphere in a free stream,
namely Modes I, II and III. The first two modes, which occur over a velocity range
of U∗ ∼ 5–10, were associated with lock-in of the system natural frequency with
the vortex formation frequency, as occurs for the 2S and 2P modes for an excited
cylinder. However, Mode III, which occurs over a broad range of high velocity
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ranging from U∗ ∼ 20–40, does not have any apparent counterpart in the circular
cylinder VIV case. This was later categorised and explained as a ‘movement-induced
vibration’ by Govardhan & Williamson (2005). They further found an unsteady mode
of vibration, Mode IV, at very high reduced velocities, characterised by intermittent
bursts of large-amplitude vibration. The physical origin of such a mode of vibration
still remains unknown.

Previous numerical studies on the effect of rotation on rigidly mounted rotating
spheres at low Reynolds numbers (Re 6 300) (Kim 2009; Poon et al. 2014) have
revealed suppression of the vortex shedding for a certain range of rotation rates. These
studies were performed computationally at relatively low Reynolds numbers. On the
other hand, there have been some experimental studies conducted at considerably
higher Reynolds numbers (Re> 6× 104) that focus mainly on the effect of transverse
rotation on the fluid forces, e.g. the inverse Magnus effect (Macoll 1928; Barlow
& Domanski 2008; Kray, Franke & Frank 2012; Kim et al. 2014), where the
rotation-induced lift suddenly changes direction as the Reynolds number is increased.
It is still unknown if the rotation suppresses vortex shedding at such high Reynolds
numbers. Nevertheless, all these studies have observed a sudden dip in the lift and
drag coefficients for a certain rotation ratio (which varies with Re). The question arises
as to whether imposed rotation can suppress VIV of an elastically mounted sphere.

Bourguet & Lo Jacono (2014) studied computationally the effect of imposed
transverse rotation on the VIV response of a circular cylinder at Re = 100. Notably,
they found that the peak amplitude increases to ∼1.9 cylinder diameters, which is
three times that of the non-rotating case, as the rotation ratio was increased from
0 to 3.75. An extensive experimental study by Wong et al. (2017) on the effect of
imposed rotation on the VIV response of a circular cylinder for 1100 6 Re 6 6300
also demonstrated an increase of up to ∼80 % in the peak oscillation amplitude over
the non-rotating case for rotation rates less than 2. In contrast, Seyed-Aghazadeh &
Modarres-Sadeghi (2015) studied the same problem experimentally, over the Reynolds
number range Re= 350–1000. In this case, the amplitude response was found to only
increase marginally with rotation rate, increasing from 0.5 to 0.6 as the rotation ratio
was increased up to 2.4. Thus, even for VIV of a rotating cylinder there appear to
be conflicting results on the effect of rotation on the VIV response.

One question to be addressed is whether similar features are exhibited in the case of
a rotating sphere. Specifically, this paper examines the effect of the body rotation on
the VIV response of an elastically mounted sphere. This study addresses the following
fundamental questions: How does constant imposed transverse rotation affect the VIV
response of the sphere, does it suppress or enhance the response and how does this
depend on rotation rate? How does the rotation affect the flow near the sphere surface
and in the wake?

The experimental method used in the current study is detailed in § 2, and a
validation study based on VIV of a non-rotating oscillating sphere is given in § 3. In
§ 4, the results and discussion on VIV of a rotating sphere are presented. Following
this, § 5 focuses on analysis of flow visualisations and finally § 6 draws conclusions
for the important findings and the significance of the current study.

2. Experimental method
2.1. Fluid–structure system

A schematic showing the experimental arrangement for the problem of one-degree-of-
freedom (1-DOF) transverse VIV of a rotating sphere is presented in figure 1. The
elastically mounted sphere is free to oscillate in only one direction transverse to the
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FIGURE 1. Definition sketch for the transverse vortex-induced vibration of a rotating
sphere. The hydro-elastic system is simplified as a 1-DOF system constrained to move
in the cross-flow direction. The axis of rotation is transverse to both the flow direction
(x-axis) and the oscillation axis (y-axis). Here, U is the free-stream velocity, k the spring
constant, D the sphere diameter, m the oscillating mass, c the structural damping, ω the
angular velocity. Fx and Fy represent the streamwise (drag) and the transverse (lift) force
components acting on the body, respectively.

Amplitude ratio A∗ A/D
Amplitude ratio A∗10 A10/D

Damping ratio ζ c/2
√

k(m+mA)

Frequency ratio f ∗ f /fnw

Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Rotation ratio α |ω|D/(2U)
Reduced velocity U∗ U/( fnwD)
Reynolds number Re UD/ν
Scaled normalised velocity U∗S (U∗/f ∗)S= fvo/f
Strouhal number S fvoD/U

TABLE 1. Non-dimensional parameters used in this study. In the above parameters, A is
the structural vibration amplitude in the y direction, and A10 represents the mean of the top
10 % of amplitudes. D is sphere diameter; f is the body oscillation frequency and fnw is the
natural frequency of the system in quiescent water. m is the total oscillating mass, c is the
structural damping factor and k is the spring constant; U is the free-stream velocity, and ν
is the kinematic viscosity; mA denotes the added mass, defined by mA =CAmd, where md
is the mass of the displaced fluid and CA is the added-mass coefficient (0.5 for a sphere);
ω= rotational speed of the sphere; fvo is the vortex shedding frequency of a fixed body.

oncoming flow. The axis of rotation is perpendicular to both the flow direction and
the oscillation axis.

Table 1 presents the set of the relevant non-dimensional parameters in the current
study. In studies of flow-induced vibration (FIV) of bluff bodies, the dynamics of the
system is often characterised by the normalised structural vibration amplitude (A∗)
and frequency ( f ∗) responses as a function of reduced velocity. Note that A∗ here
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is defined by A∗ =
√

2Arms/D, where Arms is the root mean square (r.m.s.) oscillation
amplitude of the body. The reduced velocity here is defined by U∗=U/( fnwD), where
fnw is the natural frequency of the system in quiescent water. The mass ratio, an
important parameter in the fluid–structure system, is defined as the ratio of the mass
of the system (m) to the displaced mass of the fluid (md), namely m∗=m/md, where
md = ρπD3/6 with ρ being the fluid density. The non-dimensional rotation ratio, as
a measure of the ratio between the equatorial speed of the sphere to the free-stream
speed, is defined by α = |ω|D/(2U), where ω is the angular velocity of the sphere.
Physically, the rotation rate quantifies how fast the surface of the sphere is spinning
relative to the incoming flow velocity. The Reynolds number based on the sphere
diameter is defined by Re=UD/ν.

The governing equation for motion characterising cross-flow VIV of a sphere can
be written as

mÿ+ cẏ+ ky= Fy, (2.1)

where Fy represents fluid force in the transverse direction, m is the total oscillating
mass of the system, c is the structural damping of the system, k is the spring constant
and y is the displacement in the transverse direction. Using the above equation, the
fluid force acting on the sphere can be calculated with the knowledge of the directly
measured displacement, and its time derivatives.

2.2. Experimental details
The experiments were conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University, Australia. The test section of the water channel has dimensions of
600 mm in width, 800 mm in depth and 4000 mm in length. The free-stream
velocity in the present experiments could be varied continuously over the range
0.05 6 U 6 0.45 m s−1. The free-stream turbulence level was less than 1 %. Further
characterisation details of the water channel facility can be found in Zhao et al.
(2014a,b).

A schematic of the experimental set-up is shown in figure 2. The hydro-elastic
problem was modelled using a low-friction airbearing system that provided low
structural damping and constrained the body motion to be in the transverse direction
to the oncoming free stream. The structural stiffness was controlled by extension
springs that were attached to both sides of a slider carriage. More details of the
hydro-elastic facility used can be found in Zhao et al. (2014a,b). The sphere model
was vertically supported by a thin stiff driving rod that was adapted to a rotor
mechanism. The rotor mechanism was mounted to a 6-axis force sensor coupled with
the carriage.

