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Trace metals from historical mining 
sites and past metallurgical activity 
remain bioavailable to wildlife 
today
Estelle Camizuli  1,2, Renaud Scheifler3, Stéphane Garnier4, Fabrice Monna1, Rémi Losno5, 
Claude Gourault1, Gilles Hamm1, Caroline Lachiche1, Guillaume Delivet1, Carmela Chateau6 & 
Paul Alibert4

Throughout history, ancient human societies exploited mineral resources all over the world, even in 
areas that are now protected and considered to be relatively pristine. Here, we show that past mining 
still has an impact on wildlife in some French protected areas. We measured cadmium, copper, lead, 
and zinc concentrations in topsoils and wood mouse kidneys from sites located in the Cévennes and the 
Morvan. The maximum levels of metals in these topsoils are one or two orders of magnitude greater 
than their commonly reported mean values in European topsoils. The transfer to biota was effective, 
as the lead concentration (and to a lesser extent, cadmium) in wood mouse kidneys increased with soil 
concentration, unlike copper and zinc, providing direct evidence that lead emitted in the environment 
several centuries ago is still bioavailable to free-ranging mammals. The negative correlation between 
kidney lead concentration and animal body condition suggests that historical mining activity may 
continue to play a role in the complex relationships between trace metal pollution and body indices. 
Ancient mining sites could therefore be used to assess the long-term fate of trace metals in soils and the 
subsequent risks to human health and the environment.

The first evidence of extractive metallurgy dates from the 6th millennium BC in the Near East1,2. Since then, min-
ing and smelting activities have developed almost everywhere that humans have settled3,4, resulting in the emis-
sion of unexpectedly large amounts of metals into the environment, e.g., during the Roman Empire5,6. Deleterious 
consequences on human health were observed as early as the 1st century BC, with Lucretius, for instance, pointing 
out “the ill effects in the miners’ complexions” and writing “How deadly are the exhalations of gold mines!” (De 
natura rerum, 4, 8087). Negative impacts of mining and smelting activities on animals and the environment were 
also recognized long ago. During the 1st century BC, Vitruvius wrote that springs coming from mining areas were 
very harmful (De Architectura, 8, 58), while Pliny the Elder, during the 1st century AD, noticed how silver mine 
emissions affect all animals (Naturalis Historia, 33, 319).

With geographical shifts of human settlements over time, some mining and/or smelting sites may have van-
ished from collective memory10–12. For instance, in the Morvan and Cévennes massifs (France), the older sites 
remain difficult to identify in the field, particularly in forested areas. Because of their outstanding landscapes 
and biodiversity, both the Morvan and the Cévennes are recognized as nature parks, considered to be pristine 
areas, relatively free from anthropogenic impact. These areas have nonetheless experienced several phases of 
mining and smelting, starting as early as the Bronze Age for the Morvan13–15 and at least from the Iron Age for 
the Cévennes16.

1UMR 6298, ArTeHiS, Université Bourgogne Franche-Comté–CNRS, Dijon, 21000, France. 2UMR 5204 EDYTEM, 
Université Savoie Mont Blanc–CNRS, Le Bourget-du-Lac cedex, 73376, France. 3UMR 6249, Chrono-Environnement, 
Université Bourgogne Franche-Comté–CNRS, Besançon, 25000, France. 4UMR 6282, Biogéosciences, Université 
Bourgogne Franche-Comté–CNRS, Dijon, 21000, France. 5IPGP, Paris, cedex 05, 75238, France. 6UFR SVTE, 
Université Bourgogne Franche-Comté, 21000, Dijon, France. Estelle Camizuli, Renaud Scheifler, Stéphane Garnier 
and Fabrice Monna contributed equally to this work. Correspondence and requests for materials should be addressed 
to E.C. (email: e.camizuli@wanadoo.fr)

Received: 20 April 2017

Accepted: 11 December 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-3393-7030
mailto:e.camizuli@wanadoo.fr