The sphere models used were solid spherical balls precision machined from
acrylic plastic with a very smooth surface finish. The accuracy of the diameter
was within ±20 µm. Two sphere sizes of D = 70 and 80 mm were tested in
the present experiments. The spherical models were supported using a cylindrical
support rod 3 mm in diameter, manufactured from hardened nitrided stainless steel
for extra stiffness and to maintain straightness. This gave a diameter ratio between
the sphere and the support rod of 23.3. For experiments with rotation, the 3 mm
support rod was supported by two miniature roller bearings, which were covered by
a non-rotating cylindrical shroud 6.35 mm in diameter manufactured from stainless
steel. This set-up provided extra rigidity to the support, which in turn minimised any
wobbling associated with the sphere rotation, as well as limiting undesirable wake

https://doi.org/10.1017/jfm.2017.847
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Sphere

Top view

Bearings

Shroud
Driving rod

Rotor

Force sensor
Heat insulation plate

Carriage
Guide shaft

Back view

Springs

U

U

Side view

Airbearing system

Support structure

FIGURE 2. (Colour online) Schematic of the experimental set-up for the current study
showing different views.

deflection that would be caused by the large Magnus force on the unshrouded rotating
cylindrical rod. The immersed length of the shroud was set to approximately 0.6D
to minimise its influence while maintaining the structural support for the driving rod
having an immersed length of 0.5D exposed beyond the shroud. The total immersed
length of the support set-up for the sphere was approximately 1.1D. A preliminary
study by Mirauda, Volpe Plantamura & Malavasi (2014) revealed that free-surface
effects have an influence only when the immersion ratio (immersed length of the
support rod/diameter of the sphere) is less than 0.5. Given this, an immersion ratio
of ≈1 was chosen as a result of a trade-off between avoiding free-surface effects and
maintaining rigidity of the support system. Furthermore, experiments were performed
to determine the effect of the support rod on the amplitude response of the sphere. It
was concluded that the support rod/shroud does not have any significant influence on
the VIV response of the sphere for the diameter ratio (diameter of the rod/diameter
of the sphere) chosen in the current study. This set-up was able to limit the wobbling
deflection associated with the sphere rotation to within ±1 %D for the present
experiments, thereby minimising undesirable perturbations to the structural dynamics
and near-body wake by stabilising the sphere’s rotary motion.

The rotary motion was driven using a miniature low-voltage micro-stepping
motor (model: LV172, Parker Hannifin, USA) with a resolution of 25 000 steps per
revolution, which was installed inside the rotor mechanism shown in figure 2. The
rotation speed was monitored using a digital optical rotary encoder (model: E5-1000,
US Digital, USA) with a resolution of 4000 counts per revolution. In order to reduce
heat transfer from the motor to the force sensor, an insulation plate, made from acetal
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plastic, was installed between the rotor rig and the force sensor. Additionally, a small
fan was used to circulate the surrounding air to dissipate the heat generated by the
stepper motor. These corrective actions were found to be necessary to minimise signal
drifts in the force measurement signals due to thermal effects to acceptable levels.

In the current study, two methods were employed to obtain the transverse lift. In the
first method, the lift was derived from the measured displacement using (2.1). For the
other method, the lift was measured directly by the force sensor, although it was still
necessary to subtract the inertial term accounting for the accelerating mass below the
strain gauges (which includes the sphere, support structure, rotation rig and half the
mass of the force sensor) to determine the actual force on the sphere. In the current
paper, for cases where the signal-to-noise ratio is too low, the theoretical force has
been reported instead of the directly measured force. Where necessary, this distinction
is made clear in the discussion of results that follow.

The force sensor (model: Mini40, ATI-IA, USA) provided measurements of the
6-axis force and moment components (Fx, Fy, Fz, Mx, My, Mz), which in particular
had a resolution of 1/200 N for Fx and Fy. This allowed accurate measurements of
fluctuating lift and drag forces acting on the sphere.

The body displacement was measured using a non-contact (magnetostrictive) linear
variable differential transformer (LVDT). The accuracy of the LVDT was within
±0.01 % of the 250 mm range available. It was observed that signal noise of the
LVDT and the force sensor could be prone to the electromagnetic noise emitted by
the driving motor thereby decreasing the accuracy of the force measurements. Hence,
a linear encoder (model: RGH24, Renishaw, UK) with a resolution of 1 µm was
also employed to measure the displacement signal. Since the linear encoder was
digital, electromagnetic noise did not affect the accuracy of the displacement signal
measurement. This considerably improved accuracy and enabled reliable velocity and
acceleration signals to be derived, which, in turn, enabled an accurate determination of
the lift force signal as discussed above. This was tested through a direct comparison
against the lift force determined by the force sensor over a wide range of U∗. It was
found that the lift force measured using the force sensor matched well that derived
from the linear encoder and the LVDT signals, indicating accurate measurements of
the displacement and the lift force from several techniques.

The data acquisition and the controls of the flow velocity and the sphere rotation
rate were automated via customised LabVIEW programs. For each data set, the signals
of the displacement and force sensors were simultaneously acquired at a sampling
frequency of 100 Hz for at least 100 vibration cycles.

The natural frequencies and structural damping of the system in both air and water
were measured by conducting free decay tests individually in air and in quiescent
water. Experiments for two mass ratios m∗ = 7.8 and 14.2 are reported in this paper,
although only the latter was used for the rotational VIV studies because of the
presence of the added motor assembly in that case. The structural damping ratio
with consideration of the added mass was determined to be ζ = 4.13 × 10−3 and
1.46× 10−3 for m∗ = 7.8 and 14.2, respectively.

To gain insight into the flow dynamics, hydrogen-bubble flow visualisations were
performed in the equatorial plane of the sphere. Hydrogen bubbles were generated by
an upstream platinum wire of 50 µm in diameter and 500 µm in length, which was
powered by a potential difference of 50 VDC. A laser sheet of ∼3 mm in thickness
from a continuous laser (model: MLL-N-532-5W, CNI, China), aligned parallel to the
x–y plane, was employed to illuminate the bubbles.

Vorticity field measurements were also performed in the central equatorial plane
employing particle image velocimetry (PIV). For this purpose, the flow was seeded
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with 13 µm hollow micro-spheres having a specific weight of 1.1 g m−3. The laser
arrangement was the same as described above for the hydrogen-bubble visualisations.
Imaging was performed using a high-speed camera (model: Dimax S4, PCO, AG) with
a resolution of 2016× 2016 pixels2. This camera was equipped with a 50 mm Nikon
lens, giving a magnification of approximately 7.36 pixel mm−1 for the field of view.
Velocity fields were deduced using in-house PIV software developed originally by
Fouras, Lo Jacono & Hourigan (2008), using 32× 32 pixel2 interrogation windows in
a grid layout with 50 % window overlap. All the vorticity fields shown in the current
study were phase-averaged over more than 100 cycles. For each PIV measurement
case, a set of 3100 image pairs were sampled at 10 Hz. Each image set was sorted
into 24 phase bins based on the sphere’s displacement and velocity, resulting in more
than 120 image pairs for averaging at each phase. The final phase-averaged vorticity
fields were smoothed slightly using an iterative Laplace filter to remove short length
scale structures and to better highlight the larger-scale structures that dominate the
wake.

Flow visualisations using fluorescein dye were also captured for the non-oscillating
rotating sphere to better understand the effect of rotation on the near wake. For this
case, the dye was injected using a thin pitot tube (1 mm in diameter) placed upstream
of the sphere. Imaging was recorded using a digital camera (model: D7000, Nikon,
Japan) equipped with a 50 mm lens that was positioned beneath the water channel
glass floor.

In the present study, the VIV response is studied over a wide parameter space
encompassing 3 6 U∗ 6 18 and 0 6 α 6 7.5. The Reynolds number for the current
study varies between 5000 and 30 000.

3. VIV response of a non-rotating sphere
3.1. Vibration response measurements

The experimental methodologies used here were initially validated by comparing with
previously published results of Govardhan & Williamson (2005) for transverse VIV
of a non-rotating elastically mounted sphere. A sphere model of diameter 70 mm
was used in this validation study. As described above, the sphere was supported from
the top using a cylindrical support rod 3 mm in diameter with an immersed length of
90 mm. This gives a sphere to cylindrical support rod diameter of ∼23 : 1. The mass
ratio was m∗ = 7.8, comparable to m∗ = 7.0 used in experiments by Govardhan &
Williamson (2005). Free decay tests were conducted individually in air and water to
determine the natural frequency in air, fna = 0.495 Hz, and in water, fnw = 0.478 Hz.
Note that these values give an added-mass coefficient of CA= (( fna/fnw)

2
−1)m∗=0.52,

in good agreement with the known potential added mass for a sphere. The structural
damping ratio was measured as ζ = 4.14× 10−3, which again was comparable to the
case study with ζ = 4 × 10−3 of Govardhan & Williamson (2005). For this initial
study, the dynamic response of VIV was investigated over a reduced velocity range
of 2.7 6 U∗ 6 11, corresponding to a Reynolds number range of 7000 6 Re 6 28 000.
In figure 3, the amplitude response of the present study is compared directly to the
response curve of Govardhan & Williamson (2005) for the similar mass ratio. The
amplitude response for the higher mass ratio of m∗ = 14.2 used for the rotating
sphere experiments is also shown for comparison, as well as a significantly higher
mass ratio result for m∗ = 53.7 from Govardhan & Williamson (2005). Specifically,
the non-dimensional amplitude of oscillations, A∗, is plotted as a function of the
scaled reduced velocity, U∗S = (U

∗/f ∗)S ≡ fvo/f , where S is the Strouhal number for
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FIGURE 3. (Colour online) Comparison of the amplitude response obtained in the current
study for m∗=7.8 (blue triangles) to that obtained by Govardhan & Williamson (2005) for
a similar mass ratio of m∗= 7 (red square). The response for m∗= 14.2 (black diamonds)
from the current study is also shown along with the data by Govardhan & Williamson
(2005) for significantly higher mass ratio of m∗ = 53.7 (green circles).

the vortex shedding. Lock-in starts at U∗ = 4–5 for the sphere, which corresponds
to U∗S of 0.7–0.875. Here, the amplitude response is plotted against U∗S instead of
U∗ for the sake of direct comparison with the previous study, noting that it lines up
response curves for different mass ratios. Indeed, it can be noted that using U∗S does
line up the peaks well.

It can be noted that the vibration response progresses continuously from Mode I to
Mode II; indeed, the amplitude changes smoothly and continuously over the entire U∗
range. This is different from the VIV response for circular cylinders, where sudden
jumps are observed between the three different vibration branches. With an increase
in m∗ from 7.0 to 53.7, the peak amplitude in their study decreased. Similar behaviour
was observed in the current study, when the mass ratio was increased, although less
drastically, from 7.8 to 14.2.

For tethered spheres at higher U∗, Jauvtis et al. (2001) reported another vibration
mode, namely Mode III. In that case, the amplitude drops to almost zero between
Modes II and III, with Mode III occurring for U∗S & 3 and extending up to ∼8. For
a 1-DOF elastically mounted sphere, the situation appears slightly different with no
desynchronisation region between these modes. Instead, from the peak response in
Mode II, the amplitude drops smoothly to a lower plateau that extends smoothly into
Mode III as U∗S→ 3. Thus, the lower plateau response branch for U∗S & 2 in figure 3
might be considered to extend towards the Mode III response at the high U∗ end
(Govardhan & Williamson 2005). However, recall that Mode III is characterised by
a vibration response at close to the natural system frequency but far from the much
higher vortex shedding frequency. For the case considered here, with m∗ = 14.2, the
vibration frequency remains close to the natural frequency over the entire range of
the lower response branch as fvo/f increases beyond 2. The forcing caused by vortex
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FIGURE 4. (Colour online) Strongly periodic vibrations observed for (a) U∗ = 6.0
(Mode I) and (b) U∗ = 9.0 (Mode II), and (c) slightly less periodic oscillations at the
higher U∗ = 16.0 (→ Mode III).

shedding also remains at close to the natural frequency. This vibration response is
very similar to the bifurcation region III reported by van Hout et al. (2010) for a
heavy tethered sphere. They also observed less periodic, intermittent large oscillation
amplitudes in the transverse direction for higher U∗ values of U∗ > 15. A Mode III
response may occur beyond the U∗ limit of these experiments, which was imposed by
the strengths of the springs used.

Generally (near-)periodic vibrations are observed for the two fundamental vibration
modes, as shown in figure 4. However, the vibrations are less periodic in the higher
U∗ range. More light will be shed on this in the following sections.

The comparison in figure 3 shows that the overall agreement with previous
benchmark studies is excellent in terms of the two-mode amplitude response pattern,
the amplitude peak value and the extent of the lock-in region.

3.2. Force measurements for a non-rotating sphere
As an approximation, it is often assumed that Fy(t) and the response displacement y(t)
are both sinusoidal and represented by

y(t)= A sin(2πft), (3.1)
Fy(t)= Fo sin(2πf + φ), (3.2)

where Fo is the amplitude of Fy, and φ is the phase between the fluid force and the
body displacement.

Based on the suggestions of Lighthill (1986) and as performed for VIV of a tethered
sphere by Govardhan & Williamson (2000), the total transverse fluid force (Fy) can
be split into a potential force (Fpotential), comprising the potential added-mass force,
and a vortex force component (Fvortex) that is due to the vorticity dynamics. From the
potential theory, the instantaneous Fpotential acting on the sphere can be expressed as

Fpotential(t)=−CAmdÿ(t). (3.3)

Thus, the vortex force Fvortex can be computed from

Fvortex = Fy − Fpotential. (3.4)

If all the forces are normalised by ((1/2)ρU2πD2/4), this reduces to

Cvortex(t)=Cy(t)−Cpotential(t). (3.5)
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Here, Cpotential (the potential-flow lift coefficient) can be calculated based on the
instantaneous body acceleration ÿ(t). Reverting back to the dimensional forces for the
moment, two equivalent forms can be written for the equation of motion

mÿ+ cẏ+ ky= Fo sin(ωt+ φtotal), (3.6)

and for vortex force

(m+mA)ÿ+ cẏ+ ky= Fvortex sin(ωt+ φvortex). (3.7)

The vortex phase φvortex, first introduced by Govardhan & Williamson (2000), is
the phase difference between Cvortex(t) and the body displacement y(t). The more
conventionally used total phase φtotal is the phase difference between the total force
Cy and the body displacement y(t). In general, phase jumps are associated with
a switch from one VIV mode to another, and have even been used to distinguish
between different modes (Govardhan & Williamson 2005). The instantaneous relative
phases between the two forces reported in this paper are calculated using the Hilbert
transform as detailed in Khalak & Williamson (1999).

According to Govardhan & Williamson (2005), there is a vortex phase shift of
approximately 100◦ when the vibration response switches from Mode I to Mode II.
They observed that the vortex phase gradually increases from ∼50 in Mode I to ∼150◦
as the amplitude reaches the peak response in Mode II. The change in the total phase
is relatively more abrupt, and it changes from ∼0◦ to ∼150◦; however, there is little
change over the transition range between Modes I and II.

As is evident from figure 5, for the current set of experiments (m∗ = 14.2 and
ζ = 1.40 × 10−3), the vortex phase and the total phase change as the vibration
response switches from Mode I to Mode II, broadly following the trend of phase
variations reported by Govardhan & Williamson (2005). The vortex phase starts to
rise from ∼50◦ at the start of Mode I and reaches almost 180◦ towards the peak
amplitude of Mode II, while the total phase only begins to rise from ∼0◦ as the
response reaches close to the peak values in Mode II. Indeed, the total phase only
reaches its maximum value of '160◦ as the Mode II response transitions from its
upper to lower ‘plateau’. In a sense, this appears similar to the observed behaviour
for VIV of a circular cylinder. Although there are no sudden jumps or hysteresis
between the branches for 1-DOF VIV of a sphere, the vortex phase and total phase
transitions are broadly correlated with the initial→upper branch cylinder transition
and the upper→lower branch cylinder transition, respectively, even though the phase
jumps are much more gradual for the sphere transitions. Thus, the phase transitions
suggest a sphere/cylinder mode equivalence for 1-DOF VIV of Mode I ≡ Initial
Branch, Mode II (upper plateau) ≡ upper branch and Mode II (lower plateau) ≡
lower branch, although of course, for the sphere there is lock-in to the natural system
frequency over a much wider range fvo/f range than occurs for the circular cylinder.
The phase jumps seem slightly more distinct in the current set of experiments than in
those of Govardhan & Williamson (2005), possibly because of the lower mass ratio
of m∗ = 14.2 used here (rather than m∗ = 31.2). Note that for a tethered sphere, for
which the mode classification was developed, the response drops abruptly after the
Mode II peak and hence there is no lower plateau.