www.nature.com/scientificreports/

2Scientific REPORTS |  (2018) 8:3436  | DOI:10.1038/s41598-018-20983-0

In these parks, recent archaeological studies have identified ancient metallurgical sites, their spatial extent 
and the nature of their activities, together with palaeoenvironmental information17,18. Companion geochemical 
studies on those sites have shown that soils and sediments can still be highly contaminated by various metals due 
to their persistence in the environment10,19. However, a high concentration of metals in the abiotic environment 
does not necessarily imply that any transfer to biota will be sufficient to cause adverse effects on organisms20,21. 
The transfer of an element from abiotic compartments to biota depends on the biological characteristics of the 
targeted organisms as well as the bioavailability of the element, which is influenced by the physico-chemical prop-
erties of both the pollutant and the medium22. At sites that have been contaminated in the past but are no longer 
subject to polluting activities, bioavailability may have drastically decreased because of various physico-chemical 
processes that immobilise metals in abiotic compartments, e.g., soils23. The degree of toxicity, once a metal has 
been transferred into an organism, depends on the type of metal and on the defence mechanisms deployed by the 
organism (excretion, storage under non- or less toxic chemical forms of the metal, etc.). Metals can be classified 
into two categories, according to their physiological role: “essential” elements are those metals that have a crucial 
biological function in organisms (such as iron in haem, a component of haemoglobin), while “non-essential” 
elements are those for which no biological function is known. Any deleterious effects of non-essential elements 
generally occur at lower relative concentrations than those of essential elements, which can, however, still be toxic 
at high levels.

We therefore investigated whether trace metals (TMs) in soils surrounding ancient mining and metallurgical 
sites from various periods in two parks, the Morvan Regional Nature Park and the Cévennes National Park, are 
still bioavailable and, if so, toxic to wildlife. The aims of the present study were (i) to quantify the level of soil 
contamination by four TMs directly linked to mining activity, (ii) to check whether these contaminants were 
bioavailable to organisms such as the wood mouse, and finally (iii) to see if contamination ever occurred at levels 
prejudicial to the organism’s health. Within each park, three sites were selected (Fig. 1): one free of mining, used as 
a reference site (M 0 in the Morvan and C 0 in the Cévennes), one moderately contaminated (M1 in the Morvan 
and C1 in the Cévennes), and one highly contaminated (M2 in the Morvan and C2 in the Cévennes). Four TMs 
(two essential elements, copper (Cu) and zinc (Zn), and two non-essential elements, cadmium (Cd) and lead 
(Pb)), were measured in topsoils (n = 261) and in the kidneys of wood mice (Apodemus sylvaticus, n = 157) sam-
pled at the six study sites. These four elements were selected because of the local geology of the study sites, where 
past mining activities mainly exploited polymetallic sulphide ores. The potential toxic effects of these elements on 
the local fauna were investigated by several proxies: body condition for nutritional status24–27, somatic indices for 
possible histological damage28, and fluctuating asymmetry (FA) for developmental instability29,30.

Results
Trace metal concentrations in topsoils. The TM concentrations in soils ranged from less than 
0.5 mg·kg−1 to 54.2 mg·kg−1 for Cd, 11 mg·kg−1 to 212 mg·kg−1 for Cu, 85 mg·kg−1 to 8410 mg·kg−1 for Pb, and 
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Figure 1. Location of the study sites where soils and small mammals were sampled. The Morvan Regional 
Nature Park and the Cévennes National Park are both located in the Massif Central, France. Within each park, 
three sites were selected based on their degree of contamination. M0 in the Morvan and C0 in the Cévennes 
are free of mining and were used as reference sites. The coordinates of the centroid are given in WGS84 (EPSG 
4326), decimal degrees (Lat, Long). The maps were created using QGIS software (QGIS Essen 2.14.6, http://
www.qgis.org), adapted by E. Camizuli from Google Satellite©2016 and IGN©2016.
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90 mg·kg−1 to 13800 mg·kg−1 for Zn (Table 1 and Supplementary Table S1). Maximum levels for all the four TMs 
studied were found in the contaminated sites of the Morvan region. The spatial distribution of TMs in soils shows 
that higher concentrations were found in the mining and metallurgical sites, whatever the region considered 
(Fig. 2a, Fig. 3a, Supplementary Fig. S1 for the Morvan and Supplementary Fig. S2 for the Cévennes). In the 
Morvan, the three sites differed significantly (Kruskal-Wallis test, all p < 0.05) in terms of Cd, Cu, Pb and Zn 
contents in topsoils (Fig. 2a and Fig. 3a), with all elements following the pattern M0 < M1 < M2 (Steel-Dwass 
pairwise comparisons). In the Cévennes, the three sites differed for Cu and Zn contents with the pattern C2 < 
C0 < C1 (Fig. 2a). The Cd concentrations were similar in C0 and C2, both were lower than in C1. The Pb con-
centrations were similar for the three study sites (Kruskal-Wallis test, p > 0.05) but C2 exhibited greater spatial 
heterogeneity, ranging from 31 mg·kg−1 to 4810 mg·kg−1 (Fig. 3a and Supplementary Table S1).