Figure 6(a) shows the r.m.s. transverse lift coefficient as a function of U∗ for
m∗ = 14.2. It can be noted that C′yrms

jumps up at the beginning of Mode I at the
onset of lock-in, and steadily decreases as the response transitions to Mode II. It
remains almost constant beyond U∗ = 10. Figure 6(b) shows the variation of the
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FIGURE 5. Variation of the total phase (φtotal) and the vortex phase (φvortex) with U∗.
(a,c) measured phase variations (c) correlated with the amplitude response curve (a). The
vortex phase starts to rise from ∼50◦ at the start of Mode I, while the total phase only
begins to rise from ∼0◦ as the response reaches close to the peak values in Mode II. The
dashed line shows the approximate boundary between Modes I and II. Here, A∗10 is the
mean of the top 10 % of amplitude peaks (as used by Hover, Miller & Triantafyllou 1997
and Morse, Govardhan & Williamson 2008). (b,d,e) comparison with previous results of
Govardhan & Williamson (2005) (adapted with permission) for the higher mass ratio of
m∗ = 31.1.
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FIGURE 6. Variation of C′yrms
(a) and Cx (b) with reduced velocity.

mean drag coefficient Cx with U∗. Note that the time-mean drag coefficient does
not remain constant with increasing U∗, while the sphere is oscillating. Cx also
jumps up when the sphere locks in. These results are consistent with the previous
observations of Govardhan & Williamson (2005) for an elastically mounted sphere
but for a significantly different mass ratio and damping. A small jump in both the
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coefficients is observed at U∗ ∼ 10. This is associated with the peak response in
Mode II. Clear boundaries for the onset of Mode II were not known previously and
φvortex was considered to be the criterion for distinguishing Mode II from Mode I.
From this study, it is found that φtotal is also a useful criterion to distinguish between
mode branches, as it jumps more abruptly, completing its transition to ∼165◦ at the
start of the lower plateau beyond the main Mode II peak. Associated jumps were
observed in the force coefficients as well, again demarcating the boundaries between
mode branches.

4. Effect of rotation on the VIV response of a sphere
This section focuses on VIV of an oscillating sphere subject to constant rotation.

This set of experiments used a higher mass ratio of m∗ = 14.2, because of the extra
oscillating mass from the inclusion of the rotation component of the rig. The natural
frequencies of the system in air and water were 0.275 Hz and 0.269 Hz, respectively,
with the damping ratio of ζ = 1.46 × 10−3. A sphere model of diameter 80 mm
was attached to a 3 mm rod supported using a shroud support system as described
previously in § 2.2. It was found that this support set-up closely reproduced the
amplitude response previously reported by Govardhan & Williamson (2005). For each
point in U∗–α parameter space, more than 100 oscillation periods were recorded at
an acquisition rate of 100 Hz. During these experiments, for chosen values of the
rotation ratio, the flow velocity was varied in small steps to obtain a wide reduced
velocity range. The Reynolds number varied between 5000 and 30 000 as the reduced
velocity was increased.

To investigate the effect of α on the vibration response of the sphere, U∗ was varied
over the range 36U∗6 18, in increments of 0.5. For each U∗ scan, the response was
studied for discrete rotation ratios from the range 0 6 α 6 7.5.

4.1. Effect of rotation on the vibration response
The amplitude response as a function of reduced velocity is plotted in figure 7 for
different rotation rates. As discussed, for α = 0, when the sphere is not rotating, the
amplitude response curve (reproduced previously in figure 3) closely matches that of
Govardhan & Williamson (2005), with the amplitude of vibration gradually increasing
from Mode I to Mode II, and then dropping in amplitude but still maintaining a
strong oscillatory response at higher U∗. When α is increased slightly to 0.2, the
amplitude response remains similar to the non-rotating case for U∗ 6 8.0; however,
the A∗ peak in Mode II is suppressed noticeably and the amplitude response drastically
drops beyond U∗ = 14. For α = 0.3 and 0.4, a similar sudden drop in the response
is seen at relatively lower U∗ values. A sudden rebound in the amplitude response
for α = 0.3 is evident at a U∗ value of ∼16–17. Such a rebound was also observed
for α= 0.25 and α= 0.35. This sudden increase in the amplitude near an α value of
0.3 at higher U∗ values was repeatable and was not observed for other rotation rates
tested in the current study. A plausible rationale for such a rebound is discussed in
§ 4.3.1. For higher rotation rates (α> 0.4), the amplitude response drops immediately
after reaching the A∗ peak, rather than from a plateau, as for the cases of α = 0.3
and 0.4.

As α is increased, the U∗ range over which a synchronised VIV response
characterised by highly periodic large amplitude vibrations is observed becomes
progressively narrower. The end of synchronisation region decreases consistently from
U∗> 20 to U∗∼ 7 as α is increased from 0 to 4.0. Meanwhile, the magnitude of the
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FIGURE 7. (Colour online) The vibration amplitude response as a function of reduced
velocity for different rotation rates.
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FIGURE 8. Maximum amplitude variation with rotation rate. The straight line is an
approximate fit for α 6 1.

peak of amplitude response also decreases consistently from A∗ = 0.76 to 0.03. For
higher α values, no discernible peak can be detected. In addition, the peak amplitude
tends to occur at a lower U∗ with increasing α for α6 2. However, for higher rotation
rates, the U∗ value corresponding to the A∗ peak increases slightly.

Figure 8 shows the variation of the A∗ peak with rotation rate. It is found that the
decrease in the saturation amplitude is approximately linear with increasing rotation
rate for α. 1, and it decreases to zero more slowly beyond that α range. The overlaid
straight line represents an approximate fit for the lower α range.

Figure 9 shows representative time traces of the vibration amplitude for different
response branches for α = 0.5. Similar to the case for a non-rotating sphere, the
vibration is highly periodic in regions where the sphere oscillates strongly. For regions
where the VIV response was found to be suppressed, the vibration was not periodic,

https://doi.org/10.1017/jfm.2017.847
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


0 5 10 15 20

0 5 10 15 20

–0.5

0

0.5

–0.5

0

0.5

0 20 40 60 80 100
–0.1

0

0.1

(a)

(b)

(c)

FIGURE 9. Time trace of the displacement signal at α = 0.5 for different values of U∗.
For case (a) U∗ = 6, case (b) U∗ = 9 and case (c) U∗ = 12.
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FIGURE 10. (Colour online) Variation of the periodicity, P , versus reduced velocity for
different rotation rates. The dashed line arrow indicates the direction of increasing α. Here,
P is shown for a few representative cases of α = 0, 0.4, 0.5, 1.2, 2.5 and 7.5.

and was characterised by intermittent bursts of vibrations, as shown in figure 9(c) for
U∗ = 12 and α = 0.5. This was found to be true for all rotation rates investigated.

Following Jauvtis et al. (2001), the periodicity of the vibration response can be
quantified by defining the periodicity, P , of a signal as

P =
√

2yrms/ymax. (4.1)

For a purely sinusoidal signal, P is equal to unity. Figure 10 shows how the
periodicity varies with U∗ for different values of α. It is evident that the response
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FIGURE 11. (Colour online) Variation of non-dimensional mean displacement of the
sphere (y/D) with the reduced velocity for different rotation rates. The dashed line arrow
represents the direction of increasing α.

is highly periodic for the non-rotating case and it becomes relatively less periodic
for the higher U∗ values (beyond U∗ = 12). The sphere exhibits highly periodic
oscillations for α 6 0.3, but the oscillation periodicity decreases for higher α values.
For higher rotation rates (α > 0.4), it was observed that the periodicity starts to
decrease as soon as the response reaches its saturation amplitude, until it reaches a
plateau value, where the vibration amplitude is negligible and no further decrease in
the response is observed with any further increase in U∗. Thus it can be concluded
that the rotation not only decreases the amplitude of vibration but also makes the
vibration less periodic.

Figure 11 shows the non-dimensional time-averaged displacement of the sphere
as a function of reduced velocity for increasing rotation rates. The time-averaged
displacement remains around zero for the non-rotating case, but increases with α.
This is due to the rotation-induced Magnus force that exerts a one-sided fluid force
acting on the sphere. It can be noted that beyond α= 1.5, there is very slight increase
in the time-averaged displacement, suggesting that the magnitude of the Magnus force
is limited. Similar behaviour has also been observed in previous studies of rigidly
mounted rotating spheres by Macoll (1928), Barlow & Domanski (2008), Kray et al.
(2012) and Kim et al. (2014), showing that the increase in the lift coefficient of a
sphere reaches a plateau as α is increased to a certain value, which depends on the
Reynolds number.