Wood mouse population characteristics. The wood mouse age structures differed significantly between 
the two parks (χ2 = 8.48, p = 0.01, df = 2), but not between the three sites for either the Morvan (χ2 = 1.85, p = 
0.76, df = 4) or the Cévennes (χ2 = 5.00, p = 0.29, df = 4). The sex ratios did not differ significantly between parks 
or sites (χ2 = 0.47, p = 0.49, df = 1 for parks, χ2 = 2.22, p = 0.33, df = 2 for the Morvan and χ2 = 1.01, p = 0.6, df 
= 2 for the Cévennes, Supplementary Fig. S3).

Trace metal concentrations in kidneys. The Cu concentrations in wood mouse kidneys ranged from 
10.37 μg·g−1 to 22 μg·g−1, and the Zn concentrations ranged from 44.5 μg·g−1 to 160 μg·g−1 (Supplementary 
Table S2). Except for Cu in the Cévennes with C1 < C0 − C2 (Tukey’s HSD test after an analysis of variance 
(ANOVA) with p < 0.05), essential element concentrations did not differ between the study sites (p > 0.05), 
suggesting physiological (homeostatic) regulation (Fig. 2b). Concentrations of the non-essential elements in the 
kidneys ranged from 0.05 μg·g−1 to 38 μg·g−1 for Cd and from 0.05 μg·g−1 to 19 μg·g−1 for Pb. Maximum con-
centrations were found in the contaminated sites of the Cévennes region (C1 for the Cd and C2 for Pb). The Cd 
concentrations followed these patterns: M0 < M1 − M2 and C0 − C2 < C1. The Pb concentrations followed the 
same pattern in both parks, showing no differences between sites 0 and 1, but with both values lower than for site 
2 (Fig. 3b).

Trace metal concentrations in wood mice in relation to biological and environmental parameters.  
Multivariate linear models were used to investigate the relationship between TM concentrations in kidneys and 
explanatory variables (site, TMs in soils, sex, and mass), for each TM separately. Both Cd and Zn concentra-
tions in wood mouse kidneys were best explained by models combining study sites and body mass (Table 2, for 
description of best-fit models and Supplementary Table S3 for model parameters). The same pattern was observed 
for Cu concentrations in wood mouse kidneys, with sex as an additional factor (Table 2 and Supplementary 
Table S3). The Pb concentrations varied between sites as indicated above and increased with Pb concentrations 
in soil (Table 2, Fig. 4a and Supplementary Table S3). The Cd concentrations in wood mouse kidneys increased 
slightly with mass, while Cu and Zn concentrations decreased slightly (Table 2 and Supplementary Table S3).

Toxic effects assessed by body condition, somatic indices, and fluctuating asymmetry.  
Relationships between body condition and somatic indices were investigated with multivariate linear models 
using study sites, the four TMs in wood mouse kidneys, and sex as explanatory variables. Body condition as 
assessed by scaled mass index (SMI) was best explained by a model combining study sites, Cd and Pb concen-
trations in kidneys and the interaction between Cu or Zn concentrations in kidneys and sex (Table 3). The SMIs 
varied according to the sites, increased with Cd concentrations and were negatively related to Pb concentrations 
in kidneys (Fig. 4b and Supplementary Table S4). The SMIs were negatively influenced by the interaction between 
Cu concentrations and sex, and positively influenced by the interaction between Zn concentrations and sex. 
Somatic index data (scaled liver index - SLI, and scaled kidneys index - SKI) were best fit by models including 
study sites, sex and the interaction between Cu or Zn concentrations in kidneys and sex (Table 3). Like SMI, both 
SKI and SLI were negatively related to the Cu × sex interaction and positively related to the Zn × sex interaction 
(Supplementary Table S4). Concerning FA, preliminary tests were performed for all traits measured (here, length 

Cd (mg · kg−1) Cu (mg · kg−1) Pb (mg · kg−1) Zn (mg · kg−1)

Morvan

M0 <0.5 (LOD) 11 90 90

M1 3.2 212 4520 835

M2 54.2 81 8410 13800

Cévennes

C0 <0.5 (LOD) 11 85 107

C1 6.8 132 1580 1560

C2 10 105 4810 142

European Topsoils32 Mean value 0.28 17.3 32 68.1

French sewage sludge 
for amendment* Content limit 2 100 100 300

Dutch standards31 Intervention value 12 190 530 720

Table 1. Maximum concentrations for Cd, Cu, Pb and Zn in topsoils of the six study sites compared to 
reference values. *Under French regulations, sewage sludge for agricultural soil amendment must not contain 
trace metal concentrations above these limits. LOD stands for Limit Of Detection.
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and width of lower molars) as recommended by Palmer29. These tests did not suggest that directional asymmetry 
(DA), antisymmetry (AS) or relationships between asymmetry and trait size could significantly bias FA estimates 
(Supplementary Table S5). No significant correlations were found between absolute asymmetry distribution and 
TM concentrations in kidneys (Supplementary Table S6). When compared to measurement error, FA10, a param-
eter used for FA assessment, was always significant (Supplementary Table S7), but no clear relationship was found 
between levels of developmental instability assessed by FA and sites for either park (Supplementary Fig. S4).

Discussion
Even centuries after mining and metallurgical activities have ceased, TM concentrations in soils surrounding such 
sites still reach high levels. There is no European consensus on threshold concentrations of metals in soils, but the 
Dutch government proposed a soil classification scheme in which intervention values are defined. These strict 
values identify serious contamination of soils (12, 190, 530, and 720 mg·kg−1 dry matter for Cd, Cu, Pb, and Zn, 
respectively) and indicate that remediation is necessary31. In the present study, 75 out of 261 soil samples (29%) 
exceed the Pb intervention value, reaching 59% in the highly contaminated Morvan site, M2 (Fig. 3a). For both 
Cd and Cu, only one sample out of 261 exceeds the Dutch intervention values, while Zn exhibits an intermediate 
pattern, with 10% of the soils exceeding the threshold (Fig. 2a). Among the four metals studied and according to 
this classification, Pb concentrations represent the most important risk, which is probably linked to the nature of 
the ore exploited (galena) and to the low mobility of Pb in the environment32. For Cd, while only one soil exceeds 
the Dutch intervention threshold, this intervention limit is high (12 mg·kg−1) compared to the average concentra-
tion in European surface soils (0.28 mg·kg−1, Table 1)32. In France, Cd concentrations in sewage sludge-amended 
agricultural soils must be lower than 2 mg·kg−1 (Table 1). As Cd is toxic to organisms at low doses, it should also 

Figure 2. (a) Distribution of topsoil concentrations of essential elements (Cu and Zn) at the six study sites. 
Dutch intervention values for assessing soil contamination are represented by a red line31 (b) Distribution of 
essential elements (Cu and Zn) kidney concentrations in wood mice sampled at the six study sites (dry mass 
basis in). 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.
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Figure 3. (a) Distribution of topsoil concentrations of non-essential elements (Pb and Cd) at the six study 
sites. Dutch intervention values for assessing soil contamination are represented by a red line31 (b) Distribution 
of non-essential elements (Pb and Cd) kidney concentrations in wood mice sampled at the six study sites (dry 
mass basis in). The Lowest Observed Adverse Effect Levels (LOAELs) defined by Shore & Douben43,44 are 
represented by a red line. 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.

Best-fit models n Df F value Pr(>F) R2

∼ + +Cu site sex masslog ( )kidneys10
157 0.60

site 5 2.50 0.03*

sex 1 5.24 0.02*

mass 1 21.03 9.51 ⋅ 10−06***

∼ +Zn site masslog ( )kidneys10
157 0.14

site 5 2.56 0.03*

mass 1 13.93 0.0003***

∼ +Pb site Pblog ( ) log ( )kidneys soil10 10
157 0.35

site 5 10.38 1.45 ⋅ 10−08***

Pblog ( )soil10
1 9.33 0.003**

∼ +Cd site masslog ( )kidneys10
79 0.23

site 2 4.25 0.02*

mass 1 18.92 4.24 ⋅ 10−05***

Table 2. Summary of best-fit models for trace metals in wood mouse kidneys. Models relating trace metal 
concentrations in kidneys to biological and environmental parameters, and trace metal concentrations in soils. 
0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.
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be considered for risk assessment. Maximum levels of Cd and Zn were around 200 times higher than their com-
monly reported values in European topsoils, while Cu was 12 times and Pb 2–3 times higher32 (Table 1). Apart 
from these locally high concentrations, TM contents in topsoils are highly heterogeneous (Supplementary Fig. S1 
and Fig. S2), complicating risk assessment. Such heterogeneity is also observed in modern mining or smelting 
sites33,34 and can be explained by the spatial distribution of exploitation facilities in relation to the surrounding 
habitat (e.g., interception of metals emitted in the air by the canopy35).