Figure 12 shows logarithmic-scale power-spectrum plots depicting the dominant
oscillation frequency content ( f ∗ = f /fnw) as a function of reduced velocity for
both the non-rotating case (α = 0) and the rotating case (α = 1). The dashed line
represents the value of fvo, which is the vortex shedding frequency of a static sphere.
Note that the power spectra were computed using fast Fourier transforms (FFTs) of
the displacement time series for each U∗ and then normalised by the maximum power.
As can be seen in the figure, the dominant oscillation frequency remained close to
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FIGURE 12. (Colour online) Frequency response as a function of U∗ correlated with the
amplitude response curve (above): (a.i,a.ii) α = 0; (b.i,b.ii) α = 1. Here, the contour map
represents a logarithmic-scale power spectrum depicting the frequency ( f ∗= f /fnw) content
as U∗ is varied. The dashed line represents the value of fvo, which is the vortex shedding
frequency of a static sphere.

the natural frequency of the system over the entire lock-in range for the rotating and
non-rotating cases. This was found to be true for all α values investigated.

Figure 13 shows phase-space plots of the measured velocity (ẏ) (normalised by
its maximum value) versus (normalised) fluctuating displacement (ỹ) at α = 0.5 for
four different U∗ values spanning the range from where the frequency response
is near periodic to where it becomes chaotic. Figure 13(a) shows a relatively thin
topologically circular structure corresponding to a strongly periodic sphere vibration
response. On the other hand, as the sphere goes through the transition from a
near periodic to less periodic response, as depicted in figure 13(b,d), the width of
the phase-space region covered by successive orbits increases substantially. This is
consistent with the frequency contour plots shown previously in figure 12), and the
accompanying displacement time traces shown in this figure. Even at U∗= 9.5, where
the vibration amplitude has dropped considerably from the peak response, there are
signs of intermittency or mode switching, which increase at higher U∗. For an even
higher U∗ value of 14.0, as shown in figure 13(d), where the vibration amplitude
is very small, a highly non-periodic response is observed with intermittent bursts of
higher-amplitude vibrations located within an otherwise minimal response.

To add further insight to this transition, a variant of the Poincaré surface of section
approach was used to further investigate the transition to non-stationary dynamics.
These maps are obtained by plotting normalised sphere displacement, y/D, against
its value one complete cycle previously. The points are mapped at every upward
zero crossing of the sphere transverse velocity for more than 100 vibration cycles.
This approach was used to explore the transition to chaos in the wake of a rolling
sphere by Rao et al. (2012) based on numerical simulations, showing the breakdown
of periodic orbits through the appearance of Kolmogorov–Arnold–Moser (KAM) tori
eventually resulting in a chaotic state as the Reynolds number was further increased.
Figure 14 shows such recurrence maps at α = 0.5 for four different U∗ values. As
is evident from figure 14(a), at U∗ = 6, when the vibrations are highly periodic,
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FIGURE 13. (Colour online) Phase-space plots for α= 0.5, correlated with the time trace
of the fluctuating displacement signal (above each map) at four different reduced velocities:
(a) U∗ = 6; (b) U∗ = 9.5; (c) U∗ = 10.5; (d) U∗ = 14.0.

the points are clustered over a confined region of parameter space consistent with a
near-periodic system state. As the U∗ value is increased to higher values of U∗= 9.5
and U∗ = 10.5, as shown in 14(b) and (c), respectively, the points start to spread
in space, mainly along a diagonal line. For U∗ = 14.0, the points now appear much
more randomly distributed over a larger region. Together with the phase portraits and
frequency spectra, this sequence of plots indicates that the system is undergoing a
transition to chaotic oscillations.

To further explore how the vibration response evolves gradually from periodic to
chaotic, figure 15 presents corresponding recurrence plots (RPs) based on the body
displacement signal for the aforementioned four U∗ values at α = 0.5. Recurrence
plots, first designed by Eckmann, Kamphorst & Ruelle (1987) to visually analyse
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FIGURE 14. Recurrence maps for yo/D, taken for each upward zero crossing of the sphere
transverse velocity at α= 0.5 for various U∗ values: U∗= 6 (a); 9.5 (b); 10.5 (c); 14 (d).

the recurring patterns in time series of dynamical systems, have been utilised in a
great variety of scientific areas, from physics (e.g. detection of chaos in nonlinear
dynamical systems), to finance and economics, Earth science, biological systems (e.g.
in cardiology, neuro-psychology), etc. A historical review of RPs has been given by
Marwan (2008). The construction method for the present RPs is detailed in Marwan
et al. (2007). As illustrated in figure 15(a), for the case of U∗= 6.0, where the body
vibration is highly periodic, the RP exhibits diagonal oriented periodic checkerboard
structures. These structures are symmetric about the main (45◦) diagonal (also known
as the line of identity (LOI)). As demonstrated in Marwan (2003) and Marwan
et al. (2007), the diagonal lines parallel to the LOI indicate that the evolution of
states of a dynamical system is similar at different epochs, while the diagonal lines
orthogonal to the LOI also indicate the evolution of states of a dynamical system
is similar at different epochs but with respect to reverse time. It is apparent that
these diagonal lines parallel to the LOI are separated by a fixed horizontal distance
matching the oscillation period, which is indicative of highly periodic recurrent
dynamics with a single dominant frequency. As noted in Marwan et al. (2007), for
a quasi-periodic system (as opposed to the current case), the distances between the
diagonal lines may vary to form more complex recurrent structures. As the reduced
velocity is increased to U∗= 9.5 and 10.5 in figures 15(b) and 15(c), respectively, the
periodicity of body vibration tends to reduce with less parameter space covered by
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FIGURE 15. (Colour online) Recurrence plots (lower) of the time series of the normalised
body displacement (upper) for U∗= 6.0 (a), 9.5 (b), 10.5 (c) and 14.0 (d) at α= 0.5. Note
that τ = t/T is the normalised time.

checkerboard patterns in the RPs. It should also be noted that there is an increasing
trend of horizontal (and mirror vertical) curvy lines, which indicate the evolution
of states of the system is similar at different epochs but with different rates; in
other words, the dynamics of the system could be changing (Marwan et al. 2007)
(e.g. a non-stationary system with time-varying frequency). As the velocity is further
increased to U∗=14.0 in figure 15(d), it becomes difficult to identify any well-defined
checkerboard or recurrent structures in the RP. Some horizontal curvy lines and their
mirrored counterparts become flatter compared to the cases of U∗ = 9.5 and 10.5,
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FIGURE 16. (Colour online) The VIV response contour map for a rotating sphere in U∗–α
parameter space. Different contour lines depict different amplitude levels as shown in the
figure legend.

indicating that some states do not change or change slowly for some time (e.g. for
12 < τ < 17). Additionally, the RP exhibits some single points, indicating that the
process may be an uncorrelated random or even anti-correlated (Marwan et al. 2007).
At this point, it can be concluded that the state of the dynamical system becomes
chaotic.

As an alternative depiction of the amplitude responses displayed in figure 7,
figure 16 shows a response contour map of the sphere vibration in U∗–α parameter
space. This clearly shows the shift in high-amplitude response to lower U∗ values
as the rotation rate is increased. Even though rotation suppresses large-amplitude
oscillation as α is increased towards unity, there remains a band of moderate
oscillation centred at U∗∼ 5.5 that decreases in amplitude much more slowly beyond
this α value. Perhaps also of interest is that high-amplitude oscillation is mainly
limited to α . 0.8. Previous studies (e.g. Giacobello, Ooi & Balachandar 2009; Kim
2009; Poon et al. 2014, and references therein) have shown that the onset of the
shear-layer instability wake state of a non-oscillating rotating sphere occurs beyond
this α value. That wake state forms when fluid that passes the retreating side of the
sphere is pushed towards the other side of the wake to form a distinctive one-sided
separating shear layer, thus changing the characteristic formation and release of
vortex loops that defines the non-rotating wake state. The nature of the wake state
as a function of rotation rate is examined using flow visualisation and particle image
velocimetry in § 5.