Metal toxicity depends not only on the concentration of a substance in a medium but also on its bioavailabil-
ity, a complex combination of the physico-chemical characteristics of the pollutant in abiotic compartments and 
the biological characteristics of organisms36. The first component, known as “environmental availability”, repre-
sents the physico-chemically driven desorption processes that determine the mobile proportion of the total metal 

Figure 4. The effect of Pb concentrations on wood mice. (a) Variation of Pb concentrations in wood mouse 
kidneys in relation to both Pb concentrations in soils (abscissa) and sites (illustrated by different colours). 
(b) Variation of body condition as assessed by scaled mass index (SMI) in relation to both Pb concentrations 
in wood mouse kidneys (abscissa) and sites (illustrated by different colours). As the model was complex, we 
present only two parameters influencing the SMI (Pb concentrations in wood mice and site).

Best-fit models n Df F value Pr(>F) R2

∼ + + + + + + × + ×SMI site Cd Cu Pb Zn sex Cu sex Zn sexlog log log log log log10 10 10 10 10 10

154 0.24

site 5 3.26 0.008**

log Cd( )kidneys10
1 4.58 0.03*

log Pb( )kidneys10
1 5.59 0.02*

×log Cu sex( )kidneys10
1 10.78 0.001**

×log Zn sex( )kidneys10
1 11.45 0.0009***

∼ + + + + × + ×SLI site Cu Zn sex Cu sex Zn sexlog log log log10 10 10 10

155 0.30

site 5 7.28 4.26 ⋅ 10−06***

×log Cu sex( )kidneys10
1 10.05 0.002**

×log Zn sex( )kidneys10
1 5.88 0.02*

∼ + + + + × + ×SKI site Cu Zn sex Cu sex Zn sexlog log log log10 10 10 10

155 0.25

site 5 5.38 0.0001***

×log Cu sex( )kidneys10
1 10.95 0.001**

×log Zn sex( )kidneys10
1 10.52 0.001**

Table 3. Summary of best-fit models for body condition and somatic indices. Models relating body condition 
and somatic indices to biological and environmental parameters and trace metal concentrations in wood mouse 
kidneys. 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.
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concentration in a soil. Among the numerous parameters that determine this availability, time generally lead 
to immobilisation of metals, a process named “ageing” 22,23. The second component, known as “environmental 
bioavailability”, represents physiologically driven uptake processes that occur when an organism and a pollutant 
co-occur in time and space (namely, the “exposure” of an organism). In the present work, our aim was to examine 
whether these high, spatially heterogeneous concentrations of metals were bioavailable to organisms by measur-
ing TM levels in wood mouse kidneys. For the two essential elements, concentrations did not differ among sites, 
suggesting their efficient (homeostatic) regulation37. Concentrations measured here are similar to values found 
in other studies on wood mice38,39. However, the non-essential elements Cd and Pb showed marked differences 
between sites, with higher concentrations in the mining and smelting areas, showing that these metals are still 
bioavailable to wildlife. Concentrations of Pb in wood mouse kidneys measured in the present study are of the 
same order of magnitude as those measured in animals sampled around a non-ferrous smelter still in activity in 
Antwerp (Belgium)38. They are, however, below the concentrations observed in wood mice in the surroundings of 
Metaleurop Nord, a Pb and Zn smelter in activity from 1894 to 2003 in northern France28,40. Direct comparisons 
between all these values must be undertaken with caution because the sites differ in terms of metal concentrations 
in soils, soil properties, and/or exposure (diet). Biota-to-soil accumulation factors (BSAFs)41, i.e. the ratio of TM 
concentrations in organisms to TM concentrations in soils, can be used to compare TM transfer. In the present 
study, the BSAF for Pb at the most contaminated Morvan site (M2, median Pb concentration in soils of 1115) is 
0.0008, approximately three times lower than the value measured (0.0029) at a Metaleurop Nord site, which pre-
sented a similar Pb concentration in soils (median Pb concentration in soils of 1357)40. This lower value suggests 
less Pb transfer in the present study, which may indicate lower availability of this metal in soils affected by ancient 
mining contamination, as suggested by Camizuli et al.42.