4.2. The effective added-mass coefficient and critical mass ratio
Previous studies of VIV of a circular cylinder have shown the existence of a critical
mass ratio, m∗crit, below which large-amplitude body oscillations will persist up
to infinite U∗ (Govardhan & Williamson 2002; Jauvtis & Williamson 2004). The
critical mass ratio can be deduced, as given by Govardhan & Williamson (2002),
by evaluating the effective added-mass coefficient CEA in the synchronisation regime.
The effective added mass, mEA = CEAmd, is (the negative of) the component of
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the total force in phase with the acceleration divided by the acceleration. Its
significance is that from (3.2) under the condition of low damping, the system
frequency depends on the sum of the system mass plus the effective added mass, i.e.
2πf =

√
k/(m+mEA), hence if m→−mEA, the system response frequency becomes

unbounded. Non-dimensionalising this equation and rearranging gives an expression
for CEA:

CEA =m∗
(

1− f ∗2

f ∗2

)
+

(
CA

f ∗2

)
, (4.2)

in which CA is the potential-flow added-mass coefficient (CA = 0.5 for a non-rotating
or rotating sphere).

For low mass-damping(m∗-ζ ) systems, as proposed by Govardhan & Williamson
(2002), the critical mass ratio can be evaluated by m∗crit =max(−CEA). Govardhan &
Williamson (2002) reported m∗crit = 0.54 for 1-DOF transverse VIV of a cylinder and
m∗crit= 0.52 for the 2-DOF case, and m∗crit∼ 0.6 for 2-DOF VIV of a sphere. All these
values were reported for very low mass-damping systems (m∗ζ 6 0.04) for moderate
Reynolds numbers of Re ∼ 2000 to Re ∼ 20 000. The mass-damping coefficient here
is approximately 0.02.

Figure 17 shows the variation of CEA with U∗ in the synchronisation range, for the
current study with m∗ = 14.2, for both the non-rotating case (α = 0) and a rotating
case (α = 1). The coefficient CEA is computed using (4.2), in the same manner as in
Govardhan & Williamson (2002). Results from the current study are directly compared
to previously reported CEA data for sphere vibrations with 2-DOF (tethered spheres)
for relatively low mass ratios. It can be observed from the figure that CEA for a non-
rotating sphere (α = 0) with 1-DOF is similar to that of the 2-DOF case. The mass
ratio does not seem to significantly affect CEA, at least for this range of m∗. With
imposed rotation, CEA for sphere vibration reduces more quickly with U∗, following
the shift in the response curves with rotation rate, as is evident in figure 17. However,
the maximum value of −CEA appears similar.

The maximum of −CEA for the cases shown in figure 17 is ∼0.7. Hence, from
the above comparison, it can be concluded that the critical mass for both rotating
and non-rotating sphere vibration is m∗crit ∼ 0.7. However, there is some scatter in the

https://doi.org/10.1017/jfm.2017.847
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


20
40
60
80

100
120

140
160

0

180

Mode I

Mode II

Vortex phase

108642

Total phase

12 14 16 18

0

0.2

0.4

0.6

0.8(a)

(b)

FIGURE 18. Variation of the total phase (φtotal) and the vortex phase (φvortex) with U∗ for
α = 1. Measured phase variations (b), correlated with the amplitude response curve (a).
The vortex phase starts to rise from low values at the start of Mode I reaching ∼170◦
near the peak of Mode II. In contrast, the total phase only begins to rise from ∼0◦ as
the response reaches close to the peak values in Mode II. (Compare figure 5).

data, which is consistent with the relatively large mass ratio relative to the critical
mass ratio causing the system frequency to depart only slightly from the natural
frequency. Thus, the result is not inconsistent with the value of m∗crit ' 0.6 proposed
by Govardhan & Williamson (2002) using much lighter spheres. Perhaps what is
more interesting is that the non-rotating and rotating values are similar. The result
also seems to suggest that the critical mass is not sensitive to the number of degrees
of freedom of oscillation, in agreement with the finding for a circular cylinder.

4.3. Effect of rotation on the force coefficients
In this section, the focus is on the effect of transverse rotation on the lift force
coefficient for the first two modes within the fundamental synchronisation regime.
Results are presented for a selection of rotation rates studied for the same experimental
configuration used previously in § 4.1. The dimensionless fluctuating total lift
coefficient C′yrms

, and the total phase (φtotal) and the vortex phase (φvortex) are defined
in accordance with the discussion in § 3.2.

Figure 18 shows the variation of the total phase (φtotal) and the vortex phase (φvortex)
with U∗ for α = 1.0. It can be observed that the vortex phase (φvortex) starts to rise
from low values (∼30–40◦) at the start of Mode I reaching ∼170◦ near the A∗10 peak
of Mode II. In contrast, the total phase (φtotal) only starts to rise from ∼0◦ as the
amplitude response reaches close to the peak value in Mode II. These trends were
also evident in the non-rotating case shown in figure 5. However, when the vibrations
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FIGURE 19. (Colour online) Variation of the C′yrms
with reduced velocity for different

rotation rates.

are suppressed, beyond U∗ = 10 in this case, both φtotal and φvortex settle down at
approximately 90◦. Similar behaviour was observed for other rotation rates as well.

Figure 19 shows the r.m.s. of total lift coefficient C′yrms
versus the reduced velocity

for various rotation rates. Note that for α = 7.5 the signal-to-noise ratio was poor in
the force sensor signals due to negligible response of the sphere, hence the theoretical
estimate (as discussed in § 2) has been reported for that case. For the non-rotating case
(α = 0), there is a sudden jump in C′yrms

at U∗ ∼ 5 that is associated with the sudden
increase in the amplitude response (lock-in), as shown in figure 7. For increasing α,
the fluctuating force coefficient decreases monotonically and gradually, in accordance
with the decreasing amplitude response, as shown in figure 7. The peak value of C′yrms

also decreases gradually with increasing α. For α=7.5, no jump was observed in C′yrms
,

consistent with negligible body oscillations, as shown in figure 7. These observed
behaviours of the coefficient C′yrms

are consistent with the amplitude response. It
appears that the imposed transverse rotation decreases the fluctuating component of
the lift force, and in turn, that leads to a decrease in the oscillation amplitude.

Figure 20(b) shows the time trace of the total lift force coefficient, Cy, for rotation
rate α= 0.7, at a reduced velocity of U∗= 6, correlated with the sphere displacement
(shown in figure 20a). As apparent from the figure, there is an evident asymmetry in
the force signal as the sphere traverses from the advancing side to the retreating side.
This is indicative of the differences in the wake shedding pattern from one half-cycle
to the next as the sphere moves from one side to the other. This will be examined
further in § 5.

4.3.1. Competition between the Magnus force and the fluctuating lift force
The imposed rotation decreases the fluctuating component of the transverse force

that drives the oscillations of the sphere. It also increases the mean component of
the transverse force due to the Magnus effect. Hence, in order to better understand
the dynamics of this problem, the total transverse force coefficient acting on the
sphere can be split into two components, as Cy = Cy + C′yrms

, where Cy is the
time-averaged mean transverse force coefficient and C′yrms

is the fluctuating transverse
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FIGURE 20. Time trace of the total lift coefficient, Cy (b), correlated with the
displacement signal (a) for α= 0.7 at U∗= 6. Asymmetry in the force signal as the sphere
traverses from the advancing to the retreating side is evident in the time trace.

force coefficient. Under resonance, where the assumption is often made that (U∗/f ∗)
and f ∗ are constant, A∗ is directly correlated to Cy for a fixed mass-damping system
by

A∗ ∝
C′y sin φ

(mA +CA)ζ
, (4.3)

where φ is the phase difference between the body displacement and transverse force.
This can be derived from (2.1), (3.2) and (3.1), as also shown by Williamson &
Govardhan (2004). Also, the non-dimensionalised mean displacement of the sphere,
y/DU∗2, is directly correlated to the mean transverse force coefficient Cy by

y
DU∗2

=
Cy

2π3(CA +m∗)
. (4.4)

Initially, for the non-rotating sphere undergoing VIV, Cy is zero and C′yrms
drives the

oscillations. As α is increased, the component of Cy increases and the r.m.s. value of
the fluctuating component C′yrms

decreases. For lower rotation rates, the Magnus effect
is not very strong, so there seems to be a competition between the increasing Magnus
force and the competing fluctuating transverse force. Such a competition is evident for
only lower rotation rates in the current study.