Once a pollutant has been taken up by an organism, toxic effects will occur only if various defence mechanisms 
are overcome. In this study, Cd and Pb concentrations in wood mouse kidneys are below the Lowest Observed 
Adverse Effect Levels (LOAELs), as defined by Shore and Douben43,44 (Fig. 3b), suggesting that toxic effects are 
unlikely to occur. However, we found a significant negative relationship between SMI and kidney Pb concentra-
tions. The SMI is a measure of body condition that is often defined as a measure of the energetic (or nutritional) 
state of an animal25. Even if the calculation and interpretation of such indices are still much debated24,27, these 
indices are assumed to be related to fitness. Here, we used the SMI, which has recently been shown to be a better 
indicator of the relative size of energy reserves than condition indices based on ordinary least squares residuals 
(see Peig and Green25, for details). Although several studies have shown a decline in the body condition of small 
mammals from polluted sites compared to controls45,46, confounding factors like food availability, habitat quality 
or other chemical elements may contribute to the complex relationships that are observed between pollution and 
body indices28. Therefore the negative relationship between SMI and Pb concentrations, observed in this study, 
cannot simply be interpreted as implying a direct causal relationship. Other relationships that remain complex 
to interpret are the positive correlation between SMI and Cd concentrations in kidneys, and the interactions 
between essential element concentrations (Cu and Zn) and sex. These complex relationships between the body 
condition of free-ranging vertebrates and both essential and non-essential elements clearly require further inves-
tigation. Somatic indices (the relative size of internal organs), which may reveal oedema in individuals exposed 
to toxic compounds46, did not exhibit any clear relationship with metals. Concerning FA, relationships between 
the degree of developmental instability of populations and the level of the environmental and/or genetic stress to 
which they were subjected have already been demonstrated10,47. In this study, FA10 was detected, but no relation-
ship was found with the sampling site. This result is not in agreement with a study on aquatic ecosystems in the 
Cévennes National Park, which showed that wild trout were affected by increasing developmental instability in 
relation to mining contamination10.

Taken together these results show that several centuries after mining and smelting activities have ceased, met-
als are still bioavailable to wildlife, with Pb, and to a lesser extent Cd, concentrations increasing in wood mouse 
kidneys in relation to soil concentrations. Further studies should be undertaken to determine the precise TM 
transfer mechanisms that occur in our study sites from the environment to animals (ingestion of soil, animal and 
plant materials, inhalation of contaminated dust/soil particles, and/or direct transfer through dermal contact). 
The BSAFs suggest, however, that bioavailability might be lower in soils affected by ancient mining than in soils 
that have been more recently contaminated. Higher concentrations of Pb in the kidneys of individuals from the 
most contaminated sites and the negative relationship between these concentrations and SMI raise the issue of the 
present-day consequences of past anthropogenic activities on wildlife. Specific biomarkers of exposure such as the 
induction of metallothioneins, a protein involved in the homeostasis of essential elements and in the regulation of 
non-essential ones40, could be envisaged in future studies. Biomarkers of toxic effects, for instance related to the 
oxidative stress that exposure to trace metals may generate48 or to histological pathologies49, would also provide 
further insight into the possible toxic effects that may occur in wildlife. Nature Parks are now protected areas and 
are considered to be relatively pristine, but in the past, they often were the setting for economic and industrial 
activities. Ancient industrial activities might sometimes have vanished from collective memory but may still 
represent a risk that deserves investigation.

Methods
Topsoil sampling and analysis. Sampling units for topsoils were either 100 m × 100 m (M1, M2, C1) or 
200 m × 200 m (M0, C0, C2) plots, because of logistical and time constraints (see Supplementary Fig. S1 for the 
Morvan and Supplementary Fig. S2 for the Cévennes). Vegetation and litter were removed before topsoil sam-
pling. For each plot, a composite sample of ∼1 kg, stored in a hermetic polyethylene bag, was prepared from 5 
auger samples (0–20 cm depth), following a 20 m cross-shaped pattern. In the laboratory, samples were air-dried, 
sieved to 2 mm, and carefully quartered. Subsamples of the 261 topsoils were finely ground in an acid-cleaned 
agate mortar for elemental analyses. Concentrations of Cd, Cu, Pb, and Zn were measured by inductively coupled 
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plasma atomic emission spectroscopy (ICP-AES) after pseudo-total aqua regia digestion at Actlabs (Ontario, 
Canada). This chemical method was chosen because we targeted anthropogenic pollution that is easily extract-
able, and thus bioavailable to wildlife. Analytical quality control was doubly checked (i) by Actlabs measuring 
18 replicates, 8 blanks and several certified reference materials (CRMs) and (ii) by inserting another 25 dupli-
cates and JSD-1, JSD-2, BCSS-1 and PACS-1 CRMs (stream, estuarine, and harbour sediments, respectively) as 
blind samples. The Actlabs protocol set the limits of detection (LODs) at 0.5 mg·kg−1 for Cd, 1 mg·kg−1 for Cu, 
2 mg·kg−1 for Pb and 2 mg·kg−1 for Zn (see Supplementary Tables S8 and S9 for details).

Small mammal sampling and analysis. Small mammal sampling was conducted on 10 plots of 100 m 
× 100 m at each site (Supplementary Figs S1 and S2). These plots were randomly chosen for the two refer-
ence sites (M0 and C0) and at the location of anthropogenic activities for the contaminated sites. Wood mice 
were trapped between mid-September and mid-October 2010. Sampling authorisations were obtained from the 
DREAL Bourgogne (French regional territory agency in charge) and from the Cévennes National Park. For each 
of the 10 selected plots, a line of 25 baited traps was set with alternating INRA (door-) and snap-traps, spaced 4 m 
apart. An extra chamber was added to the classical INRA trap to increase the survival of trapped animals. Traps 
were set for 3 to 5 consecutive days to ensure an adequate number of samples and were checked and rebaited 
each morning. The wood mice caught alive were immediately sacrificed by cervical dislocation in accordance 
with relevant guidelines and regulations50,51 and frozen as soon as possible after their capture. They were stored 
at −20 °C until dissection in the laboratory. All small mammals captured were determined at the species level 
by molecular analysis (sequencing of the cytochrome b gene) of a tissue sample performed by a service pro-
vider (ADNid laboratory). Body wet mass was used as an estimator of age45,52,53. Combined with reproductive 
status, three age categories were constructed: juvenile (J), subadult (SA), and adult (A), as in Peig and Green26 
(Supplementary Table S10). For all specimens body mass was measured to the nearest 0.01 g and body length to 
the nearest 0.01 mm. Livers and kidneys were dried to constant mass and weighed to the nearest 0.001 g. Kidneys 
were finely ground in an acid-cleaned agate mortar. Concentrations of Cd, Cu, and Zn for the kidney samples 
(Apodemus sylvaticus, n = 157) were measured by ICP-AES with ultrasonic nebulisation for Cd, while Pb con-
centrations were measured by ICP-MS, both after total aqua regia digestion. Analytical quality was verified using 
blanks, CRMs (BCR 185 R, bovine liver; NIST 1547, peach leaves; DOLT-4, dogfish liver; DORM-3, fish protein) 
and duplicates (see Supplementary Tables S11 and S12 for details).

Ethics statement. The experiments were performed in 2010, i.e. before the application in France of the 
DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 September 
2010 on the protection of animals used for scientific purposes. This European Directive became applicable in 
2013, through the “Décret No. 2013-118 du 1er février 2013 relatif à la protection des animaux utilisés à des fins 
scientifiques”. Before 2013, the capture of non-protected free-ranging rodent species immediately followed by 
their sacrifice was not considered to be an experiment on live animals and thus did not require protocol approval 
by an ethical committee. However, as stated above, care was taken to apply euthanasia protocols appropriate for 
small rodents in the field, and sampling authorizations were obtained from the appropriate administrative bodies.

Body condition and somatic indices. Body condition was assessed by the scaled mass index (SMI), and 
somatic indices were estimated using standard major axis (SMA) regression of ln-mass on ln-length as recom-
mended by Peig and Green25,26. As the slope of this regression bSMA did not differ significantly between sites, it 
was estimated on the entire dataset excluding pregnant females for SMI (n = 154), and on the dataset excluding 
outliers for scaled somatic indices (n = 155). The SMA regression consists of estimating the predicted body mass 
(SMI) or the predicted organ mass (SLI for the liver, SKI for the kidneys) for each individual i when body length 
is standardised. Calculations for SMI follow the equation:

= ×SMI m L
Li i

b

i

0
SMA

where mi is the body mass and Li the body length of the individual i, bSMA is the slope of the regression of ln-body 
mass on ln-body length and L0 the arithmetic mean of body length for the population.

The scaled liver index SLIi and scaled kidney index SKIi values were similarly computed using organ mass 
instead of body mass. In this study, the bSMA values were 2.90 (95% confidence interval: 2.62–3.20) for SMI, 3.54 
(95% confidence interval: 3.10–4.05) for SLI, and 2.91 (95% confidence interval: 2.55–3.31) for SKI. According 
to Peig and Green (2009, 2010), the bSMA value for SMI usually lies between 2.5 and 3.2, which can be used as a 
guideline to identify reliable estimates of the allometric exponent in mammals28.