In the left column, figure 21(a–d) shows that the fluctuating oscillation amplitude,
A∗, is closely correlated with the fluctuating transverse force coefficient, C′yrms

, and
the non-dimensionalised mean displacement amplitude, y/DU∗2, directly correlates
with the mean transverse force coefficient, Cy, for α = 0.4. The right column
of figure 21(e–h) shows the same plots for α = 2.5. These variations confirm
the theoretical relationships given by the two equations above. The response for
α = 0.4 can be broadly divided into three regimes for this case. In region I, Cy

′

rms
is large due to the resonance between the vortex shedding and body oscillation
frequencies covering Mode I and the Mode II peak. For this region, Cy is reduced
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FIGURE 21. Comparison of the response characteristics for α = 0.4 (a–d) and α = 2.5
(e–h). The quantity plotted in each row is shown at the left.

with a concomitant effect in y/DU∗2. In region II, which corresponds to the plateau
response range after the Mode II peak, the fluctuating forcing is less and the mean
force increases, leading to increased mean displacement offset. The competition
between the two force components is clearly evident. In region III, the Magnus
effect dominates, with Cy again reaching a constant value close to that at low U∗
before lock-in. Simultaneously, there is sudden drop in the A∗ and Cy

′

rms in the
desynchronisation regime at high U∗.

The sudden rebound in the amplitude response observed for a rotation rate of
α= 0.3 at higher U∗ values of ∼16–17 (see figure 7) can also be explained on such
grounds. A brief study by Sareen et al. (2016) investigated the effect of rotation
on the force coefficients of a fixed rotating sphere by measuring the drag and lift
coefficient for varying rotation rates (0 6 α 6 6) at several Reynolds numbers. They
observed a sudden drop in the lift coefficient at α = 0.3 for a Reynolds number of
Re = 2.75 × 104. Interestingly, the Reynolds number where the sudden rebound is
observed in the current study varies between 2.75× 104 and 2.9× 104 corresponding
to the U∗ range 16–17. Thus, it can be conjectured that here also there is a sudden
drop in the mean lift force acting on the sphere at α= 0.3 for U∗∼ 16–17. In lieu of
the competition between the mean lift force and the fluctuating force, the fluctuating
force is allowed to suddenly increase leading to a sudden rebound in the amplitude
response.

However, at higher rotation rates, for example at α = 2.5 as shown in figure 21,
the Magnus force dominates over the entireU∗ range, even though there is a narrow
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resonant regime. This leads to almost constant values of y/DU∗
2 and Cy. For this case,

A∗ and Cy
′

rms remain at low values over the entire U∗ range. How the sphere rotation
affects vortex shedding and thereby leads to the attenuation of VIV will be discussed
in § 5.

5. Modes of vortex formation

The wake of a stationary sphere at high Reynolds number (Re & 1000) is highly
unsteady and chaotic. It is characterised by interlinked vortex rings or hairpin loops
emanating from the surface of the sphere at an azimuthal location that changes from
cycle to cycle. The low Reynolds number precursor structures have been observed
previously in the dye visualisations of the wake of a liquid drop of Magarvey
& Bishop (1961), and further experiments of Sakamoto & Haniu (1990), Leweke
et al. (1999) and Ormières & Provansal (1999). Interlinked vortex loops have also
been reported in numerical simulations concerning the wake of a static sphere by
Tomboulides, Orszag & Karniadakis (1993), Johnson & Patel (1999), Mittal (1999)
and Thompson, Leweke & Provansal (2001).

Similar vortex loops have also been observed in the wake of an elastically mounted
sphere undergoing VIV. Previous visualisations of a rising bubble by Brücker (1999)
suggested that the wake consisted of hairpin vortices. Sakamoto & Haniu (1990) also
observed a similar two-sided chain of vortex loops with alternating signs. Vorticity
measurements by Govardhan & Williamson (2005) showed planar symmetric vortex
loops (hairpins) of opposite sign emanating from the two sides of a non-rotating
sphere undergoing VIV. The central distinction between the wake behind a static
sphere and an oscillating sphere is that in the case of an oscillating sphere, the
loops have a preferred orientation and maintain a symmetry with the horizontal plane
containing the principal transverse vibration. Lee et al. (2013) covered a wide range
of Reynolds number 50 6 Re 6 12 000 and classified the flow and response of a
neutrally buoyant tethered sphere in various regimes depending on the Reynolds
number. They also observed unsteady helix-shaped vortical structures in the wake
at higher Reynolds number, presumably associated with the neutral buoyancy of the
sphere.

But what happens if we impose a transverse rotation to the sphere while it
undergoes VIV? From previous studies on rigidly mounted spheres, it is known that
the transverse rotation imposes strong asymmetry in the wake, causing the loops
to bend towards the advancing side (the side of the sphere moving in the direction
opposite to the fluid) of the sphere due to the Magnus effect (Magnus 1853), which
in consequence increases the ‘lift force’ towards the retreating side (the side of the
sphere moving in the same direction as the fluid). Previous numerical studies by
Giacobello et al. (2009), Kim (2009) and Poon et al. (2014) reported suppression of
the vortex shedding for a certain range of rotation rates that depended on the Reynolds
number. However, when α was increased, the vortex shedding resumed, although it
was very different to the vortex shedding at lower α values that is associated with the
‘buildup and release’ of the recirculation bubbles behind the sphere. From examining
the velocity and vorticity fields near the surface, they conjectured the shedding to
be a shear-layer instability of the Kelvin–Helmholtz type. The flow at such high α

values is characterised by single-sided shedding at the advancing side of the sphere.
There have been only a few experimental studies on rigidly mounted rotating

spheres at very high Reynolds numbers (Re > 6 × 104) (e.g. Macoll 1928; Barlow
& Domanski 2008; Kim et al. 2014; Kray, Franke & Frank 2014). All these studies
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FIGURE 22. Dye visualisation images of a rigidly mounted (non-VIV case) rotating sphere
at Re= 3510 for (a) α = 0, (b) α = 0.2, (c) α = 1.5 and (d) α = 3. Flow is from left to
right. The deflection of the wake in the direction of rotation is evident from the images.
For α = 3, the near wake becomes wider than the smaller α cases.

focused on the effect of the rotation rate on the force coefficients for understanding
the inverse Magnus effect observed at such high Reynolds numbers. They found that
the rotation causes asymmetry between the boundary layer separation at the retreating
side and the advancing side of the sphere. There was no consensus as to whether
the rotation suppresses the vortex shedding at such high Reynolds numbers or not.
Figure 22 shows the effect of rotation on a rigidly mounted sphere for a Reynolds
number of Re = 3510, using dye visualisation. The vectoring of the wake towards
the advancing side is clearly evident. Between α= 1.5 and 3, the deflection does not
increase further, although the near wake increases in width with the retreating side
separating shear layer becoming less well defined.

The question arises, how does the transverse rotation change the wake patterns
behind an elastically mounted sphere undergoing VIV? What causes the VIV response
to be suppressed? In order to get an insight into the underlying flow dynamics,
hydrogen-bubble visualisations were undertaken in the equatorial plane of the sphere
to gauge the effect of rotation.

Figure 23 shows instantaneous hydrogen-bubble flow visualisation images for the
elastically mounted rotating sphere in the equatorial plane for U∗ = 6 (Mode I) at
α = 0, 1, 2.5 and 6. The flow is from left to right and the sphere is rotating anti-
clockwise. The first column shows images for the instant when the sphere is at the
peak of one cycle (phase of π) in the y direction and the second column shows the
images for the instant when the sphere reaches the peak amplitude in the opposite
direction (phase of 3π/2). The centreline has been overlaid in the images to show the
wake deflection more clearly. Some visually identified structures have been marked in
red. Since the flow at high Reynolds numbers is three-dimensional and chaotic, the
hydrogen bubbles do not necessarily stay in the laser plane. In spite of this, some
structures are identifiable and the broad flow dynamics can be readily interpreted from
these visualisations.

For α = 0, in case (a), the wake is deflected upwards when the sphere reaches
the peak displacement, and as the phase changes from π to 3π/2, the wake changes
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FIGURE 23. (Colour online) Instantaneous images of the hydrogen-bubble visualisation in
the equatorial plane for the following cases: (a,b) U∗= 6, α= 0, (c,d) U∗= 6, α= 1, (e, f )
U∗ = 6, α= 2.5, (g,h) U∗ = 6, α= 6. Panels (a,c,e,g) show images when the sphere is at
its lowest position, and (b,d, f,h) when it is at its highest position.
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orientation from upwards to downwards. The wake deflection is symmetrical, as
expected for a non-rotating oscillating sphere undergoing VIV. The wake deflection
and sphere displacement are in the opposite direction. Also, the roll-up of the
separating shear layers just behind the sphere on both the sides can be seen, which
convect downstream as vortical structures (shown in the horizontal cut through the
interlinked vortex loops present in the wake).