Weighted TM concentrations in topsoils. To account for the mobility of the wood mouse (home range 
of 2500 m²)54, a weighted TM concentration of the corresponding topsoil was calculated for each individual. 
This weighted concentration was calculated as the average of the TM concentration in the topsoil of the 8 plots 
surrounding the plot where the wood mouse was captured, with the capture plot being weighted twice. These 
weighted TM concentrations were used in the statistical models.

Data processing and statistical treatment. The Quantum GIS free software55 was used for mapping. 
Statistical treatment and regression analysis used the smart, lmodel2, stats, and pgirmess packages from the R 
software56.
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Topsoils. The non-parametric Kruskall-Wallis test was used to assess the differences in topsoil TM concentra-
tions between sites in each park because the residues were not normally distributed. When the Kruskall-Wallis 
test was significant (p < 0.05), pairwise comparisons were made using Steel-Dwass post-hoc tests57.

TM in wood mice. A parametric ANOVA test was used to assess the differences in TM concentrations in wood 
mouse kidneys between sites in each park. When the ANOVA test was significant (p < 0.05), pairwise compar-
isons were made using Tukey’s HSD test. Linear models were used to investigate the relationships between TM 
concentrations in kidneys and explanatory variables. Multivariate models were built with biological variables 
(mass and sex; age and size were dropped because of their relation to mass), geographical variable (site), and cor-
responding weighted TM concentrations in soils as explanatory variables. Biologically meaningful interactions 
(soil concentrations × sex and mass × sex) were also taken into account. As the range of TM concentration values 
in relation to sites did not always overlap, testing the interaction site × concentration in soil was not allowed58. 
Statistical treatments for Cd were only performed with the M1, M2, C1 sites, as M0, C0 and M2 presented too 
many censored data for Cd in soils. The best-fit model was selected using a backward stepwise regression. The 
drop1{stats} function combined with an F test was used; this method corresponds to a type II ANOVA. For each 
step, the explanatory variable with the largest p-value was deleted until the final step, giving the best-fit model, 
where all p-values were below the α = 0.05 level (Supplementary Table S13 for model selection). ANOVA tests 
were performed on the selected models. Model normality was examined by looking at plots of the standardised 
residuals versus leverage. Model outputs were satisfactory.

Body condition and somatic indices. Backward stepwise regression was also applied to determine whether body 
condition and somatic indices varied with geography, individual characteristics, or levels of individual contam-
ination. Multivariate models were built with biological variables (only sex, as we considered SMIs), a geograph-
ical variable (site), and the four TM concentrations in kidneys as explanatory variables. Biologically meaningful 
interactions (kidney TM concentrations × sex) were also taken into account (Supplementary Table S14 for model 
selection).

Fluctuating asymmetry. In this study, six bilateral morphometric traits were selected for fluctuating asymmetry 
(FA) assessment: length and width of the three lower molars (Supplementary Fig. S5). All measurements were 
performed twice to control for measurement error. The FA consists of subtle random variations between each 
side (right, R and left, L) of bilateral traits that are supposed to be perfectly identical. These variations reflect the 
inability of individuals to correct errors occurring during early development. It has been shown that both genetic 
and environmental stresses decrease developmental stability59. The FA has been proposed as a useful tool to assess 
individual quality30. In fact, three types of biological asymmetry can be distinguished on the basis of the analysis 
of right minus left (R − L) frequency distribution: directional asymmetry (DA), antisymmetry (AS) and FA. The 
DA shows a pattern of normal R − L variation distributed about a mean point that is significantly different from 
zero. The AS shows a pattern of R − L variation distributed about a mean point of zero, but with a frequency 
distribution departing from normality30. The FA shows a normal distribution of R − L values with a mean of 
zero. Among these three asymmetries, only FA provides an estimation of developmental instability. The presence 
of DA and AS, together with measurement error, can bias FA estimation. A series of preliminary analyses was 
performed for each study trait as recommended by Palmer29. Individual FA levels were then estimated for each 
trait using absolute asymmetry. Linear models were computed to assess the relationship between |R − L| values 
and kidney TM concentrations. Population FA levels were estimated for each trait using FA10, i.e., between-sides 
variance corrected for measurement error, obtained from the results of linear mixed models with sides (fixed) × 
individuals (random) (see Palmer29, for details). Fisher tests were then performed for each trait studied to explore 
inter-site differences.

Data availability. All data generated or analysed during the current study are included in this published 
article and the Supplementary Information file.
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