As α is increased from 0 to 6, the wake structure changes. As shown in
figure 23(a,c,e,g), the deflection increases (towards the advancing side) and the wake
widens due to the rotation of the sphere in the anti-clockwise direction (Magnus
effect). Due to this rotation-induced forcing, the mean displacement of the sphere
shifts towards the retreating side of the sphere (see § 4.1).

With increased rotation, the flow from the retreating side is vectored towards the
advancing side. The flow is continuously drawn upwards by the sphere rotation; the
flow structures, therefore, exhibit a large-scale shedding pattern. Case (g) clearly
shows very large-scale vortices shed at the advancing side of the sphere for α = 6,
when the VIV is greatly suppressed.

With increased entrainment of fluid from the retreating side to the advancing
side, it can be conjectured that the shear layer becomes unstable, and the vortices
are shed further upstream with increasing rotation, as is evident in case (g). At
high rotation rates, e.g. case (e) and case ( f ), the recirculation bubble is evidently
mostly suppressed. This near wake is very similar to the ‘shear-layer instability’
regime reported by Giacobello et al. (2009), Kim (2009) and Poon et al. (2014)
for rigidly mounted rotating spheres at low Reynolds number (Re 6 1000). They
reported single-sided shedding on the advancing side of the rotating sphere. They
also observed suppression of the recirculation bubbles and the large-scale shedding
patterns with increasing rotation.

For the phase of 3π/2 (cases b,d, f,h), as α increases from 0 (case b) to 1 (case d),
the downward deflection of the wake decreases. For α = 2.5, the wake is rather
deflected slightly upwards and for α = 6, the wake is highly deflected towards the
advancing side. Since the wake is always deflected towards the advancing side for
all shedding cycles, there is little oscillating force acting on the sphere to induce
sizeable vibrations. This is also evident in measurements of the r.m.s. of the transverse
fluctuating force coefficient C′yrms

reported in § 4.3. Figure 19 shows C′yrms
is negligible

for U∗ = 6 at α = 6. Hence, VIV is (almost) suppressed for α = 6 (case h) and the
sphere is displaced towards the retreating side.

Owing to the fact that hydrogen-bubble visualisations provide mostly qualitative
information, particle image velocimetry (PIV) was employed in the central equatorial
plane (plane of symmetry) to provide more quantitative information, allowing an
alternative view of the main near-wake features. Figure 24 shows representative
near-wake vorticity maps, phase-averaged over more than 100 oscillation cycles,
in the central equatorial plane for the same experimental conditions as shown in
figure 23. As is evident from figure 24(a,b), the phase-averaged wake of a non-rotating
oscillating sphere consists of a counter-rotating vortex pair downstream that represents
a cut through a vortex ring, as previously reported by Govardhan & Williamson (2005).
The deflections observed in the overall wake patterns in all cases are consistent with
those observed earlier using the hydrogen-bubble visualisations (figure 23). For α= 0,
the wake deflections at opposite ends of the oscillation cycle are symmetric, but they
becomes increasingly unsymmetric with increasing α, until for α = 6 the vibrations
are almost suppressed. The wake at α= 6 is considerably wider than the other cases.
For the phase of 3π/2, as the rotation rate increases from α= 0 to 1, it can clearly be
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FIGURE 24. (Colour online) Equatorial near-wake vorticity maps obtained from phase-
averaged PIV for the following cases: (a,b) U∗ = 6, α = 0, (c,d) U∗ = 6, α = 1, (e, f )
U∗ = 6, α = 2.5 and (g,h) U∗ = 6, α = 6. Panels (a,c,e,g) show images corresponding to
when the sphere is at its lowest position, and (b,d, f,h) when it is at its highest position.
The blue contours show clockwise vorticity and red contours show anti-clockwise vorticity.
The normalised vorticity range is ω∗ = ωD/U (where ω is the vorticity) ∈ [−3, 3] for
α = 0, [−2, 2] for α = 1 and α = 2.5 and [−1, 1] for α = 6.
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seen that the wake deflection angle towards the retreating side (downwards) decreases.
When α is further increased to 2.5, the downward deflection angle is almost zero.
For α = 6, the wake is now deflected in the opposite direction (advancing side). The
presence of anti-clockwise vorticity encircling the sphere on the retreating side points
towards highly vectored flow from the retreating to the advancing side. Also, the
recirculation region is absent for higher rotation rates. These findings are congruous
with the more qualitative hydrogen-bubble visualisations.

Although the wake of a sphere is intrinsically highly three-dimensional and chaotic
at such high Reynolds numbers, the flow visualisations in the plane of symmetry
(equatorial plane) still provide important insights into the underlying flow dynamics.

6. Conclusions

An extensive series of experiments and flow visualisations have been performed to
study the effect of transverse rotation on the VIV response of a sphere. Transverse
rotation was imposed such that the axis of rotation was perpendicular to the
flow direction. The vibration response was studied for a wide parameter space
of 0 6 α 6 7.5 and 3 6 U∗ 6 18. Interestingly, unlike its two-dimensional counterpart,
the cylinder, the VIV response of the sphere reduced gradually and steadily with
increasing the rotation ratio, leading to an almost complete suppression for α > 6.0.
With some similarities to the non-rotating case, the amplitude response of a rotating
sphere exhibited a bell-shaped curve, showing vibration Modes I and II for α 6 1. It
was also found that the synchronisation regime became narrower with increasing α,
and also the peak amplitude response gradually decreased almost linearly for α . 1.
For α > 0.5, the amplitude response dropped off rapidly with increasing U∗ as soon
as the peak response was reached, whereas, for lower rotation ratios of α6 0.4, large
oscillation amplitudes were still encountered at higher U∗ values after the A∗ peak
was reached in Mode II. The oscillation frequency remained close to the natural
frequency of the system for all cases.

Furthermore, it was found that oscillation amplitudes not only decreased but also
the oscillations became less periodic with increasing rotation. Recurrence analysis
revealed a transition from periodic to chaotic in the recurrence map complementing
the occurrence of broadband frequency spectra at the onset of bifurcation. The
time-averaged mean displacement increased towards the retreating side of the sphere
with increasing α, due to an increase in the mean Magnus force. A substantial jump
in fluctuating lift force coefficient, Cy

′

rms, was observed when lock-in occurred at
the start of the Mode I response. The peak value of C′yrms

as U∗ was increased was
found to decrease consistently with the rotation rate, following a trend similar to
that of the vibration amplitude. Imposed rotation increased the mean component
of the transverse force (Cy) due to the Magnus effect. It simultaneously decreased
the fluctuating component of the transverse force (C′yrms

), which decreased the VIV
response.

Compared to VIV of a low mass-damped cylinder, the total and vortex phase
transitions are much less sharp, as the VIV mode changes. However, overall the
phase transitions are similar. The vortex phase jumps as the response changes from
Mode I to Mode II, and the total phase jumps from low to high values as the Mode
II vibration transitions to the lower plateau, which is only observed for α . 0.4.

Flow visualisations using hydrogen bubbles and the PIV techniques were performed
in the equatorial plane containing the principal transverse vibration. With increased
rotation, the wake deflected more and more towards the advancing side of the sphere.
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The flow was continuously drawn from the retreating side to the advancing side of the
sphere with increasing rotation rate, which led to entrainment of fluid at the advancing
side. This entrainment gave rise to large-scale one-sided vortex shedding. This flow
behaviour is very similar to the ‘shear-layer instability’ regime reported by previous
studies for rigidly mounted rotating spheres. For the rotation rates where the VIV
was found to be completely suppressed, the wake was found to be always deflected
towards the advancing side with large-scale flow structures for all shedding cycles. A
lack of an oscillating force acting on the sphere led to near suppression of the VIV.
This also led to a shift in the mean displacement of the sphere towards the retreating
side. Measurements of the fluctuating transverse force coefficients C′yrms

and Cy were
also consistent with the flow visualisation observations.
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